
ON ZECKENDORF AND BASE b DIGIT SUMS

CHRISTIAN BALLOT

Abstract. J. Pihko presented an elementary proof of the fact that the average number of
summands in the Zeckendorf representation of an integer n is asymptotically equal to C log n
for some explicit constant C. We retain the central idea of that proof, but provide a new
elementary method that has the advantage of being more concise, and to also explain the
asymptotics of the average sum of digits of integers in base b.

1. Introduction

The purpose of this note is to present a self-contained, elementary and nearly common proof
of the next two theorems.

Theorem 1.1. As n tends to infinity, we have

SF (n) ∼ cF n log n,

where cF = (α − 1)/(
√
5 log α).

Theorem 1.2. As n tends to infinity, we have

Sb(n) ∼ cb n log n,

where cb = (b− 1)/(2 log b).

We first explain the notation.
The Fibonacci sequence (Fk)k≥0 is defined by F0 = 0, F1 = 1, and Fk+2 = Fk+1 +Fk for all

k ≥ 0. The Zeckendorf representation [10] of a non-negative integer n is the only representation
of n as a sum of distinct, non-consecutive Fibonacci numbers all of indices at least 21. For
example, 17 = 13+ 3+ 1 = F7 +F4 +F2. If Fk ≤ n < Fk+1, then the largest summand in the
Zeckendorf representation of n is necessarily Fk. We define sF (n) as the number of summands
of the Zeckendorf representation of n. Thus, sF (17) = 3. The function SF (n) is the sum of
all sF (k) as k varies from 0 to n. Since 1 = F2, 2 = F3, and 3 = F4, we have, for instance,
SF (3) = 3. Here α is (1 +

√
5)/2.

Similarly, given a base b, i.e., an integer b ≥ 2, every non-negative integer n is well-known

to be representable in unique fashion as a sum
∑k

i=0 dib
i, where the digits di satisfy 0 ≤ di < b

and dk 6= 0 if bk ≤ n < bk+1. Then sb(n) =
∑k

i=0 di and Sb(n) =
∑n

j=1 sb(j).
We briefly remark that cF ' 0.574, c2 ' 0.721, c3 ' 0.910 and c4 ' 1.082, which raises the

question of the existence of comparable number systems that would be more economical than
the Zeckendorf representation in terms of digit sum averages.

Theorem 1.2 was first stated in [2], where a concise elementary proof is presented. The case
b = 2 of Theorem 1.2 appears in [1]. The referee points out that another elementary proof of
Theorem 1.2, essentially due to G. Grekos, was given in [8]. The asymptotics of the functions
SF and Sb are known with greater precision than Theorems 1.1 and 1.2. In particular, the

1By convention the empty sum, i.e., a sum with no summands, is equal to 0.
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differences Db(n) := Sb(n)− cbn log n and DF (n) := SF (n)− cFn log n are known to be O(n).
For Db(n), this was shown in [6] and also in [3], although this result can be seen directly from
the proof given in [2]. Section 3 of this note shows that our method also yields the result for
both Db and DF . However, more is known since Db(n) and DF (n) are expressible explicitly
in terms of continuous, nowhere differentiable functions, or nearly so in the case of DF . This
was carried out first for b = 2 in [9], for a general base in [5], and for the Fibonacci case in [4].

In the paper [7], Pihko reports an elementary proof of Theorem 1.1. The main idea is the
introduction of the function RF which we recall here.

Definition 1.3. Suppose Fk ≤ n < Fk+1 for some k ≥ 0. Then

RF (n) :=

{

SF (n), if n = Fk;

RF (Fk) +RF (n− Fk), otherwise.

If n =
∑s

j=1 Fij , where ij+1 − ij ≥ 2, j = 1, . . . , s − 1 and i1 ≥ 2, i.e., if
∑s

j=1 Fij

is the Zeckendorf representation of n, then, by iterating the definition of RF , we find that
RF (n) =

∑s
j=1RF (Fij ). Because the difference SF (n) − RF (n) is o(n log n), showing that

RF (n) ∼ cFn log n entails Theorem 1.1. However, while reading [7], we found that some
calculations and parts of the argument were long, sinuous and idiosyncratic. This brought
about a more concise and direct proof, yet as elementary, which is reported herein. In our
view, this note is a completion of the idea of [7]. Indeed, we use the RF function introduced in
[7], but use a Cesàro-like result, Theorem 1.4 below, that allows to move from the asymptotics
of RF (Fk)/Fk to those of RF (n)/n, for a general integer n, more directly.

Theorem 1.4. Let (un)n≥0 and (vn)n≥0 be sequences of non-negative real numbers with

(i) vn ∼ aρn, for some a > 0 and some ρ > 1, and
(ii) un ∼ c n vn, for some c > 0, as n tends to infinity.

Put Un =
∑n

k=0 εkuk and Vn =
∑n

k=0 εkvk, where εk ∈ {0, 1, . . . , B}, k = 0, 1, . . . , n, εn 6= 0
and B is an integer ≥ 2.

Then Un ∼ c n Vn regardless of the choice of the εk’s, k = 0, 1, . . . , n.

Remark. It is a Cesàro-like theorem in the sense that un/vn ∼ c n =⇒ Un/Vn ∼ c n.
Then, in analogy with the RF function and in order to tackle Theorem 1.2, we define the

function Rb below.

Definition 1.5. Let Rb(0) = 0. Suppose bk ≤ n < bk+1 for some k ≥ 0. Then

Rb(n) :=

{

Sb(n), if n = bk;

Rb(b
k) +Rb(n− bk), otherwise.

By iterating the above definition, we find that Rb(n) =
∑k

i=0 diRb(b
i), if n =

∑k
i=0 dib

i,

0 ≤ di < b.

For example, suppose b = 3 and n = 47. Then n = 33 + 2 · 32 + 2 · 30 and R3(n) =
R3(3

3) +R3(20) = R3(3
3) +R3(3

2) +R3(11) = R3(3
3) +R3(3

2) +R3(3
2) +R3(2) = R3(3

3) +
2 · R3(3

2) + 2 ·R3(3
0).

Again, the asymptotic behavior of Sb(n)/n for general n is derived from that of Sb(b
k)/bk

using Theorem 1.4.
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2. Proof of the Theorems

Proof of Theorem 1.4. Note that ρn � Vn and Vn � ρn. Indeed, Vn ≥ vn = aρn
(

1+ o(1)
)

and

Vn ≤ B

n
∑

k=0

vk ∼ aB

n
∑

k=0

ρk ∼ aB

ρ− 1
ρ · ρn.

Let us fix a positive ε. By hypothesis, there exists a k0 such that k > k0 implies that
|uk − ckvk| ≤ 1

3εkvk. Hence,

∣

∣

∣

∣

Un

nVn

− c

∣

∣

∣

∣

= (nVn)
−1

∣

∣

∣

∣

∣

n
∑

k=0

εkuk − cn

n
∑

k=0

εkvk

∣

∣

∣

∣

∣

≤ (nVn)
−1

n
∑

k=0

εk|uk − cnvk|

≤ (nVn)
−1

[

n
∑

k=0

εk|uk − ckvk|+ c
n
∑

k=0

εkvk(n− k)

]

.

We break the sum
∑n

k=0 εk|uk − ckvk| into two subsums S1 and S2, where S1 :=
∑k0

k=0 εk|uk −
ckvk| is bounded above by B

∑k0
k=0 |uk − ckvk|, a constant independent of n, and

S2 :=
n
∑

k=k0+1

εk|uk − ckvk| ≤
ε

3

n
∑

k0+1

εkkvk

≤ ε

3

n
∑

0

εkkvk ≤ ε

3
n

n
∑

0

εkvk =
ε

3
nVn.

Thus, for n large enough, S1/(nVn) ≤ ε/3 and S2/(nVn) ≤ ε/3.
It remains to show that the sum S3 :=

∑n
k=0 εkvk(n− k) is o(nVn).

Note that S3 will be o(nVn) if the sum
∑n−1

k=0 vk(n − k) is o(nVn), or equivalently, if
∑n−1

k=0 ρ
k(n − k) is o(nρn), i.e., by a change of variable, if

∑n
k=1 kρ

n−k is o(nρn). But clearly
that last statement is true for

n
∑

k=1

kρn−k < ρn
∞
∑

k=1

kρ−k � ρn.

Therefore, for n large enough, we also have S3/(nVn) ≤ ε/3, and we conclude that
∣

∣

∣

Un

nVn
− c

∣

∣

∣
≤ ε

for such n’s. �

2.1. Proof of Theorem 1.1. We recall that, by running the recursion Fk+2 = Fk+1 + Fk

backward, Fibonacci numbers may be defined for negative integers k. We then get F−k =
(−1)k+1Fk for all k. Also Fk = (αk − βk)/

√
5, where β = (1−

√
5)/2. The kth Lucas number

is Lk = αk + βk. We lay stress on the facts that 1 < α < 2 and that −1 < β < 0.

Lemma 2.1. We have, for k ≥ 0,

SF (Fk+1) = 1 +
1

5

[

(k − 1)Lk + 2Fk−1

]

. (2.1)

Thus, for integers n of the form Fk, we have SF (n) ∼ cFn log n with cF = α−1√
5 logα

.
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Proof. Note that the sequence (1/5)
(

(k − 1)Lk + 2Fk−1

)

has initial values 0, 0, 1, 2 for k =
0, 1, 2 and 3, and is linear recurring of order four since it is annihilated by the polynomial
(x−α)2(x−β)2 = (x2 −x− 1)2. (Here, we use the well-known facts, which are easy to check,
that the sequences (rk)k and (krk)k are respectively annihilated by x− r and by (x− r)2, and,
thus, that both are annihilated by (x− r)2. The polynomial action we refer to is defined via
the right shift. That is, x · (uk) = (uk+1). Thus, for instance, x2 − x − 1 · (Fk) = 0.) But
the sequence (ak), where ak = SF (Fk+1 − 1), shares the same four initial values and follows
the same order four recursion. Indeed, if Fk ≤ ` < Fk+1, then sF (`) = 1 + sF (` − Fk) and
0 ≤ `− Fk < Fk−1. Hence, for k ≥ 2,

SF (Fk+1 − 1)− SF (Fk − 1) = Fk−1 + SF (Fk−1 − 1).

That is, ak − ak−1 − ak−2 = Fk−1, which implies that (x2 − x− 1)2 annihilates the sequence
(ak).

Now, since Fk ∼ αk/
√
5, we find using (2.1) that

SF (Fk) ∼ (1/5)kLk−1 ∼ log Fk

5 log α
αk−1 ∼ 1

α

logFk√
5 log α

Fk = cFn log n.

�

Remark. The pretty formula (2.1) appeared on page 44 of [8] and was given another proof.

In [8, p. 43], we also find that S(Fk+1 − 1) =
∑k

j=0 FjFk−j. Note that the sequence bk :=

(1/5)
(

(k− 1)Lk+2Fk−1

)

is also equal to (1/5) ((k − 1)Fk + 2kFk−1), and that (bk)k≥−1 is the

fundamental sequence with initial values 0, 0, 0, 1 associated with (x2 − x− 1)2.
The next easy lemma was stated in [7] without proof. We provide one for the sake of

comparison with the base b case.

Lemma 2.2. If Fk ≤ n < Fk+1 for some k ≥ 2, then

0 ≤ SF (n)−RF (n) < Fk.

Proof. We proceed by strong induction on k. Note that the lemma holds for n < 3 = F4.
Thus, assume k ≥ 4 and the lemma holds for all n < Fk.

If Fk ≤ n < Fk+1, then

SF (n)−RF (n) =
(

SF (Fk) + n− Fk + SF (n − Fk)
)

−
(

RF (Fk) +RF (n− Fk)
)

= (n− Fk) +
(

SF (n− Fk)−RF (n− Fk)
)

.

By the inductive hypothesis, we get

0 ≤ SF (n)−RF (n) ≤ n− Fk + Fk−2 < Fk+1 − Fk + Fk−2 = Fk.

�

Proof of Theorem 1.1. By Lemma 2.2, we have, for all n ≥ 1, 0 ≤ SF (n)−RF (n) < n. Hence,
SF (n) ∼ cFn log n if, and only if RF (n) ∼ cFn log n.

Let vk = Fk and uk = RF (Fk). By Lemma 2.1, uk ∼ cFFk log(Fk). But cFFk log(Fk) ∼
ckvk, with c = cF logα. Therefore, by and with the notation of Theorem 1.4, we have that
Uk ∼ ckVk as k → ∞, where, if Fk ≤ n < Fk+1, we have chosen the εi’s such that n =

Vk =
∑k

i=0 εiFi is the Zeckendorf representation of n. In particular, εi ∈ {0, 1}, ε0 = ε1 = 0

and εk = 1. Then Uk =
∑k

i=0 εiRF (Fi) = RF (n). Therefore, RF (n) ∼ (cF logα)kn. As

αk/
√
5 ∼ Fk ≤ n < Fk+1, log n ∼ k log α. Hence, RF (n) ∼ cFn log n. �
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2.2. Proof of Theorem 1.2. We imitate the approach of the previous subsection. However,
to alleviate notation in subsequent proofs we write S instead of Sb and R in place of Rb.

Lemma 2.3.
2 We have for all k ≥ 0

Sb(b
k) = 1 +

(b− 1)

2
kbk. (2.2)

Thus, for integers n of the form bk, we have Sb(n) ∼ cbn log n with cb =
b−1
2 log b .

Proof. If j and j′ are integers in [0, bk) with j + j′ = bk − 1, then sb(j) + sb(j
′) = k(b − 1).

If b is even, then there are precisely bk/2 such pairs {j, j′} with j 6= j′. Thus, (2.2) holds. If
b is odd, there are (bk − 1)/2 pairs {j, j′}, with j 6= j′ and j + j′ = bk − 1, and the singleton
(bk − 1)/2 whose sum of digits is k(b− 1)/2. Thus, (2.2) holds again.

Now S(bk) = 1 + (b−1)
2 kbk ∼ b−1

2 log b(log b
k)bk = cbn log n. �

Lemma 2.4. If bk ≤ n < bk+1 for some k ≥ 0, then

0 ≤ Sb(n)−Rb(n) < bk+3.

Proof. We proceed by strong induction on k. If k = 0, then 1 ≤ n < b. So R(n) = nR(1) =
nS(1) = n = S(n) and S(n) − R(n) = 0. We now assume that k ≥ 1 and that the lemma
holds for all integers < bk. Suppose n = ibk +m with 1 ≤ i < b and m < bk. Then

S(n) = S(ibk − 1) + (m+ 1)i+ S(m). (2.3)

Indeed, if (j − 1)bk ≤ ` < jbk, 1 ≤ j < b, then sb(`) = j − 1 + sb(` − (j − 1)bk). Thus, for
1 ≤ j ≤ i, S(jbk − 1) − S

(

(j − 1)bk − 1
)

= bk(j − 1) + S(bk − 1), where we have set S(−1)
equal to 0. Therefore,

S(ibk − 1) = bk
i

∑

j=1

(j − 1) + iS(bk − 1). (2.4)

Putting (2.3) and (2.4) together yields S(n) = i(i−1)
2 bk + iS(bk) +mi + S(m). Since R(n) =

iS(bk) +R(m) and m < bk, we get, using the inductive hypothesis, that

0 ≤ S(n)−R(n) =
i(i− 1)

2
bk +mi+

(

S(m)−R(m)
)

<
b2

2
bk + bk+1 + bk+2 ≤ bk+2

2
+

bk+2

2
+ bk+2 ≤ bk+3.

�

Remark. By using sharper upper bounds in the last few steps of the proof, one can replace
bk+3 by bk+2 in Lemma 2.4, and for, say b = 2, one can get down to bk+1.

Proof of Theorem 1.2. By Lemma 2.4, we have 0 ≤ S(n)−R(n) < b3n. Thus, R(n)− S(n) =
O(n). Hence, S(n) ∼ cbn log n if, and only if R(n) ∼ cbn log n.

Let vk = bk and uk = R(bk). By Lemma 2.3, uk ∼ cbb
k log(bk) = ckvk, with c = (b − 1)/2.

Thus, we may apply Theorem 1.4 to the sequences (uk) and (vk) and obtain, with notation

from Theorem 1.4, that Uk ∼ ckVk. If b
k ≤ n < bk+1, then n is equal to some Vk =

∑k
i=0 εib

i,
where εi ∈ {0, 1, . . . , b−1} are the base b digits of n and εk ≥ 1. But then we have R(n) = Uk.
Therefore, R(n) ∼ cbn log n, as k ∼ log n/ log b. �

2This is Lemma 4.6 of [8], where it is proved by induction on k.
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3. A Final Remark

If, in Theorem 1.4, we replace condition (ii) by the stronger condition that un = cnvn +
O(vn), say |un − cnvn| ≤ Kvn for all n, then the conclusion of the theorem is also stronger,
that is, Un = cnVn +O(Vn).

Indeed, the proof of Theorem 1.4 now leads to
∣

∣

∣

∣

Un

nVn

− c

∣

∣

∣

∣

� 1

n
,

because

S1 + S2 =

n
∑

k=0

εk|uk − ckvk| ≤ K

n
∑

k=0

εkvk = KVn, and

S3 =

n
∑

k=0

vk(n− k) was shown to be � Vn.

This stronger condition is satisfied in both the Fibonacci and the base b cases. From equation
(2.1), we have RF (Fk)− ckFk = O(Fk), i.e, uk − ckvk = O(vk) in the notation of the proof of
Theorem 1.1, while, in the base b case, we have uk − ckvk = Rb(b

k) − ckbk = O(1) = O(bk)
by (2.2). Therefore, Uk − ckVk = O(Vk) in both cases. Thus, we have RF (n) − cFn log n =
O(n) and Rb(n) − cbn log n = O(n). By Lemmas 2.2 and 2.4, SF (n) − RF (n) = O(n) and
Sb(n)−Rb(n) = O(n). Hence, we get with little further expense stronger versions of Theorems
1.1 and 1.2, namely,

SF (n) = cF n log n+O(n), and (3.1)

Sb(n) = cb n log n+O(n). (3.2)
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