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Abstract. The Horadam recurrence relation wn+1(a, b; p, q) = pwn(a, b; p, q)−qwn−1(a, b; p, q)
(with w0 = a and w1 = b) has inspired consideration of the recurrence zn(a, b; p, q) =
zpn(a, b; p, q).z

q
n−1 (with z0 = a and z1 = b). This paper defines a natural sequence of such

recurrence relations of which wn and zn are the first and second.

1. The Functions wn(a, b; p, q) and zn(a, b; p, q)

The Horadam functions [6, p. 161] and the functions zn(a, b; p, q) (Bunder [2, p. 279] and
Larcombe and Bagdasar [8]) are given by:

Definition 1.1. Let w0(a, b; p, q) = a, w1(a, b; p, q) = b, and for n ≥ 1 let wn+1(a, b; p, q) =
pwn(a, b; p, q) − qwn−1(a, b; p, q).

Definition 1.2. Let z0(a, b; p, q) = a, z1(a, b; p, q) = b, and for n ≥ 1 let zn+1(a, b; p, q) =
(zn(a, b; p, q))

p · (zn−1(a, b; p, q))
q .

The Horadam functions wn(a, b; p, q) will usually be written as wn and zn(a, b; p, q) will be
written as zn.

2. A Sequence of Functions Starting with wn and zn

The Horadam recurrence of Definition 1.1 involves the sum of two products (i.e. repeated
additions) pwn and (−q)wn−1. The recurrence in Definition 1.2 involves the product of two
powers (i.e. repeated multiplications) zpn and zqn−1. Taking this to the next level, the recurrence
would involve the exponentiation of repeated exponentiations

(

tn
..
.tn

)

and

(

tn−1
..
.
tn−1

)

,

where there are p tn’s and q tn−1’s. There are of course two different exponentiations, but we
will consider only one.

The first aim of this paper is to generate a natural infinite sequence of such functions
< wn, zn, tn, . . . > and the second to see whether tn and later functions can be defined in
simple terms or in terms of functions coming earlier in the sequence, just as zn can be defined
in terms of wn. Bunder [2] and Larcombe and Bagdasar [8] show that

zn = awn(1,0;p,−q)bwn(0,1;p,−q).

The first aim can be achieved by using the following function due to Ackermann [1].

Definition 2.1. Let m and n be positive integers. Define

φ(m,n, 0) = m+ n, φ(m, 0, 1) = 0, φ(m, 0, 2) = 1, φ(m, 0, r) = m, for r > 2,

φ(m,n, r) = φ(m,φ(m,n − 1, r), r − 1), for n > 0, r > 0.
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This gives φ(m,n, 1) = mn, φ(m,n, 2) = mn, φ(m,n, 3) = m..
.m

(n m’s).
Ackermann considered such functions to clarify Hilbert’s proposed proof of the continuum

hypothesis. It is also one of the earliest and simplest examples of a total function that is
computable but not primitive recursive (see van Heijenoort [9]). The function φ(m,n, 3), often
written as nm was already known to Euler. The Ackermann function φ(m,n, r) is sometimes
written as ack(m,n, r), for example, see Giesler [5]. Knuth [7] and Conway and Guy [4] have
other notations for the φ or ack function.

Note that Ackermann’s φ(m,n, r) is related to, but not the same as, what is these days
usually called the Ackermann function.

3. A General Horadam-Style Recurrence

A general Horadam recurrence, motivated by the discussion in Section 1, is given by the
following definition.

Definition 3.1. Let a, b, p, and q be integers. Let si,0(a, b; p, q) = a, si,1(a, b; p, q) = b, and
for n ≥ 1 let si,n+1(a, b; p, q) = φ(φ(si,n(a, b; p, q), p, i + 1), φ(si,n−1(a, b; p, q), q, i + 1), i).

We will usually write si,n(a, b; p, q) as si,n.
Clearly,

s1,n = wn(a, b; p,−q), s2,n = zn and s3,n+1 =

(

s3,n
..
.
s3,n

)

(

s3,n−1
..
.
s3,n−1

)

,

where there are p ′s3,n’s and q s3,n−1’s.
Unless the meaning of repeated exponentiation can somehow be generalized, this, of course,

requires p and q to be positive integers.
(Note that our notation would have been neater, given wn = s1,n, if we had q for −q on the

right-hand side of the recurrence in Definition 1.1, as this gives s1,n = wn!)

4. sm,n in Simple Terms or in Terms of sj,n where j < m

We first note thats1,n can be expressed in the following way. If

n ≥ 0, p2 6= −4q, C = (p +
√

(p2 + 4q))/2 and D = (p+
√

(p2 + 4q))/2,

then

s1,n =

(

b− aC

C −D

)

Cn +

(

b− aD

D − C

)

Dn.

If n ≥ 0, then

s1,n(a, b, p,−p2/4) = nb(p/2)n−1 − (n− 1)a(p/2)n.

For a reference see [6, pp. 161, 175] and Bunder [3].
In Section 2, s2,n(= zn) was given in terms of wn(0, 1; p,−q) and wn(1, 0; p,−q), we also

have:

s1,n = wn(a, b; p,−q) = awn(1, 0; p,−q) + bwn(0, 1; p,−q),

so we might expect

s3,n =

(

b.
..
b
)

(

a.
..
a
)

,
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where there are wn(0, 1; p,−q) b’s and wn(1, 0; p,−q) a’s. However the examples below show
that this is not generally the case. Even in simple cases such as i = 3 and p, q < 5, there seems
to be no simple expressions for si,n, nor one in terms of sj,n where j < i.

Example 4.1. If p = −q = 1 then

< wn > =< s1,n >=< a, b, a + b, a+ 2b, 2a + 3b, . . . >

< zn > =< s2,n >=< a, b, ab, ab2, a2b3, . . . >

s3,n+1 = s
s3,n−1

3,n and < s3,n >=< a, b, ba, bab, bab
1+a

, bab
1+a+ab+ab1+a

, . . . > .

Example 4.2. If p = 3, q = −2, then

< wn > =< s1,n >=< a, b, 2a + 3b, 6a+ 11b, 22a + 39b, . . . >

< zn > =< s2,n >=< a, b, a2b3, a6b11, a22b39, . . . >

s3,n+1 =

(

s
s
s3,n
3,n

3,n

)(s3,n−1
s3,n−1 )

and < s3,n >=< a, b, bb
b.aa ,

(

bb
b.aa

)





(

(bb
b.aa

)

(

bb
b.aa

)


.bb

, . . . > .

5. Summary

A sequence of functions < s1,n, s2,n, . . . > has been defined, (with s1,n the Horadam function
wn(a, b; p,−q) and s2,n = zn), each element of which is generated by a Horadam-like recurrence
relation, with higher order operations than the previous one. The first two of these can be
represented in terms of elementary arithmetical functions, zn can also be written in terms
of wn. Later functions in the sequence, it seems, cannot be represented in terms of such
elementary functions except for specific values of n. Perhaps later work, maybe with new
notation, can change this situation.
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