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Abstract. Let S(n, k) denote the Stirling numbers of the second kind. We prove that the
p-adic limit of S(pea+c, peb+d) as e → ∞ exists for any integers a, b, c, and d with 0 < b ≤ a.
We call the limiting p-adic integer S(p∞a+ c, p∞b+d). When a ≡ b mod (p− 1) or d ≤ 0, we

express them in terms of p-adic binomial coefficients
(

p∞α−1

p∞β

)

introduced in a recent paper.

1. Main Theorems

In [4], the author defined, for integers a, b, c, and d, with 0 < b ≤ a,
(p∞a+c
p∞b+d

)

to be the

p-adic integer which is the p-adic limit of
(pea+c
peb+d

)

, and gave explicit formulas for these in terms

of rational numbers and p-adic integers which, if p or n is even, could be considered to be
Up((p

∞n)!) := lim
e

Up((p
en)!). Here and throughout, νp(−) denotes the exponent of p in an

integer or rational number and Up(n) = n/pνp(n) denotes the unit factor in n. Here we do the
same for Stirling numbers S(n, k) of the second kind; i.e., we prove that the p-adic limit of
S(pea+ c, peb+ d) exists if 0 < b ≤ a, and call it S(p∞a+ c, p∞b+ d). If a ≡ b mod (p− 1) or

d ≤ 0, we express these explicitly in terms of certain
(p∞α−1

p∞β

)

together with certain Stirling-like

rational numbers.
For nonnegative integers n and k, the Stirling number S(n, k) of the second kind is the

number of ways to partition a set of n objects into k nonempty subsets. (See, e.g., [2, p. 204].)
The formula which is most useful to us is

S(n, k) =
1

k!

k
∑

i=0

(−1)k−i

(

k

i

)

in.

Our interest in them was initially due to an occurrence in algebraic topology, related to
homotopy groups of the special unitary groups [5].

We now list our four main theorems, which will be proved in Sections 2 and 4. Let Zp

denote the p-adic integers with the usual metric.

Theorem 1.1. Let p be a prime, and a, b, c, and d integers with 0 < a ≤ b. Then the p-adic
limit of S(pea+ c, peb+ d) exists in Zp. We denote the limit as S(p∞a+ c, p∞b+ d).

It will be assumed throughout that 0 < b ≤ a. Note that if c and/or d are negative, then
for some small values of e, S(pea+ c, peb+ d) might have a negative argument, and hence not
be defined. However, the p-adic limit only cares about large values of e, and for sufficiently
large e, both arguments of S(pea+ c, peb+ d) will be positive.

Theorem 1.2. If p is any prime and 0 < b ≤ a, then S(p∞a, p∞b) = 0 if a 6≡ b mod (p− 1),
while

S(p∞a, p∞b) =

(

p∞ pa−b
p−1 − 1

p∞ p(a−b)
p−1

)

if a ≡ b mod (p− 1).
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These p-adic binomial coefficients are as introduced in [4].
Let |s(n, k)| denote the unsigned Stirling numbers of the first kind.

Theorem 1.3. If 0 < b ≤ a, then

S(p∞a+ c, p∞b+ d) =











0, d = 0, c 6= 0;

0, d < 0, c ≥ 0;

|s(|d|, |c|)|S(p∞a, p∞b), c < 0, d < 0.

In particular, if a 6≡ b mod (p− 1), then S(p∞a+ c, p∞b+ d) = 0 whenever d ≤ 0.
For any prime number p, integer n, and nonnegative integer k, define the partial Stirling

numbers Tp(n, k) [3] by

Tp(n, k) =
(−1)k

k!

∑

i 6≡0 (p)

(−1)i
(

k

i

)

in. (1.1)

Theorem 1.4. If a ≡ b mod (p− 1) and d ≥ 1, then

S(p∞a+ d− 1, p∞b+ d) = Tp(d− 1, d)

(

p∞ pa−b
p−1 − 1

p∞b

)

.

When a ≡ b mod (p − 1), results for all S(p∞a + c, p∞b + d) with d > 0 follow from these
results and the standard formula

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1). (1.2)

Explicit formulas are somewhat complicated and are relegated to Section 3.
We thank the referee for pointing out an oversight in an earlier version of the paper.

2. Proofs When a ≡ b mod (p − 1) or d ≤ 0

In this section, we prove Theorems 1.2, 1.3, and 1.4. If a ≡ b mod (p− 1) or d ≤ 0, Theorem
1.1 follows immediately from Theorems 1.2, 1.3, and 1.4 and their proofs. These give explicit
values for the limits when d ≤ 0 and for at least one value of c when d > 0. The existence of
the limit for other values of c follows from (1.2) and induction. Examples are given in Section
3. We will prove Theorem 1.1 when a 6≡ b mod (p− 1) and d > 0 in Section 4.

We rely heavily on the following two results of Chan and Manna.

Theorem 2.1. ([1, 4.2, 5.2]) Suppose n > pmb with m ≥ 3 if p = 2. Then, mod pm−1 if p = 2,
and modpm if p is odd,

S(n, pmb) ≡















(n/2−2m−2b−1
n/2−2m−1b

)

, if p = 2 and n ≡ 0 mod 2;
((n−pm−1b)/(p−1)−1

(n−pmb)/(p−1)

)

, if p is odd and n ≡ b mod (p− 1);

0, otherwise.

Theorem 2.2. ([1, 4.3, 5.3]) Let p be any prime, and suppose n ≥ peb+ d. Then

S(n, peb+ d) ≡
∑

j≥0

S(peb+ (p − 1)j, peb)S(n− peb− (p− 1)j, d) mod pe.
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Proof of Theorem 1.2. The result follows from Theorem 2.1. If p is odd and a 6≡ b mod (p − 1),
then νp(S(p

ea, peb)) ≥ e, while if a ≡ b mod (p − 1), then

S(pea, peb) ≡

(

pe−1 pa−b
p−1 − 1

pe−1 p(a−b)
p−1

)

mod pe.

If p = 2, then

S(2ea, 2eb) ≡

(

2e−2(2a− b)− 1

2e−2(2a− 2b)

)

mod 2e−1.

�

Let dp(n) denote the sum of the digits in the p-ary expansion of a positive integer n.

Proof of Theorem 1.3. The first case follows readily from Theorem 2.1. If p = 2, this says that
ν(S(2ea+ c, 2eb)) ≥ e− 1 if c is odd, while if c = 2k is even, then, mod 2e−1,

S(2ea+ 2k, 2eb) ≡

(

2e−1a+ k − 2e−2b− 1

2e−1a+ k − 2e−1b

)

.

If 0 < k < 2e−1, this has 2-exponent

ν2 = d2(a− b) + d2(k)− (d2(2a− b) + d2(k − 1)) + d2(2
e−2b− 1) → ∞

as e → ∞, while if k = −` < 0, then

ν2 = e− 1 + d2(a− b− 1)− d2(`− 1)− (e− 2 + d2(2a− b− 1)− d2(`)) + d2(2
e−2b− 1) → ∞.

The odd-primary case follows similarly.
The second case of the theorem follows from the result for c = 0 just established and (1.2)

by induction. For the third case, write c = −k and d = −` and argue by induction on k and
`, starting with the fact that the result is true if k = 0 or l = 0. Then, mod pe,

S(pea− k − 1, peb− `− 1) = S(pea− k, peb− `)− (peb− `)S(pea− k − 1, peb− `)

≡ S(pea, peb)(|s(`, k)| + `|s(`, k + 1)|)

= S(pea, peb)|s(`+ 1, k + 1)|,

implying the result. �

The proof of Theorem 1.4 will utilize the following two lemmas. We let lgp(x) = [logp(x)].

Lemma 2.3. If p is any prime and k and d are positive integers, then

νp
(

Tp((p − 1)k + d− 1, d) − Tp(d− 1, d)
)

≥ νp(k)− lgp(d).

Proof. We have

|Tp((p− 1)k + d− 1, d)− Tp(d− 1, d)|

=

p−1
∑

r=1

(−1)r 1
d!

∑

j

(−1)j
( d
pj+r

)

(pj + r)d−1((pj + r)(p−1)k − 1)

=

p−1
∑

r=1

(−1)r
∑

i>0,t≥0

r(p−1)k+d−1−i−t
(

(p−1)k
i

)(

d−1
t

)

1
d!

∑

j

(−1)j
(

d
pj+r

)

(pj)i+t.
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Since
((p−1)k

i

)

= (p−1)k
i

((p−1)k−1
i−1

)

, we have νp
((p−1)k

i

)

≥ νp(k)− νp(i) for i > 0. Also

νp
(

1
d!

∑

j

(−1)j
(

d
pj+r

)

(pj)i+t
)

≥ max(0, i + t− νp(d!)),

with the first part following from [8, Theorem 1.1]. Thus it will suffice to show

lgp(d)− νp(i) + max(0, i+ t− νp(d!)) ≥ 0.

This is clearly true if νp(i) ≤ lgp(d), while if νp(i) > lgp(d) = `, then νp(d!) ≤ νp((p
`+1−1)!) =

p`+1−1
p−1 − `− 1 and i− νp(i) ≥ p`+1 − `− 1, implying the lemma. �

The following lemma is easily proved by induction on A.

Lemma 2.4. If A and B are positive integers, then

A−1
∑

i=0

(i+B−1
i

)

=
(A+B−1

B

)

.

Now we can prove Theorem 1.4. We first prove it when p = 2, and then indicate the minor
changes required when p is odd. Using Theorem 2.2 at the first step and Theorem 2.1 at the
second, we have

S(2ea+ d− 1, 2eb+ d)

≡
2ea−1
∑

i=2eb

S(i, 2eb)S(2ea+ d− 1− i, d) mod 2e

≡
2e−1a−1
∑

j=2e−1b

(

j − 2e−2b− 1

j − 2e−1b

)

S(2ea+ d− 1− 2j, d) mod 2e−1

=

2e−1(a−b)−1
∑

k=0

(

k + 2e−2b− 1

k

)

S(2e(a− b) + d− 1− 2k, d)

=

2e−1(a−b)
∑

`=1

(

2e−2(2a− b)− 1− `

2e−2b− 1

)

S(2`+ d− 1, d)

=

2e−1(a−b)
∑

`=1

(

2e−2(2a− b)− 1− `

2e−2b− 1

)

(

T2(2`+ d− 1, d) ±
1

d!

∑

j

(

d

2j

)

(2j)2`+d−1
)

.

We have ν2
(2e−2(2a−b)−1−`

2e−2b−1

)

= f(a, b) + e− ν2(`), where f(a, b) = ν2
(

2a−b−1
2a−2b

)

+ ν2(a− b)− 1.

By [5, Theorem 1.5],

ν2
(

1
d!

∑
( d
2j

)

(2j)2`+d−1
)

≥ 2`+ d
2 − 1. (2.1)
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Thus, using Lemma 2.3 at the first step and Lemma 2.4 at the second, we obtain

S(2ea+ d− 1, 2eb+ d)

≡ T2(d− 1, d)

2e−1(a−b)−1
∑

k=0

(

k + 2e−2b− 1

k

)

mod 2min(e−1,e+f(a,b)−lg(d))

= T2(d− 1, d)

(

2e−1(a− b) + 2e−2b− 1

2e−2b

)

.

Letting e → ∞ yields the claim of Theorem 1.4. In the congruence, we have also used that
ν2(T2(d − 1, d)) ≥ 0. In fact, by (2.1) and S(d − 1, d) = 0, we have ν2(T2(d − 1, d)) ≥ d

2 − 1.
See Table 2 for some explicit values of T2(d− 1, d).

We now present the minor modifications required when p is odd and a ≡ b mod (p− 1). Let
a = b+ (p− 1)t. Then

S(pea+ d− 1, peb+ d)

≡

pet−1
∑

j=0

S(peb+ (p− 1)j, peb)S(pe(a− b)− (p− 1)j + d− 1, d)

≡

pet−1
∑

j=0

(

pe−1b+ j − 1

j

)

S(pe(p− 1)t− (p− 1)j + d− 1, d)

=

pet
∑

`=1

(

pet+ pe−1b− `− 1

pe−1b− 1

)

S((p − 1)`+ d− 1, d)

≡ Tp(d− 1, d)

pet−1
∑

j=0

(

pe−1b+ j − 1

j

)

= Tp(d− 1, d)

(

pet+ pe−1b− 1

pe−1b

)

.

3. More Formulas and Numerical Values

In Theorem 1.3, we gave a simple formula for S(p∞a+ c, p∞b+ d) when d ≤ 0. For d > 0,
all values can be written explicitly using (1.2) and the initial values given in Theorem 1.4,
provided a ≡ b mod (p− 1).

First assume c ≥ d − 1. For i ≥ 1, define Stirling-like numbers Si(c, d) satisfying that for
d < i or c ≤ d− 1 the only nonzero value is Si(i− 1, i) = 1 and satisfying the analogue of (1.2)
when c ≥ d. Note that S1(c, d) = S(c, d) if (c, d) 6∈ {(0, 0), (0, 1)}. The following result is easily
obtained. Here we use that the binomial coefficient in Theorem 1.4 equals p

p−1
a−b
b S(p∞a, p∞b).

Proposition 3.1. Assume a ≡ b mod (p − 1). For d ≥ 1, c ≥ d− 1, we have

S(p∞a+ c, p∞b+ d) = S(p∞a, p∞b)
(

S(c, d) +

d
∑

i=1

Si(c, d)Tp(i− 1, i) p
p−1

a−b
b

)

.

The reader may obtain a better feeling for these numbers from the table of values of S(p∞a+
c, p∞b+ d)/S(p∞a, p∞b) in Table 1, in which Ti denotes Tp(i− 1, i) p

p−1
a−b
b .
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Table 1. S(p∞a+ c, p∞b+ d)/S(p∞a, p∞b) when a ≡ b mod (p − 1)

.

d

1 2 3 4 5

0 T1

1 1 + T1 T2

c 2 1 + T1 1 + T1 + 2T2 T3

3 1 + T1 3 + 3T1 + 4T2 1 + T1 + 2T2 T4

+3T3

4 1 + T1 7 + 7T1 + 8T2 6 + 6T1 1 + T1 + 2T2 T5

+10T2 + 9T3 +3T3 + 4T4

5 1 + T1 15 + 15T1 25 + 25T1 10 + 10T1 + 18T2 1 + T1 + 2T2

+16T2 +38T2 + 27T3 +21T3 + 16T4 +3T3 + 4T4

+5T5

The first few values of T2(d− 1, d) and T3(d− 1, d) are given in Table 2.

Table 2. Some values of T2(d− 1, d) and T3(d− 1, d)

d 1 2 3 4 5 6 7 8

T2(d− 1, d) 1 −1 2 −14
3 12 −164

5
4208
5 −86608

315

T3(d− 1, d) 1 0 −3
2

9
2 −27

4 −81
20

4779
80 −15309

80

For c < d− 1, we use (1.2) to work backwards from S(p∞a+ d− 1, p∞b+ d), obtaining the
following proposition.

Proposition 3.2. Suppose a ≡ b mod (p− 1). For k ≥ 1, d ≥ 0, let Y (k, d) = S(p∞a + d −
k, p∞b + d). Then Y (1, d) is as in Theorem 1.4 for d ≥ 1, Y (k, 0) = 0 for k ≥ 1, and, for
k ≥ 2, d ≥ 1,

Y (k, d) =
(

Y (k − 1, d) − Y (k − 1, d − 1)
)

/d.

We illustrate these values in Table 3, where again Ti denotes Tp(i− 1, i) p
p−1

a−b
b .

Note that since S(d− 1, d) = 0 and Tp(n, k)− S(n, k) is a sum like that in (1.1) taken over
i ≡ 0 mod p, we deduce that Tp(d − 1, d) = 0 if 1 < d < p, which simplifies these results
slightly.
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Table 3. S(p∞a+ c, p∞b+ d)/S(p∞a, p∞b) when a ≡ b mod (p − 1)

d

1 2 3 4

−2 T1
1
8T2 −

7
8T1

1
81T3 −

65
648T2 +

85
216T1

1
1024T4 −

781
82944T3 +

865
20736T2 −

415
3456T1

−1 T1
1
4T2 −

3
4T1

1
27T3 −

19
108T2 +

11
36T1

1
256T4 −

175
6912T3 +

115
1728T2 −

25
288T1

c 0 T1
1
2T2 −

1
2T1

1
9T3 −

5
18T2 +

1
6T1

1
64T4 −

37
576T3 +

13
144T2 −

1
24T1

1 T2
1
3T3 −

1
3T2

1
16T4 −

7
48T3 +

1
12T2

2 T3
1
4T4 −

1
4T3

4. The Case a 6≡ b mod (p − 1)

In this section, we complete the proof of Theorem 1.1 when a 6≡ b mod (p− 1) by proving
the following case.

Theorem 4.1. Suppose 0 < b ≤ a and d ≥ 1. Then the p-adic limit of S(pe+1a − (a −
b), pe+1b+ d) exists as e → ∞.

Then lim
e

S(pe+1a+ c, pe+1b+ d) exists for all integers c by induction using (1.2).

Let Rp(e) = (pe+1 − 1)/(p − 1). The proof of Theorem 4.1 begins with, mod pe,

S(pe+1a− (a− b), pe+1b+ d)

≡

Rp(e)(a−b)
∑

j=0

S(pe+1b+ (p− 1)j, pe+1b)S((pe+1 − 1)(a− b)− (p− 1)j, d)

≡

Rp(e)(a−b)
∑

j=0

(

peb+ j − 1

j

)

(−1)d

d!

d
∑

i=0

(−1)i
(

d

i

)

i(p
e+1−1)(a−b)−(p−1)j

=
d

∑

i=0

(−1)i+d 1

d!

(

d

i

) Rp(e)(a−b)
∑

j=0

(

peb+ j − 1

j

)

i(p
e+1−1)(a−b)−(p−1)j .

We show that for each i, the limit as e → ∞ of

Rp(e)(a−b)
∑

j=0

(

peb+ j − 1

j

)

i(p
e+1−1)(a−b)−(p−1)j (4.1)

exists in Zp. This will complete the proof of the theorem.
If i 6≡ 0 mod p, write ip−1 = Ap+ 1, using Fermat’s Little Theorem. Then (4.1) becomes

Rp(e)(a−b)
∑

`=0

(Ap)`
Rp(e)(a−b)

∑

j=0

(

peb+ j − 1

j

)(

Rp(e)(a − b)− j

`

)

=

Rp(e)(a−b)
∑

`=0

(Ap)`
(

peb+Rp(e)(a− b)

peb+ `

)
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by [7, p.9(3c)]. Lemma 4.3 says that for each `, there exists a p-adic integer

z` := lim
e→∞

(

peb+Rp(e)(a− b)

peb+ `

)

.

Then

∞
∑

`=0

(Ap)`z` is a p-adic integer, which is the limit of (4.1) as e → ∞.

If i = 0, since 00 = 1 in (4.1) and the equations preceding it, (4.1) becomes
(

peb+Rp(e)(a − b)− 1

peb− 1

)

=
peb

peb+Rp(e)(a − b)

(

peb+Rp(e)(a − b)

peb

)

.

Since by the proof of Lemma 4.3 νp
(peb+Rp(e)(a−b)

peb

)

is eventually constant,
(peb+Rp(e)(a−b)−1

peb−1

)

→

0 in Zp, due to the peb factor.
We complete the proof of Theorem 4.1 in the following lemma, which shows that the p-adic

limit of (4.1) is 0 when i ≡ 0 mod p and i > 0.

Lemma 4.2. If 0 ≤ j ≤ Rp(e)(a − b), then

νp

(

peb+ j − 1

j

)

+ (pe+1 − 1)(a− b)− (p − 1)j ≥ e− logp(a− b+ p)

for e sufficiently large.

Proof. Let ` = Rp(e)(a − b)− j and a− b = (p − 1)t +∆, 1 ≤ ∆ ≤ p − 1. The p-exponent of
the binomial coefficient becomes

dp(b− 1) + e+ dp((p
e+1 − 1)t+Rp(e)∆− `)− dp((p

e+1 − 1)t+Rp(e)∆ + peb− `− 1). (4.2)

Choose s minimal so that ∆
p−1(p

s − 1)− `− 1− t ≥ 0. Then, if e > s, the p-ary expansion of

(pe+1 − 1)t+Rp(e)∆ − ` splits as

pe(pt+∆) + ps
pe−s − 1

p− 1
∆ +

ps − 1

p− 1
∆− `− t,

and there is a similar splitting for the expression at the end of (4.2). We obtain that (4.2)
equals

e+ νp(b) + νp
(pt+b+∆

b

)

− νp
(

∆
p−1(p

s − 1)− `− t
)

.

The expression in the lemma equals this plus (p− 1)`. Since s was minimal, we have ∆
p−1(p

s−

1)−`−t ≤ (p−1)(`+t)+p+∆, and hence, νp(
∆

p−1(p
s−1)−`−t) ≤ logp((p−1)(`+t)+p+∆).

The smallest value of (p − 1)` − logp((p − 1)(` + t) + p + ∆) occurs when ` = 0. We obtain
that the expression in the lemma is ≥ e− logp(a− b+ p). �

The following lemma was referred to above.

Lemma 4.3. If α and b are positive integers and ` ≥ 0, then

lim
e→∞

(

peb+Rp(e)α

peb+ `

)

exists in Zp.
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This is another p-adic binomial coefficient, slightly different than those of [4], which we

would call
(p∞b+Rp(∞)α

P∞b+`

)

. The proof of the lemma breaks into two parts: showing that the
p-exponents are eventually constant, and showing that the unit parts approach a limit.

The proof that the p-exponent is eventually constant is very similar to the proof of Lemma
4.2. Let α = (p−1)t+∆ with 1 ≤ ∆ ≤ p−1, and choose sminimal such that ∆

p−1(p
s−1)−t−` ≥

0. Then the p-ary expansions split again into three parts and we obtain that for e > s, the

desired p-exponent equals νp
(pt+b+∆

b

)

+ νp
(∆(ps−1)/(p−1)−t

`

)

, independent of e.
We complete the proof of Lemma 4.3 by showing that, if ` < min(Rp(e − 1)α, peb) and

pe > α, then

Up

(

pe−1b+Rp(e− 1)α

pe−1b+ `

)

≡ Up

(

peb+Rp(e)α

peb+ `

)

mod pe+f(α,b,`)−1, (4.3)

where f(α, b, `) = min(νp(b) − lgp(α), νp(α) − lgp(`), νp(b) − lgp(`), 1). We write the second
binomial coefficient in (4.3) as

(−1)eb
(peb+Rp(e)α)!

(Rp(e)α)!
·

(Rp(e)α)!

(Rp(e)α − `)!
·

(peb)!

(peb+ `)!
·
(−1)eb

(peb)!
. (4.4)

We show that the unit parts of these four factors are congruent to their (e − 1)-analogue

mod pe+νp(b)−lg(α)−1, pe+νp(α)−lgp(`)−1, pe+νp(b)−lgp(`)−1, and pe, respectively, which will imply
the result. For the fourth factor, this was shown in [4]. For the second and third, the claim is
clear, since each of the ` unit factors being multiplied will be congruent to their (e−1)-analogue
modulo the specified amount.

To prove the first, we will prove

Up

(

(Rp(e)α + 1) · · · (Rp(e)α + peb)

(Rp(e− 1)α + 1) · · · (Rp(e− 1)α+ pe−1b)

)

≡ (−1)b mod pe+νp(b)−lgp(α)−1. (4.5)

Since Up(j) = Up(pj), we may cancel most multiples of p in the numerator with factors in the
denominator. Using that p · Rp(e − 1) = Rp(e) − 1, we obtain that the LHS of (4.5) equals
P Up(A)/Up(B), where P is the product of the units in the numerator, A is the product of
all j ≡ 0 mod p which satisfy

(Rp(e) − 1)α+ peb < j ≤ Rp(e)α + peb,

and B is the product of all integers k such that

Rp(e− 1)α+ 1 ≤ k ≤ Rp(e− 1)α+
[

α
p

]

. (4.6)

Since the mod pe values of the p-adic units in any interval of pe consecutive integers are
just a permutation of the set of positive p-adic units less than pe, and by [6, Lemma 1] the
product of these is −1 mod pe, we obtain P ≡ (−1)b mod pe. Thus (4.5) reduces to showing

Up(A)/Up(B) ≡ 1 mod pe+νp(b)−lgp(α)−1.
We have

Up(A)

Up(B)
=

∏ Up(k + pe−1b)

Up(k)
,

taken over all k satisfying (4.6). We show that if k satisfies (4.6), then

νp(k) ≤ lgp(α). (4.7)

Then Up(k) ≡ Up(k + pe−1b) mod pe+νp(b)−lgp(α)−1, establishing the result.
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We prove (4.7) by showing that it is impossible to have 1 ≤ α < pt, 1 ≤ i ≤ [αp ], t < e, and

Rp(e− 1)α+ i ≡ 0 mod pt. (4.8)

From (4.8) we deduce α ≡ i(p − 1) mod pt. But i(p − 1) < α, so the only way to satisfy (4.8)
would be with α = pt and i = 0, but α < pt.
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