
FUSION, FISSION, AND FACTORS

CLARK KIMBERLING

Abstract. Operations called fusion and fission are applied to sequences of polynomials and
to infinite matrices. Special cases involving Fibonacci polynomials of the second kind are
considered, with attention to Fibonacci self-fusion and self-fission matrices, factorizations of
terms in these matrices, and factorizations of associated polynomials.

1. Introduction

We begin with an example and then generalize.

Example 1.1.

(
2 1 1

)



1 1 2 3
0 1 1 2
0 0 1 1


 =

(
2 3 6 9

)

Interpreting rows as polynomials and matrix product as an operation �, we write

(2x2 + x+ 1)�




x3 + x2 + 2x+ 3
x2 + x+ 2

x+ 1


 = 2x3 + 3x2 + 6x+ 9, (1)

and note that this polynomial factors using Fibonacci numbers:

(2x+ 3)(x2 + 3). (2)

Now suppose that
p = pnx

n + pn−1x
n−1 + · · ·+ p1x+ p0 (3)

is a polynomial and that Q is a sequence of polynomials:

qk(x) = qk,0x
k + qk,1x

k−1 + · · · + qk,k−1x+ qk,k, (4)

for k = 0, 1, 2, . . .. The Q-upstep of p is defined by

u(p) = pnqn+1(x) + pn−1qn(x) + · · ·+ p0q1(x).

Note that q0(x) does not appear. Next let P = (pn(x)) and Q = (qn(x)) be sequences of
polynomials, where pn and qn have degree n. The fusion of P by Q, denoted by P �Q, is the
sequence V = (vn(x)) given by v0(x) = 1 and vn+1(x) = u(pn(x)). As suggested by Example
1.1, we may regard P and Q as numerical matrices and � as matrix multiplication, so that

row n+ 1 of P �Q, for n ≥ 0, is given by the matrix product P (n)Q̂(n), where

P (n) = ( pn,n pn,n−1 · · · pn,1 pn,0 )

and Q̂(n) is the (n+ 1)× (n+ 2) matrix
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qn+1,0 qn+1,1 · · · qn+1,n qn+1,n+1

0 qn,0 · · · qn,n−1 qn,n
0 0 · · · qn−1,n−2 qn−1,n−1

· · · · · · · · · · · · · · ·
0 0 · · · q2,1 q2,2
0 0 · · · q1,0 q1,1




. (5)

Let p and qk(x) be as in (3) and (4). The Q-downstep of p is defined for n > 0 by

d(p) = pnqn−1(x) + pn−1qn−2(x) + · · ·+ p1q0(x),

where p0 does not appear. As before, suppose that P = (pn(x)) and Q = (qn(x)) are sequences
of polynomials, where pn and qn have degree n. The fission of P by Q, denoted by P ~Q, is
the sequence W = (wn(x)) of polynomials given by w0(x) = 1 and wn+1(x) = d(pn+1(x)). We
may regard ~ as an operation on matrices P and Q. In this case, row n of P ~Q, for n > 0,

is given by the matrix product P̃ (n+ 1)Q̃(n), where

P̃ (n + 1) = ( pn+1,n+1 pn+1,n · · · pn+1,2 pn+1,1 )

and Q̃(n) is the (n+ 1)× (n+ 1) matrix




qn,0 qn,1 · · · qn,n−1 qn,n
0 qn−1,0 · · · qn−1,n−2 qn−1,n−1

0 0 · · · qn−2,n−3 qn−2,n−2

· · · · · · · · · · · · · · ·
0 0 · · · q1,0 q1,1
0 0 · · · 0 q0,0




. (6)

Note that for n > 0 the fission polynomial wn(x) has degree n− 1, whereas the fusion polyno-
mial vn(x) has degree n.

Example 1.2. In order to compare fission and fusion, consider the equation

(
5 3 2 1

)



1 1 2 3
0 1 1 2
0 0 1 1
0 0 0 1


 =

(
5 8 15 24

)
,

recast as

(5x4 + 3x3 + 2x2 + x)~




x3 + x2 + 2x+ 3
x2 + x+ 2

x+ 1
1


 = 5x3 + 8x2 + 15x+ 24,

which factors using Fibonacci numbers:

(5x+ 8)(x2 + 3). (7)

These expressions are analogous to those in (1) and (2).
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2. Fibonacci Matrices: Definitions

The Introduction indicates that fusion and fission can be studied both as polynomial se-
quences and as matrices. With regard to polynomials, the focus in later sections will be
on recurrences, factoring, and roots, whereas for matrices, we shall be interested in certain
products and inverses. In this section, notation will be established for certain fundamental
matrices. We begin with the (infinite) upper triangular Fibonacci matrix, U , in which row n
consists of n−1 zeros followed by the Fibonacci sequence, 1, 1, 2, 3, 5, 8, . . .. Let Un denote the
nth principal submatrix of U ; viz, U4 occurs in Example 1.1. The lower triangular Fibonacci

matrix, L, is the transpose of U , and Ln is the nth principal submatrix of L. The Fibonacci

self-fusion matrix is the product M = LU ; e.g., the 7th principal submatrix of M is



1 1 2 3 5 8 13
1 2 3 5 8 13 21
2 3 6 9 15 24 39
3 5 9 15 24 39 63
5 8 15 24 40 64 104
8 13 24 39 64 104 168
13 21 39 63 104 168 273




. (8)

Note that the result in Example 1.1 is included in (8) as the initial 4-tuple in row 3. More
generally, the polynomials vn(x), defined by the upstep operation in Section 1, are given by
the first n+ 1 terms of row n of M . In [3] and [4], the nth principal submatrix of M is called
the symmetric Fibonacci matrix; various factorizations are given and properties are proved.

The modified lower triangular Fibonacci matrix, L̃, is obtained by deleting the first row and

the principal diagonal of L. The Fibonacci self-fission matrix is the product M̃ = L̃U , with
7th principal submatrix




1 1 2 3 5 8 13
2 3 5 8 13 21 34
3 5 9 14 23 37 60
5 8 15 24 39 63 102
8 13 24 39 64 103 167
13 21 39 63 104 168 272
21 34 63 102 168 272 441




, (9)

which includes the result in Example 1.2 as the initial 4-tuple in row 4. More generally, the
polynomials wn(x), defined by the downstep operation in Section 1, are given by the first n

terms of row n of M̃ .

3. Fibonacci Matrices: Properties

Letm(n, k) denote the general term of the Fibonacci self-fusion matrix, M , so thatm(n, k) =
(row n of L) · (column k of U), given by

m(n, k) =





n∑
i=1

Fn+1−iFk+1−i if n ≤ k

m(k, n) if n > k.
(10)

Lemma 3.1. Eventually, each row of M satisfies the Fibonacci recurrence; specifically, if

h ≥ 2, then m(n, n+ h) = m(n, n+ h− 1) +m(n, n+ h− 2).
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Proof.

m(n, n+ h− 1) +m(n, n+ h− 2) =
n∑

i=1

Fn+1−iFn+h−i +
n∑

i=1

Fn+1−iFn+h−i−1

=
n∑

i=1

Fn+1−i(Fn+h−i + Fn+h−i−1)

=

n∑

i=1

Fn+1−iFn+h+1−i

= m(n, n+ h).

�

In row n of M , the terms up to m(n, n + 2) do not satisfy the recurrence in Lemma 3.1.
Instead,

m(n, n) =

n∑

i=1

F 2
n+1−i = FnFn+1, (11)

a well-known identity, and for m(n, n+ 1) we have the following lemma.

Lemma 3.2.

m(n, n+ 1) =

{
F 2
n+1 if n is odd

FnFn+2 if n is even.
(12)

Proof. The identity clearly holds for n = 1 and n = 2. As an induction hypothesis, assume
that (12) holds when n is replaced by an arbitrary k ≥ 2. Then, if k is even,

m(k, k + 1) = FkFk+1 + Fk−1Fk + · · ·+ F1F2

= Fk(Fk + Fk−1) + Fk−1Fk + · · ·+ F1F2

= FkFk+1 + F 2
k

= FkFk+2.

If k is odd and k ≥ 3, then

m(k, k + 1) = FkFk+1 + Fk−1Fk + · · ·+ F1F2

= Fk(Fk + Fk−1) + Fk−1Fk + · · ·+ F1F2

= FkFk+1 + Fk−1Fk+1

= F 2
k+1.

�

Theorem 3.3. Every term of the Fibonacci self-fusion matrix M is a product of two Fibonacci

numbers:

m(n, k) =

{
FnFk+1 if k is even

Fn+1Fk if k is odd.
(13)

Proof. First, suppose that n ≤ k. Trivially (13) holds for n ∈ {1, 2}, and (13) holds for
k = n ≥ 3 by (11) and for k = n+ 1 by Lemma 3.2. Lemmas 3.1 and 3.2 and induction then
imply that (13) holds for m(n, k) for n ≤ k and k ≥ 2. Finally, for n > k, (13) holds by the
symmetry property in (10).

198 VOLUME 52, NUMBER 3



FUSION, FISSION, AND FACTORS

Turning now to the Fibonacci self-fission matrix M̃ , we have m̃(n, k) =(row n of L̃)·(column
k of U), so that

m̃(n, k) =





n∑
i=1

Fn+2−iFk+1−i if n ≤ k

k∑
i=1

Fn+2−iFk+1−i if n > k.

�

Theorem 3.4. The terms of the Fibonacci self-fission matrix M̃ are represented by those of

M as follows:

m̃(n, k) =

{
m(n+ 1, k)− Fk−n if n < k

m(n+ 1, k) if n ≥ k.

Proof. First, suppose that n < k. Then by (10),

m(n+ 1, k) − Fk−n = Fn+1Fk + FnFk−1 + · · ·

+ F2Fk−(n+1)+2 + F1Fk−(n+1)+1 − Fk−n

= Fn+1Fk + FnFk−1 + · · ·+ F2Fk−n+1

= m̃(n, k).

Next, suppose that n ≥ k. Then

m̃(n, k) =

k∑

i=1

Fn+2−iFk+1−i

= m(k, n+ 1) by (10)

= m(n+ 1, k) by (10).

�

Corollary 3.5. Eventually each row of M̃ satisfies the Fibonacci recurrence; specifically, if

h ≥ 1, then m̃(n, n+ h) = m̃(n, n+ h− 1) + m̃(n, n+ h− 2).

Proof. This follows immediately from Lemma 3.1 and Theorem 3.4. �

4. Fibonacci Polynomials of the 2nd Kind

The Fibonacci polynomials gn(x) of the 2nd kind are defined [2] as partial sums of the
generating function of the Fibonacci numbers:

gn(x) = 1 + x+ 2x2 + · · ·+ Fn+1x
n.

Let fn(x) = xngn(x
−1), so that the sequence (fn(x)) is given by f0(x) = 1 and fn(x) =

xfn−1(x) + Fn+1 for n > 0. These reversed Fibonacci polynomials of the 2nd kind serve as a
basis for some striking applications of the fission and fusion operators, � and ~, defined in
Section 1. In particular, we wish to account for the sort of factorization seen in (2) and (7).

In this section, the polynomials p and q(x) in (3) and (4) are taken to be fn(x). The
resulting polynomials vn(x) are then the Fibonacci self-fusion polynomials, and wn(x), the

AUGUST 2014 199



THE FIBONACCI QUARTERLY

Fibonacci self-fission polynomials.

Table 1. Polynomials

Fibonacci self-fusion polynomials vn and self-fission polynomials wn

n vn(x) wn(x)
0 1 1
1 x+ 1 1
2 x2 + 2x+ 3 2x+ 3
3 2x3 + 3x2 + 6x+ 9 3x2 + 5x+ 9
4 3x4 + 5x3 + 9x2 + 15x+ 24 5x3 + 8x2 + 15x+ 24

Factorization properties of the polynomials vn(x) and wn(x) are given by the next two theo-
rems.

Theorem 4.1. The Fibonacci self-fusion polynomials vn(x) are given by two cases, according

as n is odd or even. If k ≥ 1, then

v2k+1(x) = (xF2k+1 + F2k+2)(F2x
2k + F4x

2k−2 + · · ·+ F2kx
2 + F2k+2)

v2k(x)− F2kF2k+2 = x(xF2k + F2k+1)(F2x
2k−2 + F4x

2k−4 + · · ·+ F2k).

Proof. Let Xn = (xn, xn−1, . . . , x, 1, 0, 0, 0, . . .), and suppose that k ≥ 1. Then

v2k+1(x) = (row 2k + 1 of M) ·X2k+1

= (F2k+1, F2k+2, 3F2k+1, 3F2k+2, . . . , F2k+2F2k+1, F2k+2F2k+2) ·X2k+1

= x2k(xF2k+1 + F2k+2) + 3x2k−2(xF2k+1 + F2k+2) + · · ·

+ F2k+2x
0(xF2k+1 + F2k+2)

= (xF2k+1 + F2k+2)(F2x
2k + F4x

2k−2 + · · ·+ F2kx
2 + F2k+2).

Similarly,

v2k(x) = (row 2k of M) ·X2k

= (F2k, F2k+1, 3F2k+2, 3F2k+3, . . . , F
2
2k, F2kF2k+1, F2kF2k+2) ·X2k

= x2k−1(xF2k + F2k+1) + 3x2k−3(xF2k + F2k+1) + · · ·

+ F2kx(xF2k + F2k+1) + F2kF2k+2

= (xF2k + F2k+1)(F2x
2k−1 + F4x

2k−3 + · · ·+ F2kx) + F2kF2k+2

= x(xF2k + F2k+1)(F2x
2k−2 + F4x

2k−4 + · · ·+ F2k) + F2kF2k+2.

�

Theorem 4.2. The Fibonacci self-fission polynomials wn(x) are given by two cases, according

as n is even or odd. If k ≥ 1, then

w2k(x) = (xF2k+1 + F2k+2)(F2x
2k−2 + F4x

2k−4 + · · ·+ F2k)

w2k+1(x)− F 2
2k+2 = x(xF2k+2 + F2k+3)(F2x

2k−2 + F4x
2k−4 + · · ·+ F2k).

Proof. A proof follows the method for Theorem 4.1 and is omitted. �
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Theorems 4.1 and 4.2 can be summarized in terms of the reversed polynomials fn(x) of the
2nd kind:

v2k+1(x) = (xF2k+1 + F2k+2)(f2k+1(x)− f2k+1(−x))/(2x)

v2k(x) = (xF2k + F2k+1)(f2k−1(x)− f2k−1(−x))/2 + F2kF2k+2

w2k(x) = (xF2k+1 + F2k+2)(f2k(x)− f2k(−x))/(2x)

w2k+1(x) = (xF2k+2 + F2k+3)(f2k(x)− f2k(−x))/2 + F 2
2k+2.

These results in Theorems 4.1 and 4.2 generalize as follows. First, for r ≥ 0, define vr,0(x) = 1
and wr,0(x) = 1, and recalling the upstep and downstep operations in Section 1, define

vr,n+1(x) = u(fn+r(x)) and wr,n+1(x) = d(fn+r+1(x)).

Let Lr be the matrix obtained from L by deleting the first r rows, and let Mr be the matrix
obtained by deleting the first r rows of M , so that LrU = Mr. The methods used above for
the case r = 0 then apply. Beginning with the fusion polynomials, vr,n(x) is read from row n
of Mr, which is identical to row n+ r of M :

vr,n(x) = m(n+ r, 1)xn +m(n+ r, 2)xn−1 + · · ·+m(n+ r, n− 1),

so that Theorem A applies: if n is odd and ≥ 3, then

vr,n(x) = (xFn+r + Fn+r+1)(F2x
n−1 + F4x

n−3 + · · · + Fn+1),

and if n is even and n ≥ 4, then

vr,n(x) = x(xFn+r + Fn+r+1)(F2x
n−2 + F4x

n−4 + · · ·+ Fn) + Fn+rFn+2.

Now, analogously, to generalize Theorem 4.2, let L̃r be the matrix obtained from L̃ by deleting

the first r rows, and let M̃r be the matrix obtained by deleting the first r rows of M̃, so that

L̃rU = M̃r. Then the fission polynomial, wr,n(x) is read from row n of M̃r, which is identical

to row n+ r of M̃ :

wr,n(x) = m̃(n+ r, 1)xn−1 + m̃(n+ r, 2)xn−2 + · · ·+ m̃(n+ r, n),

so that Theorems 3.3 and 3.4 apply: if n is even and ≥ 4, then

wr,n(x) = (xFn+r+1 + Fn+r+2)(F2x
n−2 + F4x

n−4 + · · ·+ Fn),

and if n is odd and n ≥ 5, then

wr,n(x) = x(xFn+r+1 + Fn+r+2)(F2x
n−3 + F4x

n−5 + · · ·+ Fn−1) + Fn+r+1Fn+1.

5. Concluding Remarks

The Online Encyclopedia of Integer Sequences [5] includes several sequence-representations
of matrices mentioned in this paper. Each entry includes a Mathematica program that can be
used to generate many more terms than have been shown above.

[A202451,] upper triangular Fibonacci matrix, U

[A202452,] lower triangular Fibonacci matrix, L

[A202453,] Fibonacci self-fusion matrix, M

[A202502,] modified lower triangular Fibonacci matrix, L̃

[A202503,] Fibonacci self-fission array, M̃

[A193722,] definition of fusion
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[A193842,] definition of fission

[A202605,] interlacing of roots associated with the Fibonacci self-fusion matrix, M

The final sequence in the list, A202605, illustrates an interesting theorem [1] about
interlacing roots. Since the Fibonacci self-fusion matrix, M , is symmetric, the characteristic
roots of the successive principal submatrices of M are all real and are interlaced. Specifically,
if hn(x) = (x− rn,1)(x− rn,2) · · · (x− rn,n) is the nth such polynomial, then

rn+1,1 < rn,1 < rn+1,2 < rn,2 < · · · < rn+1,n < rn,n < rn+1,n+1.

Approximations for the roots of h1(x) to h5(x) are shown here:

1
0.38 2.62

0.28 0.43 8.29
0.26 0.30 0.56 22.89

0.24 0.27 0.42 0.60 62.48
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