ON A GENERALIZED PELL EQUATION AND A CHARACTERIZATION OF THE FIBONACCI AND LUCAS NUMBERS

RUSSELL EULER AND JAWAD SADEK

Abstract

A general method to solve the Pell equation $x^{2}-d y^{2}=a^{2}$ is given under certain conditions on a and d. As a special case, our method gives a different technique than the continued fractions technique used by C. T. Long and J. H. Jordan to characterize the Fibonacci and Lucas numbers as solutions to $x^{2}-5 y^{2}= \pm 4$.

1. Introduction

Consider the Pell equation

$$
\begin{equation*}
x^{2}-d y^{2}=a^{2}, \tag{1.1}
\end{equation*}
$$

where $a^{2}+d=b^{2}$ for some positive integer b. We will give a general method to solve (1.1). In [1], it was shown that $\left(L_{2 n+2}, F_{2 n+2}\right)$ and $\left(L_{2 n-1}, F_{2 n-1}\right)$ give all the solutions to the Pell equations $x^{2}-5 y^{2}=4$, and $x^{2}-5 y^{2}=-4$, respectively. This was done using continued fractions. Our general solution to (1.1) leads to a different method to show that "unusual characterization of the Fibonacci and Lucas number" discussed in [1].

2. The Solution to the Pell Equation

Let

$$
\begin{align*}
& x_{n+1}=\frac{b x_{n}+d y_{n}}{a} \tag{2.1}\\
& y_{n+1}=\frac{x_{n}+b y_{n}}{a}
\end{align*}
$$

with the smallest positive solution $\left(x_{1}, y_{1}\right)=(b, 1)$. We prove that the system (2.1) generates a family of solutions to (1.1).

First, we show if $\left(x_{n}, y_{n}\right)$ is a solution to (1.1), then $\left(x_{n+1}, y_{n+1}\right)$ is also a solution. In fact,

$$
\begin{aligned}
x_{n+1}^{2}-d y_{n+1}^{2} & =\frac{b^{2} x_{n}^{2}+2 b d x_{n} y_{n}+d^{2} y_{n}^{2}}{a^{2}}-d \frac{x_{n}^{2}+2 b x_{n} y_{n}+b^{2} y_{n}^{2}}{a^{2}} \\
& =\frac{a^{2} x_{n}^{2}-a^{2} d y_{n}^{2}}{a^{2}} \\
& =x_{n}^{2}-d y_{n}^{2} \\
& =a^{2} .
\end{aligned}
$$

Now we show that the system (2.1), under certain conditions, gives all the solutions to (1.1). Assume for a contradiction that there exists a solution (u, v) such that

$$
\begin{equation*}
x_{n}+y_{n} \sqrt{d}<u+v \sqrt{d}<x_{n+1}+y_{n+1} \sqrt{d} . \tag{2.2}
\end{equation*}
$$

THE FIBONACCI QUARTERLY
Multiplying (2.2) by $x_{n}-y_{n} \sqrt{d}$ leads to

$$
\begin{equation*}
a^{2}<(u+v \sqrt{d})\left(x_{n}-y_{n} \sqrt{d}\right)<\left(\frac{b x_{n}+d y_{n}}{a}+\frac{x_{n}+b y_{n}}{a} \sqrt{d}\right)\left(x_{n}-y_{n} \sqrt{d}\right) . \tag{2.3}
\end{equation*}
$$

The rightmost expression in (2.3) reduces to

$$
\begin{aligned}
\frac{1}{a}\left(b x_{n}^{2}-b x_{n} y_{n} \sqrt{d}+d x_{n} y_{n}-d \sqrt{d} y_{n}^{2}\right. & \left.+b x_{n} y_{n} \sqrt{d}-b d y_{n}^{2}+x_{n}^{2} \sqrt{d}-d x_{n} y_{n}\right) \\
& =\frac{1}{a}\left[b\left(x_{n}^{2}-d y_{n}^{2}\right)+\left(x_{n}^{2}-d y_{n}^{2}\right) \sqrt{d}\right] \\
& =\frac{1}{a}\left(b a^{2}+a^{2} \sqrt{d}\right) \\
& =a(b+\sqrt{d}) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
a^{2}<(u+v \sqrt{d})\left(x_{n}-y_{n} \sqrt{d}\right)<a(b+\sqrt{d}) . \tag{2.4}
\end{equation*}
$$

The middle term in (2.4) can be written as

$$
u x_{n}-d v y_{n}+\left(v x_{n}-u y_{n}\right) \sqrt{d}=r+s \sqrt{d} .
$$

Now under the condition that $\frac{r}{a}$ and $\frac{s}{a}$ are integers, it follows from dividing (2.4) by a that

$$
\begin{equation*}
a<\frac{r}{a}+\frac{s}{a} \sqrt{d}<b+\sqrt{d} \tag{2.5}
\end{equation*}
$$

and so $\left(\frac{r}{a}, \frac{s}{a}\right)$ is a solution to (1.1). In fact,

$$
\begin{aligned}
\left(\frac{r}{a}\right)^{2}-d\left(\frac{s}{a}\right)^{2} & =\left(\frac{u x_{n}-d v y_{n}}{a}\right)^{2}-d\left(\frac{v x_{n}-u y_{n}}{a}\right)^{2} \\
& =\frac{u^{2} x_{n}^{2}-2 d u v x_{n} y_{n}+d^{2} v^{2} y_{n}^{2}-d v^{2} x_{n}^{2}+2 d u v x_{n} y_{n}-d u^{2} y_{n}^{2}}{a^{2}} \\
& =\frac{\left(x_{n}^{2}-d y_{n}^{2}\right) u^{2}-d v^{2}\left(x_{n}^{2}-d y_{n}^{2}\right)}{a^{2}} \\
& =\frac{\left(u^{2}-d v^{2}\right)\left(x_{n}^{2}-d y_{n}^{2}\right)}{a^{2}} \\
& =a^{2} .
\end{aligned}
$$

Now we show that $\left(\frac{r}{a}, \frac{s}{a}\right)$ is a positive solution. Since $a^{2}<r+s \sqrt{d}$ and $(r+s \sqrt{d})(r-s \sqrt{d})=a^{4}$, $0<r-s \sqrt{d}<a^{2}$. It follows that

$$
2 r=r+s \sqrt{d}+r-s \sqrt{d}>a^{2}+0>0
$$

and

$$
2 s \sqrt{d}=r+s \sqrt{d}-(r-s \sqrt{d})>a^{2}-a^{2}=0 .
$$

We have shown that if there was a positive solution (u, v) between $\left(x_{n}, y_{n}\right)$ and $\left(x_{n+1}, y_{n+1}\right)$, then there would be a positive solution $\left(\frac{r}{a}, \frac{s}{a}\right)$ such that $\frac{r}{a}+\frac{s}{a} \sqrt{d}<b+\sqrt{d}$. This is a contradiction because ($b, 1$) is the smallest positive solution to (1.1).

ON A GENERALIZED PELL EQUATION AND FIBONACCI NUMBERS

3. The Solution in Closed Form

Let $d=5$ and $a=2$. Then $d+a^{2}=3^{2}$ and so $b=3$. It is simple to see that $x^{2}-5 y^{2}=4$ implies that x_{n}, y_{n}, u, and v, defined above, have the same parity (for any positive integer n) and so r and s are even. Thus $\frac{r}{2}$ and $\frac{s}{2}$ are integers. Now we use standard linear algebra techniques to find the solution to (1.1) in closed form. In fact, the recurrence relation in (2.1) may be written as $\left[\begin{array}{l}x_{n+1} \\ y_{n+1}\end{array}\right]=\left[\begin{array}{cc}\frac{3}{2} & \frac{5}{2} \\ \frac{1}{2} & \frac{3}{2}\end{array}\right]\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right]=A\left[\begin{array}{l}x_{n} \\ y_{n}\end{array}\right]$ where $A=\left[\begin{array}{cc}\frac{3}{2} & \frac{5}{2} \\ \frac{1}{2} & \frac{3}{2}\end{array}\right]$. The eigenvalues of A are $\lambda_{1}=\frac{3+\sqrt{5}}{2}$ and $\lambda_{2}=\frac{3-\sqrt{5}}{2}$. The corresponding eigenvectors are $v_{1}=\left[\begin{array}{c}\sqrt{5} \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-\sqrt{5} \\ 1\end{array}\right]$. Thus we can write

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\sqrt{5} & -\sqrt{5} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{3+\sqrt{5}}{2} & 0 \\
0 & \frac{3-\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{5} & -\sqrt{5} \\
1 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
\sqrt{5} & -\sqrt{5} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{3+\sqrt{5}}{2} & 0 \\
0 & \frac{3-\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \sqrt{5}} & \frac{1}{2} \\
\frac{-1}{2 \sqrt{5}} & \frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

It follows that

$$
\begin{align*}
{\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right] } & =A^{n}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{5} & -\sqrt{5} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\left(\frac{3+\sqrt{5}}{2}\right)^{n} & 0 \\
0 & \left(\frac{3-\sqrt{5}}{2}\right)^{n}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \sqrt{5}} & \frac{1}{2} \\
\frac{-1}{5} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{3}{2}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right]+\frac{\sqrt{5}}{2}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right] \\
\frac{3}{2 \sqrt{5}}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right]+\frac{1}{2}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}+\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right]
\end{array}\right] . \tag{3.1}
\end{align*}
$$

Using the facts $\beta^{2}=\frac{3-\sqrt{5}}{2}, \alpha^{2}=\frac{3+\sqrt{5}}{2}, L_{n}=\alpha^{n}+\beta^{n}$, and $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}$, the matrix in (3.1) reduces to $\left[\begin{array}{c}\alpha^{2 n+2}+\beta^{2 n+2} \\ \frac{1}{\sqrt{5}}\left(\alpha^{2 n+2}-\beta^{2 n+2}\right)\end{array}\right]=\left[\begin{array}{l}L_{2 n+2} \\ F_{2 n+2}\end{array}\right]$. We have the "unusual characterization of both Fibonacci and Lucas numbers" that had been shown in [1].

Now consider the Pell equation

$$
\begin{equation*}
x^{2}-5 y^{2}=-4 \tag{3.2}
\end{equation*}
$$

The smallest positive solution is $(1,1)$. Following the same arguments and techniques used in the solution to (2.1), it can be shown that all the solutions to (3.2) are given by the recurrence relation

$$
\begin{align*}
x_{n+1} & =\frac{3 x_{n}+5 y_{n}}{2} \tag{3.3}\\
y_{n+1} & =\frac{x_{n}+3 y_{n}}{2}
\end{align*}
$$

THE FIBONACCI QUARTERLY

with the initial solution $\left(x_{1}, y_{1}\right)=(1,1)$. The only difference is we multiply the inequality in (2.2) by $y_{n} \sqrt{5}-x_{n}$ instead of $x_{n}-y_{n} \sqrt{5}$. Also the contradiction will still be the existence of a positive solution to (1.1) that is smaller than $(3,1)$ and not a positive solution to (3.2) that is smaller than $(1,1)$. Finally, the closed form of the solution to (3.3) is given by $x=L_{2 n-1}$ and $y=F_{2 n-1}$, where $n \geq 1$. The proof is identical to the case of equation (1.1).

References

[1] C. T. Long and J. H. Jordan, A limited arithmetic on simple continued fractions, The Fibonacci Quarterly, 5.2 (1967), 113-128.

MSC2010: 11B39, 11B99
Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO, 64468

E-mail address: reuler@nwmissouri.edu
Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO, 64468

E-mail address: jawads@nwmissouri.edu

