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Abstract. For each positive integer n, we consider the following sequence of numbers

F (n), F (nF (n)), F (nF (nF (n))), . . . ,

where F (n) is the nth Fibonacci number defined in the usual way. Let Gk(n) be the kth
term of this sequence. We prove that F (n)k || Gk(n) for all positive integers k and n with
n > 3. For the first nontrivial case when n = 3, we prove that F (3)2k−1 || Gk(3) for all

positive integers k. We also provide an alternative proof of the divisibility of Gk(n) by F (n)k

first proved by two authors of this work. Finally, we give explicit formulas of the quotients
obtained from dividing Gk(n) by F (n)k for the cases when k = 2 and k = 3.

1. Introduction

Perhaps one of the most studied sequences of natural numbers is the Fibonacci sequence
(F (n)) which is defined by

F (0) = 0, F (1) = 1, and F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

In this paper, we form a subsequence (Gk(n)) of the Fibonacci sequence as follows: for each
nonnegative integer n, let

G1(n) = F (n) and Gk(n) = F
(

nGk−1(n)
)

for k ≥ 2.

For instance, the first few terms of this sequence are F (n), F (nF (n)), F (nF (nF (n))). A well-
known theorem states that the Fibonacci sequence is a divisibility sequence, i.e., if m | n,
then F (m) | F (n). It follows immediately from this theorem that F (n) | Gk(n) for all positive
integers n and k. However, Tangboonduangjit and Wiboonton [6] asserted that higher powers
of F (n) are present in Gk(n). In fact, they proved the following: F (n)k | Gk(n) for all positive
integers n and k. At this point, a natural question arises as to whether F (n)k is the highest
power of F (n) that can divide Gk(n). This paper answers the question in the affirmative for
the case when n > 3. In Section 2, we provide a number of lemmas that are keys to achieve
our goal. We prove the main results in Section 3 as well as offer an alternative proof of the
main theorem first proved in [6]. Finally, in Section 4, we provide concrete examples of our
main results by deriving explicit formulas of the quotients upon dividing Gk(n) by F (n)k for
the cases when k = 2 and k = 3. From these formulas, we see that the quotients have nonzero
remainders modulo F (n) when n > 3.

2. Preliminaries

The following lemma (see [7]) allows us to express F (kn + r) as the sum of products of
the lower terms of Fibonacci numbers and will prove extremely useful in proving some other
lemmas and main results.
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Lemma 2.1. Let n and k be positive integers, and r a nonnegative integer. Then

F (kn+ r) =
k

∑

j=0

(

k

j

)

F (n)jF (n − 1)k−jF (r + j),

where we interpret 00 in the summand to be 1 for the case when n = 1.

We also need the following standard results about Fibonacci numbers (see [1]).

Lemma 2.2. Let m and n be positive integers. Then

(a) (Cassini’s identity) F (n− 1)F (n + 1)− F (n)2 = (−1)n.
(b) gcd

(

F (m), F (n)
)

= F
(

gcd(m,n)
)

.
(c) If F (n) | F (m) and n ≥ 3, then n | m.
(d) If n | m, then F (n) | F (m).
(e) F (2n) = F (n)L(n), where L(n) are Lucas numbers defined by L(n) = F (n)+2F (n−1).

The following lemma was used by Matijasevich [3, 4, 5] as one of the key steps to resolve
Hilbert’s 10th problem.

Lemma 2.3. [6] Let n 6= 2 and m be positive integers. Then

F (n)2 | F (m) if and only if nF (n) | m.

Next we have a corollary of the above lemma.

Lemma 2.4. Let n and m be positive integers. If 3 | n, then

F (n)2

2

∣

∣

∣
F (m) if and only if

nF (n)

2

∣

∣

∣
m.

Proof. Since 3 | n, Lemma 2.2(d) implies that 2 = F (3) divides F (n). Thus, F (n) is even.
Suppose that

nF (n)

2

∣

∣

∣
m, so that nF (n) | 2m.

By Lemma 2.3, the last statement implies

F (n)2 | F (2m).

Now since
nF (n)

2
divides m and F (n) is even, it follows that n | m. Thus, F (n) | F (m) by

Lemma 2.2(d) and since F (n) is even, this also implies that F (m) is even. Since L(m) =
F (m) + 2F (m− 1), it follows that L(m) is even. We therefore obtain

F (n)2 | F (2m) ⇒ F (n)2 | F (m)L(m) ⇒ F (n)
∣

∣

∣

F (m)

F (n)
L(m) ⇒

F (n)

2

∣

∣

∣

F (m)

F (n)

L(m)

2
, (2.1)

where the first implication follows from Lemma 2.2(e). Let

d = gcd
(F (m)

2
,
L(m)

2

)

.

Then the definition of L(m) implies that d | F (m− 1), so that 2d | 2F (m− 1). Since d divides
F (m)

2
, we have 2d | F (m). Thus, 2d | gcd(F (m), 2F (m − 1)). Now, since gcd(F (m), F (m −
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1)) = 1 and F (m) is even, we have gcd(F (m), 2F (m − 1)) = 2 and therefore d = 1. Since
F (n)

2
divides

F (m)

2
, it follows that

gcd
(F (n)

2
,
L(m)

2

)

= 1.

Hence,

F (n)

2

∣

∣

∣

F (m)

F (n)

L(m)

2
⇒

F (n)

2

∣

∣

∣

F (m)

F (n)
⇒

F (n)2

2

∣

∣

∣
F (m). (2.2)

Now we suppose that

F (n)2

2

∣

∣

∣
F (m).

Then since F (n) is even, we have F (n) | F (m). Since 3 | n, it follows that n ≥ 3 and by
Lemma 2.2(c) we have n | m. Consequently, by the same argument above, F (m) and therefore
L(m) is even. Hence the chains of implications (2.1) and (2.2) can all be reversed, so that

F (n)2

2

∣

∣

∣
F (m) ⇒ F (n)2 | F (2m).

By Lemma 2.3 and the fact that F (n) is even, we have

F (n)2 | F (2m) ⇒ nF (n) | 2m ⇒
nF (n)

2

∣

∣

∣
m.

Thus the proof is complete. �

Lemma 2.5. Let n be a positive integer. Then F (n− 1)2 ≡ F (n+ 1)2 ≡ (−1)n (mod F (n)).

Proof. This follows immediately from Cassini’s Identity and the fact that F (n−1) ≡ F (n+1)
(mod F (n)). �

Lemma 2.6. Let n be a positive integer such that n ≥ 3. Then F (n− 3) = 2F (n− 1)−F (n).

Proof. Let n be a positive integer such that n ≥ 3. By definition, F (n) = F (n− 1)+F (n− 2)
and F (n−1) = F (n−2)+F (n−3). Subtracting these two equations, we find F (n)−F (n−1) =
F (n− 1)− F (n− 3), or equivalently,

F (n − 3) = 2F (n− 1)− F (n).

�

Lemma 2.7. Let n be a positive integer such that 3 - n and 2 - n. Then

(a) F (n) ≡ 1 (mod 4).

(b) F (n − 1)F (n)−1 ≡ 1 (mod F (n)).

Proof. By hypothesis, n ≡ 1 or 5 (mod 6). For the case in which n ≡ 1 (mod 6), we write
n = 6k + 1 where k is a nonnegative integer. Then from Lemma 2.1 we have

F (n) = F (6k + 1) =

k
∑

j=0

(

k

j

)

8j5k−jF (1 + j) = 5kF (1) + 8` = 5k + 8`,

where ` is a nonnegative integer. Now since 5k ≡ 1 (mod 4), it follows that F (n) ≡ 1 (mod 4).
Similarly, for the case in which n ≡ 5 (mod 6), by writing n = 6k+5 where k is a nonnegative
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integer and by appealing to the same lemma as before, we have

F (n) = F (6k + 5) =

k
∑

j=0

(

k

j

)

8j5k−jF (5 + j) = 5kF (5) + 8` = 5k+1 + 8`,

where ` is a nonnegative integer. Therefore, F (n) ≡ 1 (mod 4) in this case as well. This
proves (a). To prove (b), we use Lemma 2.5 together with part (a) to conclude that there
exists a nonnegative integer k such that

F (n− 1)F (n)−1 = F (n− 1)4k =
(

F (n− 1)2
)2k

≡
(

(−1)n
)2k

= (−1)2k ≡ 1 (mod F (n)).

�

Lemma 2.8. Let n be a positive integer. If 2 - n and 3 | n, then F (n) ≡ 2 (mod 4).

Proof. Since 3 | n, it follows from Lemma 2.2 that F (n) is even. This implies that F (n) ≡ 0
(mod 4) or F (n) ≡ 2 (mod 4). Assume the former case. Then by Lemma 2.2 we have

gcd
(

F (n), 8
)

= gcd
(

F (n), F (6)
)

= F
(

gcd(n, 6)
)

= F (3) = 2.

Since 4 | gcd
(

F (n), 8
)

, it follows that 4 | 2, which is a contradiction. Hence, F (n) ≡ 2
(mod 4). �

Lemma 2.9. Let r and m be positive integers. If m is odd, then 2r+2 || F (3 ·m · 2r).

Proof. Assume that m is odd. The proof is by induction on r. When r = 1 the statement is
23 || F (3 ·m · 2) or 8 || F (6 ·m) which is true since

gcd(F (6 ·m), 2432) = gcd(F (6 ·m), F (12)) = F (gcd(6 ·m, 12)) = F (6) = 23.

Now we assume that the statement is true for some integer k ≥ 1. Then by Lemma 2.2(e) and
the induction hypothesis we have

F (3 ·m · 2k+1) = F
(

2(3 ·m · 2k)
)

= F (3 ·m · 2k)L(3 ·m · 2k) = 2k+2ckL(3 ·m · 2k),

where ck is an odd integer. It follows from Lemma 2.2 that 2 || L(3 · m · 2k). Consequently,
2k+3 || F (3 ·m · 2k+1). This completes our proof by induction. �

Lemma 2.10. Let k be a positive integer. Then 22k−1 || Gk(3).

Proof. We prove by induction on k. For k = 1 the statement is 2 || G1(3) which is true
by inspection. Now assume that the statement is true for some positive integer k, that is,
Gk(3) = m · 22k−1 for some positive odd integer m. Then Lemma 2.2(c) implies that

Gk+1(3) = F
(

3Gk(3)
)

= F (3m · 22k−1).

By Lemma 2.9, 2(2k−1)+2 || F (3 ·m · 22k−1). Therefore, 22(k+1)−1 || Gk+1(3). Hence the proof
by induction is complete. �

From the above Lemma, we can also conclude that 22k−1 | Gk(n) for all positive integers k
and n in which 3|n.

Lemma 2.11. Let m, `, and k be positive integers with m ≥ 2 and ` ≥ 3. Then

mk+2

∣

∣

∣

∣

(

mk

`

)

m`.
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Proof. By Hermite’s Divisibility Theorem (see [2, pp. 9-10]) which states that

n

gcd(n, k)

∣

∣

∣

∣

(

n

k

)

,

where n and k are positive integers, we have

mk

∣

∣

∣

∣

(

mk

`

)

gcd(mk, `).

So it suffices to show that gcd(mk, `) | m`−2. Let p be a prime number and r a positive integer
such that pr || gcd(mk, `). Then

mk = pr+ic1 and ` = pr+jc2,

where i, j ≥ 0 and gcd(p, c1) = gcd(p, c2) = 1. We must show that pr | m`−2. This is equivalent
to showing that r is no greater than the largest exponent s of p such that ps | m`−2. We see
that

s =
r + i

k
(pr+jc2 − 2).

Now since
r + i

k
≥ 1, it suffices to show that r ≤ pr+jc2− 2. Since ` ≥ 3, the statement is true

when r = 1 so we may assume that r ≥ 2. Then

pr+jc2 − 2 ≥ pr − 2 ≥ 2r − 2 ≥ r.

Hence, r ≤ s as desired and the proof is now complete. �

3. Exact Divisibility

The divisibility of Gk(n) by F (n)k was already proved in the paper of the similar title by
two of the authors. In this section, we provide an alternative proof of that same theorem and
prove further that the divisibility of Gk(n) by F (n)k is in fact exact for all positive integers n
and k with n > 3. We start by proving a general result on divisibility of a power of a Fibonacci
number into another Fibonacci number.

Lemma 3.1. Let n and k be positive integers. Then

F (n)k+1 | F (nF (n)k).

Proof. By Lemma 2.1, we have

F (nF (n)k) =

p
∑

`=1

(

p

`

)

F (n)`F (n − 1)p−`F (`),

where p = F (n)k. It is easy to see that F (n)k+1 divides
(p
`

)

F (n)` for ` = 1 and ` = 2 and

by Lemma 2.11, F (n)k+1 divides
(

p
`

)

F (n)` for each ` = 3, . . . , p. Therefore, F (n)k+1 divides

F (nF (n)k) as desired. �

Theorem 3.2. [6] Let n and k be positive integers. Then

F (n)k | Gk(n).
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Proof. Let a positive integer n be given. We prove by induction on k. For k = 1 the statement
is F (n) | G1(n) which is obvious since G1(n) = F (n). Now we assume that F (n)k | Gk(n) for
some positive integer k. Then Gk(n) = mF (n)k for some positive integer m. Consequently,

Gk+1(n) = F
(

nGk(n)
)

= F (nmF (n)k)

is divisible by F (n)k+1 by Lemma 3.1 and Lemma 2.2(d). Therefore, F (n)k+1 divides Gk+1(n).
Since the positive integer n was arbitrary, we conclude that F (n)k | Gk(n) for all positive
integers n and k. �

Theorem 3.3. Let n and k be positive integers.

(a) If n = 1 or 2, then Gk(n) = 1.

(b) If n = 3, then F (n)2k−1 || Gk(n).

(c) If n > 3, then F (n)k || Gk(n).

Proof. For n = 1 or 2, it is trivial. For n = 3, the result follows from Lemma 2.10. Let a
positive integer n > 3 be fixed. We prove by induction on k. For k = 1, the statement is
trivial since G1(n) = F (n) and for k = 2, the statement follows from Theorem 4.1 in the
next section. Assume that the statement holds for some integer k ≥ 2. Then, by the division
algorithm, Gk(n) = qF (n)k+1 + r, where q and r are positive integers with 1 ≤ r < F (n)k+1.
Now since F (n)k | Gk(n) by Theorem 3.2 above, it follows that r = jF (n)k for some positive
integer j with 1 ≤ j < F (n). Hence we can express Gk+1(n) as follows:

Gk+1(n) = F
(

nGk(n)
)

= F
(

qnF (n)k+1 + jnF (n)k)
)

= F
(

qnF (n)k+1 + 1
)

F
(

jnF (n)k
)

+ F
(

qnF (n)k+1
)

F
(

jnF (n)k − 1
)

,

where we apply Lemma 2.1 in the last equality. Lemma 3.1 and Lemma 2.2(d) imply that
F (n)k+2 divides F

(

qnF (n)k+1
)

. Moreover, by Lemma 2.2(b), we have

gcd
(

F (n), F
(

qnF (n)k+1 + 1
))

= F
(

gcd(n, qnF (n)k+1 + 1)
)

= F (1) = 1.

It therefore suffices to show that F (n)k+2 does not divide F
(

jnF (n)k
)

for each 1 ≤ j < F (n).
By Lemma 2.1 we have

F
(

jnF (n)k
)

=

p
∑

`=1

(

p

`

)

F (jn)`F (jn − 1)p−`F (`), (3.1)

where p = F (n)k. For ` > 2, it follows from Lemma 2.11 that F (n)k+2 divides
(p
`

)

F (jn)`.

Therefore it suffices to show that F (n)k+2 does not divide the sum of the first two terms on
the right-hand side of equation (3.1). This sum can be expressed as follows:

F (n)kF (jn)F (jn − 1)F (n)k−1 +
1

2
F (n)k

(

F (n)k − 1
)

F (jn)2F (jn − 1)F (n)k−2 = A+B,

where A and B denote the first and second summand, respectively. We consider two cases.
Case 1. Suppose that F (n) is odd. Then F (n)k+2 | B and since j < F (n), by Lemma 2.3,

it follows that F (n)2 - F (jn). Hence, F (n)k+2 - (A+B).
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Case 2. Suppose that F (n) is even. Assume that F (n)k+2 | (A + B). Then
1

2
F (n)k+2

divides A + B. Now since
1

2
F (n)k+2 divides B, it follows that

1

2
F (n)k+2 divides A, so that

1

2
F (n)2 divides F (jn). By Lemma 2.4, we have that

1

2
nF (n) divides jn. Since 1 ≤ j < F (n),

this implies j =
1

2
F (n). We consider two more subcases.

Case 2.1. Suppose that j =
1

2
F (n) is even. Then since

1

2
F (n)2 divides F (jn), we have

F (jn) = 2ajF (n) for some positive integer aj. Thus, F (n)k+2 | B. This implies that F (n)k+2 |
A. Hence, F (n)2 | F (jn). Since n > 3, it follows from Lemma 2.3 that nF (n) | nj or F (n) | j,
which is a contradiction to the fact that j < F (n).

Case 2.2. Suppose that j =
1

2
F (n) is odd. Then F (n) = 2(2m+1) for some positive integer

m. Since

Gk(n) = qF (n)k+1 + jF (n)k = F (n)k(qF (n) + j),

it follows that 2k || Gk(n). This contradicts Lemma 2.10.
We have contradictions for both of the cases and therefore F (n)k+2 - (A+B). In all cases,

we have F (n)k+2 - (A+B) and hence, the proof is complete. �

4. The Quotient Formulas

In this section, we provide the explicit formulas of the quotients upon dividing Gk(n) by
F (n)k for the cases when k = 2 and k = 3.

4.1. The Case k = 2.

Theorem 4.1. Let n ≥ 3 be a positive integer. Then

G2(n)

F (n)2
=

F
(

nF (n)
)

F (n)2
≡

{

1
2F (n − 3) if 3 | n,

1 if 3 - n,

where the congruence is taken modulo F (n).

Proof. By Theorem 3.2 we know that G2(n)/F (n)2 is an integer. By Lemma 2.1 we have

G2(n)

F (n)2
=

F
(

nF (n)
)

F (n)2
=

F (n)
∑

j=1

(

F (n)

j

)

F (j)F (n)j−2F (n− 1)F (n)−j .

Taken modulo F (n), this sum reduces to

F (n − 1)F (n)−1 +

(

F (n)

2

)

F (n− 1)F (n)−2.

For convenience, we let

A = F (n − 1)F (n)−1 and B =

(

F (n)

2

)

F (n− 1)F (n)−2 =
1

2
F (n)

(

F (n)− 1
)

F (n− 1)F (n)−2

and consider the following three cases.
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Case 1. Suppose that 3 | n and 2 | n. By Lemma 2.2(d) we have F (3) | F (n) or 2 | F (n).
Since 6 | n, we have again by Lemma 2.2(d) that F (6) | F (n) or 8 | F (n). By Lemma 2.5 we
have

A = F (n− 1)F (n)−2 · F (n− 1) =
(

F (n− 1)2
)

F (n)−2
2 · F (n− 1) ≡ F (n− 1) (mod F (n))

and, by the same token,

B ≡
1

2
F (n)

(

F (n)− 1
)

(mod F (n)).

Thus,

A+B ≡ F (n− 1) +
1

2
F (n)

(

F (n)− 1
)

≡
1

2

(

2F (n − 1) + F (n)2 − F (n)
)

≡
1

2
F (n− 3) +

1

2
F (n)2 ≡

1

2
F (n− 3) (mod F (n)),

where we have used Lemma 2.6 in the penultimate congruence.
Case 2. Suppose that 3 | n and 2 - n. By Lemma 2.8 there exists a nonnegative integer k

such that F (n) = 4k + 2. Thus by Lemma 2.5

F (n− 1)F (n)−2 = F (n − 1)4k =
(

F (n− 1)2
)2k

≡ (−1)2k ≡ 1 (mod F (n)).

By the same argument as in the previous case, it follows that

A+B = F (n − 1)F (n)−2
(

F (n− 1) +
1

2
F (n)

(

F (n)− 1
)

)

≡ F (n− 1) +
1

2
F (n)

(

F (n)− 1
)

≡
1

2
F (n− 3) (mod F (n)).

From Cases 1 and 2, we therefore conclude that if 3 | n, then

G2(n)

F (n)2
≡

1

2
F (n− 3) (mod F (n)).

Case 3. Suppose that 3 - n. By Lemma 2.2(c) F (n) is odd so that 2 divides F (n)− 1 and
therefore B ≡ 0 (mod F (n)). For the case in which 2 | n, we have

A = F (n− 1)F (n)−1 =
(

F (n− 1)2
)

F (n)−1
2 ≡ 1 (mod F (n)).

For the case in which 2 - n, it follows from Lemma 2.7 that

A = F (n− 1)F (n)−1 ≡ 1 (mod F (n)).

In either case, we see that A ≡ 1 (mod F (n)). Thus, A+B ≡ 1 + 0 ≡ 1 (mod F (n)).
From Case 3, we therefore conclude that if 3 - n, then

G2(n)

F (n)2
≡ 1 (mod F (n)).

Hence the proof is complete. �
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4.2. The Case k = 3.

Theorem 4.2. Let n ≥ 3 be a positive integer. Then

G3(n)

F (n)3
=

F
(

nF
(

nF (n)
)

)

F (n)3
≡











1 if 3 - n and 4 - n,

F (n− 1) if 3 - n and 4 | n,
(−1)n

4 F (n− 3)2 if 3 | n,

where the congruence is taken modulo F (n).

Proof. We proceed in a similar manner as the proof for the case in which k = 2. By Lemma
2.1 we have

G3(n)

F (n)3
=

G2(n)
∑

j=1

(

G2(n)

j

)

F (j)F (n)j−3F (n− 1)G2(n)−j

≡
3

∑

j=1

(

G2(n)

j

)

F (j)F (n)j−3F (n− 1)G2(n)−j (mod F (n)).

For convenience, we let

A = G2(n)F (n)−2F (n− 1)G2(n)−1, B =

(

G2(n)

2

)

F (n)−1F (n− 1)G2(n)−2,

and

C =

(

G2(n)

3

)

2F (n − 1)G2(n)−3.

Then the last congruence becomes

G3(n)

F (n)3
≡ A+B + C (mod F (n)).

We first show that C ≡ 0 (mod F (n)). Since

2

(

G2(n)

3

)

=
1

3
G2(n)

(

G2(n)− 1
)(

G2(n)− 2
)

and 3 is prime, it follows that 3 divides one of the factors. By Theorem 3.2, G2(n) = F (n)2`

for some positive integer `. If 3 divides
(

G2(n)− 1
)(

G2(n)− 2
)

then 2
(G2(n)

3

)

is a multiple of

F (n)2 and therefore is divisible by F (n). If 3 divides G2(n) then 3 | F (n)2 or 3 | `. Since 3 is
prime, this implies that 3 | F (n) or 3 | ` and therefore,

G2(n)

3
=

F (n)

3
· `F (n) or

`

3
· F (n)2

where F (n)/3 or `/3 is an integer. Hence, 2
(

G2(n)
3

)

is divisible by F (n) in this case as well. In
either case, we conclude that C ≡ 0 (mod F (n)). Now we observe that

A+B = F (n− 1)G2(n)−2 ·
G2(n)

F (n)2

(

F (n− 1) +
G2(n)− 1

2
· F (n)

)

.

We consider the following three cases.
Case 1. Suppose that 3 - n and 4 - n. Since 4 - n, Lemma 2.2(c) implies that 3 = F (4)

does not divide F (n). Now since 3 - n and 3 - F (n) we have 3 - nF (n) (because 3 is prime).
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Thus by Lemma 2.2(c) once again, 2 = F (3) does not divide F
(

nF (n)
)

= G2(n), so that
2 | (G2(n)− 1). Furthermore, since 3 - n, by Theorem 4.1, we have

G2(n)

F (n)2
≡ 1 (mod F (n)).

Consequently,

A+B ≡ F (n− 1)G2(n)−2 · 1 ·
(

F (n − 1) +
G2(n)− 1

2
· F (n)

)

≡ F (n− 1)G2(n)−1 (mod F (n)).

Suppose that 2 | n. Then, by Lemma 2.5

F (n− 1)G2(n)−1 =
(

F (n− 1)2
)

G2(n)−1
2 ≡ 1 (mod F (n)).

Suppose that 2 - n. Since 3 - n, Lemma 2.2(c) implies that 2 = F (3) does not divide F (n).
Since 2 is prime, we have 2 - nF (n). A previous argument shows 3 - nF (n). Consequently, by
Lemma 2.7,

G2(n) = F
(

nF (n)
)

≡ 1 (mod 4).

Writing G2(n) = 4k+1 for some nonnegative integer k and appealing to Lemma 2.5, we obtain

F (n− 1)G2(n)−1 = F (n− 1)4k =
(

F (n− 1)2
)2k

≡ (−1)2k ≡ 1 (mod F (n)).

In either case, we have A+B ≡ 1 (mod F (n)). Hence,

A+B +C ≡ 1 + 0 ≡ 1 (mod F (n)).

Case 2. Suppose that 3 - n and 4 | n. In the following argument, we make repeated
applications of Lemma 2.2(c) wherever it is appropriate. Since 4 | n, it follows that 3 = F (4)
divides F (n). This implies that 3 | nF (n) and thus 2 = F (3) divides F

(

nF (n)
)

= G2(n).

Since 3 - n, we have that 2 = F (3) does not divide F (n) so that F (n) and therefore F (n)2 are
odd. Thus 2 divides G2(n)/F (n)2. Since 3 - n, it follows by Theorem 4.1 that

G2(n)

F (n)2
≡ 1 ≡ F (n) + 1 (mod F (n)).

Since gcd(F (n), 2) = 1, 2 | (G2(n)/F (n)2), and 2 | (F (n) + 1), it follows that

G2(n)

2F (n)2
≡

F (n) + 1

2
(mod F (n)).

Consequently,

A+B = F (n− 1)G2(n)−2 ·
G2(n)

2F (n)2

(

2F (n− 1) +
(

G2(n)− 1
)

F (n)
)

≡ F (n− 1)G2(n)−2 ·
F (n) + 1

2
· 2F (n − 1)

≡
(

F (n− 1)2
)(G2(n)−2)/2

(F (n) + 1)F (n − 1)

≡ 1(G2(n)−2)/2 · F (n − 1)

≡ F (n− 1) (mod F (n)).

The penultimate congruence follows from Lemma 2.5 since 4 | n, Hence in this case we get

A+B + C ≡ F (n− 1) (mod F (n)).
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Case 3. Suppose that 3 | n. Then by Lemma 2.2(c) 2 = F (3) divides F (n) and 2 = F (3)
divides F (nF (n)) = G2(n). We note also that by Lemma 2.2(d) G2(n) − 1 ≡ −1 mod F (n)
since n | nF (n). Hence,

A+B = F (n− 1)G2(n)−2 ·
G2(n)

F (n)2

(

F (n− 1) +
(

G2(n)− 1
)

·
F (n)

2

)

≡ F (n− 1)G2(n)−2 ·
1

2
F (n− 3)

(

F (n − 1) +
(

G2(n)− 1
)

·
F (n)

2

)

≡ F (n− 1)G2(n)−2 ·
1

2
F (n− 3)

(

F (n − 1)−
F (n)

2

)

≡ (F (n− 1)2)(G2(n)−2)/2 ·
1

2
F (n− 3)

(2F (n − 1)− F (n)

2

)

≡ ((−1)n)(G2(n)−2)/2 ·
(1

2
F (n − 3)

)2

≡
(

(−1)(G2(n)−2)/2
)n

·
1

4
F (n− 3)2 (mod F (n)),

where we apply Theorem 4.1 to the second congruence and Lemmas 2.5 and 2.6 to the penul-

timate congruence. Now we consider the term
G2(n)− 2

2
. Since 2 | F (n), 3 | n and (2, 3) = 1,

we have 6 | nF (n). Thus, Lemma 2.2(d) implies that 8 = F (6) divides F (nF (n)) = G2(n).
Let G2(n) = 8m for some positive integer m. Then

G2(n)− 2

2
=

8m− 2

2
= 4n− 1,

so that
G2(n)− 2

2
is odd. Continuing from the chain of congruences modulo F (n) above, we

have

A+B + C ≡ (−1)n
1

4
F (n− 3)2 (mod F (n)).

This completes the proof for this case. �
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