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Abstract. For an integer k ≥ 2, let (L
(k)
n )n be the k−generalized Lucas sequence which

starts with 0, . . . , 0, 2, 1 (k terms) and each term afterwards is the sum of the k preceding
terms. In this paper, we find all the integers that appear in different generalized Lucas se-

quences, i.e., we study the Diophantine equation L
(k)
n = L

(`)
m in nonnegative integers n, k,m, `

with k, ` ≥ 2. The proof of our main theorem uses lower bounds for linear forms in logarithms
of algebraic numbers and a version of the Baker–Davenport reduction method. This paper is
a continuation of the earlier work [4].

1. Introduction

Let k ≥ 2 be an integer. We consider the linear recurrence sequence of order k denoted

G(k) := (G
(k)
n )n≥2−k defined as

G(k)
n = G

(k)
n−1 +G

(k)
n−2 + · · ·+G

(k)
n−k for all n ≥ 2,

with the initial conditions G
(k)
−(k−2) = G

(k)
−(k−3) = · · · = G

(k)
−1 = 0, G

(k)
0 = a and G

(k)
1 = b.

Observe that if a = 0 and b = 1, then G(k) is nothing more than the k−Fibonacci sequence

F (k) := (F
(k)
n )n≥2−k. In this case, if we choose k = 2, we obtain the classical Fibonacci sequence

(Fn)n≥0. On the other hand, if a = 2 and b = 1, then G(k) is known as the k−Lucas sequence

L(k) := (L
(k)
n )n≥2−k. In the special case of k = 2, we obtain the usual Lucas companion of the

Fibonacci sequence

L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2.

(Ln)n≥0 = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .}.

For example, if k = 3, then the 3−Lucas sequence is

(L(3)
n )n≥−1 = {0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, . . .}.

If k = 4, we get the 4−Lucas sequence

(L(4)
n )n≥−2 = {0, 0, 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, . . .}.

As can be seen in [5, Lemma 2], these generalized Lucas sequences have the remarkable prop-
erty that the first few terms are given by

L(k)
n = 3 · 2n−2 for all 2 ≤ n ≤ k.

The above sequences are among the several generalizations of the Fibonacci numbers which
have been studied in the literature. Other generalizations are also known (see, for example,
[6, 10, 18]).

Research supported by Universidad del Cauca and Colciencias (Colombia) through the Program Jóvenes
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Several authors have worked on problems involving generalized Fibonacci sequences. For
instance, F. Luca [11] and D. Marques [12] proved that 55 and 44 are the largest repdigits in

the sequences F (2) and F (3), respectively. Moreover, D. Marques conjectured that there are
no repdigits with at least two digits in F (k) for any k > 3. This conjecture was confirmed in

[3]. In addition, the Diophantine equation F
(k)
n = 2m was studied in [2].

In 2005, T. D. Noe and J. V. Post [19] proposed a conjecture about coincidences of terms
of generalized Fibonacci sequences. In their work, they gave a heuristic argument to show
that if k 6= `, then the cardinality of the intersection F (k) ∩ F (`) must be small. Further, they
used computational methods which led them to confirm the conjecture for all terms whose
magnitude is less than 22,000. This conjecture has been recently proved to hold independently
by Bravo–Luca [4] and D. Marques [13].

In this paper, we investigate the problem of determining the intersection of two generalized
Lucas sequences. To begin with, it is important to mention that Mignotte (see [15]) proved
(under some technical conditions) that only a finite number of coincidences between two fixed
linear recurrence sequences can occur. In this context, one could, of course, ask how large is
the cardinality of the finite set L(k) ∩ L(`) for k > ` ≥ 2. From the above initial values, we
see that there are some numbers that appear in different generalized Lucas sequences. For
instance, the zeros that appear at the beginning, but these numbers are not interesting for us.
Throughout this paper we only consider nonzero terms of these sequences.

Here, we determine all the solutions of the Diophantine equation

L(k)
n = L(`)

m , (1.1)

in nonnegative integers n, k,m, ` with k > ` ≥ 2.

First of all, note that if k > `, then L
(k)
t = L

(`)
t for all 0 ≤ t ≤ `, i.e., the quadruple

(n, k,m, `) = (t, k, t, `), (1.2)

is a solution of equation (1.1) for all 0 ≤ t ≤ `. Solutions given by (1.2) will be called trivial

solutions.
We prove the following theorem.

Theorem 1.1. The Diophantine equation (1.1) has only trivial solutions.

As immediate consequences of Theorem 1.1 we have the following corollaries.

Corollary 1.2. Let k, ` be integers with k > ` ≥ 2. Then

|L(k) ∩ L(`)| = `+ 1.

Corollary 1.3. If (n, k, a) is a solution of the Diophantine equation L
(k)
n = 3·2a in nonnegative

integers n, k, a with k ≥ 2, then 0 ≤ n ≤ k and a = n− 2.

In this paper, we follow the approach and the presentation described in [4].

2. Preliminary Results

Before proceeding further, we recall some facts and properties of the k-generalized Lucas
sequences which will be used later. First, it is known that the characteristic polynomial of the
sequence G(k), namely

Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle; the other roots are strictly
inside the unit circle (see, for example, [16], [17], and [20]). Throughout this paper, α := α(k)
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denotes that single root, which is located between 2(1 − 2−k) and 2 (see [20]). We shall use
α1, . . . , αk for all the roots of Ψk(x) with the convention that α1 := α. Similarly, we use
β1, . . . , β` for the roots of Ψ`(x), with the convention that β1 := β is the real root of Ψ`(x)
exceeding 1.

We now consider for an integer s ≥ 2, the function

fs(x) =
x− 1

2 + (s+ 1)(x− 2)
for x > 2(1− 2−s). (2.1)

With this notation, the following “Binet–like” formula for F (k) appears in Dresden-Du [8]:

F (k)
n =

k
∑

i=1

fk(αi)α
n−1
i .

It was also proved in [8] that the approximation

|F (k)
n − fk(α)α

n−1| <
1

2
holds for all n ≥ 2− k.

Further, in [3], it is proved that

αn−2 ≤ F (k)
n ≤ αn−1 for all n ≥ 1 and k ≥ 2.

Analogous results to the previous facts have recently been established by Bravo and Luca [5]

for the sequence L(k).

Lemma 2.1 (Properties of L(k)). Let k ≥ 2 be an integer. Then

(a) αn−1 ≤ L
(k)
n ≤ 2αn for all n ≥ 1.

(b) L(k) satisfies the following “Binet–like” formula

L(k)
n =

k
∑

i=1

(2αi − 1)fk(αi)α
n−1
i ,

where α = α1, . . . , αk are the roots of Ψk(x).

(c) |L
(k)
n − (2α − 1)fk(α)α

n−1| < 3/2 holds for all n ≥ 2− k.

Now assume that we have a nontrivial solution (n, k,m, `) of equation (1.1) with the previous
conventions that α = α(k) and β = α(`). By Lemma 2.1 (a), we have

βm−1 ≤ L(`)
m = L(k)

n ≤ 2αn < 2n+1,

so, we get

m <
3n+ 5

2
, or, equivalently

2m− 5

3
< n, (2.2)

where we have used the fact that the inequality 1/ log β < 2.1 holds for all ` ≥ 2. We record
this estimate for future referencing.

In order to prove Theorem 1.1, we need to use several times a Baker–type lower bound for
a nonzero linear form in logarithms of algebraic numbers and such a bound, which plays an
important role in this paper, was given by Matveev [14]. We begin by recalling some basic
notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(X − η(i)),
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where the ai’s are relatively prime integers with a0 > 0 and the η(i)’s are conjugates of η.
Then

h(η) =
1

d

(

log a0 +

d
∑

i=1

log
(

max{|η(i)|, 1}
)

)

is called the logarithmic height of η. In particular, if η = p/q is a rational number with
gcd(p, q) = 1 and q > 0, then h(η) = logmax{|p|, q}.

The following properties of the logarithmic height, which will be used in the next sections
without special reference, are also known:

• h(η ± γ) ≤ h(η) + h(γ) + log 2.
• h(ηγ±1) ≤ h(η) + h(γ).
• h(ηs) = |s|h(η).

With the previous notation, Matveev (see [14] or Theorem 9.4 in [7]) proved the following
deep theorem.

Theorem 2.2 (Matveev’s Theorem). Assume that γ1, . . . , γt are positive real algebraic num-

bers in a real algebraic number field K of degree D, b1, . . . , bt are rational integers, and

Λ := γb11 · · · γbtt − 1,

is not zero. Then

|Λ| > exp
(

−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)

,

where

B ≥ max{|b1|, . . . , |bt|},

and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

We will also use the following estimates from [5]. A key point of that work consists of
exploiting the fact that when k is large, the dominant root of L(k) is exponentially close to 2,
so one can write the dominant term of the Binet formula for L(k) as 3 times a power of 2 plus
an error which is well under control. Let us state this result as a lemma since we have some
use for it later.

Lemma 2.3. For k ≥ 2, let α be the dominant root of the characteristic polynomial Ψk(x) of
the k−Lucas sequence, and consider the function fk(x) defined in (2.1). Then

h((2α − 1)fk(α)) < log 3 + 3 log k,

where h(·) represents the logarithmic height function. Moreover, if r > 1 is an integer satisfying

r − 1 < 2k/2, then

(2α− 1)fk(α)α
r−1 = 3 · 2r−2 + 3 · 2r−1η +

δ

2
+ ηδ,

where δ and η are real numbers such that

|δ| <
2r+2

2k/2
and |η| <

2k

2k
.

In 1998, Dujella and Pethő in [9, Lemma 5(a)] gave a version of the reduction method based
on the Baker–Davenport Lemma [1]. We next present the following lemma from [3], which is
an immediate variation of the result due to Dujella and Pethő from [9], and will be one of the
key tools used in this paper to reduce the upper bounds on the variables of the Diophantine
equation (1.1).
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Lemma 2.4. Let M be a positive integer, let p/q be a convergent of the continued fraction

of the irrational γ such that q > 6M , and let A,B, µ be some real numbers with A > 0 and

B > 1. Let ε := ||µq|| −M ||γq||, where || · || denotes the distance from the nearest integer. If

ε > 0, then there is no solution to the inequality

0 < uγ − v + µ < AB−w,

in positive integers u, v and w with

u ≤ M and w ≥
log(Aq/ε)

logB
.

3. An Inequality for n and m in Terms of k

Since k > ` and the solution to equation (1.1) is nontrivial, we easily get that m > n ≥ 6.
Thus, in the remainder of the article, we can suppose that ` ≤ m − 1, for otherwise there is
nothing to prove.

We now argue as in [4]. Indeed, by using (1.1) and Lemma 2.1 (c), we get that

|(2α− 1)fk(α)α
n−1 − (2β − 1)f`(β)β

m−1|

= |((2α − 1)fk(α)α
n−1 − L(k)

n ) + (L(`)
m − (2β − 1)f`(β)β

m−1)| < 3.
(3.1)

Dividing both sides of the above inequality by (2β−1)f`(β)β
m−1, which is positive, we obtain

∣

∣

∣
αn−1 · β−(m−1) · (2α − 1)fk(α)((2β − 1)f`(β))

−1 − 1
∣

∣

∣
<

6

βm−1
, (3.2)

where we used the fact that 1/f`(β) < 4, which is easily seen taking into account that

2 + (`+ 1)(β − 2) < 2 and 1/(β − 1) < 2.

In a first application of Matveev’s Theorem, we take t := 3 and

γ1 := α, γ2 := β, γ3 := (2α− 1)fk(α)((2β − 1)f`(β))
−1.

We also take b1 := n− 1, b2 := −(m− 1) and b3 := 1. Hence,

Λ := γb11 · γb22 · γb33 − 1.

The algebraic number field containing γ1, γ2, γ3 is K := Q(α, β). Then D = [K : Q] ≤ k`. The
proof that Λ 6= 0 is similar to that given in [4, p. 2126]. We include it here for the sake of
completeness.

Arguing by contradiction let us assume that Λ = 0. Then

(2α− 1)(α − 1)

2 + (k + 1)(α − 2)
αn−1 =

(2β − 1)(β − 1)

2 + (`+ 1)(β − 2)
βm−1. (3.3)

Let L = Q(α1, . . . , αk, β1, . . . , β`) be the normal closure of K and let further σ1, . . . , σk be
elements of Gal(L/Q) such that σi(α) = αi. Since k > `, there exist i 6= j in {1, 2, . . . , k} such
that σi(β) = σj(β). Applying σ−1

j σi to the relation (3.3) and then taking absolute values, we
get that

∣

∣

∣

∣

(2αs − 1)(αs − 1)

2 + (k + 1)(αs − 2)
αn−1
s

∣

∣

∣

∣

=
(2β − 1)(β − 1)

2 + (`+ 1)(β − 2)
βm−1 (3.4)

where s 6= 1 is such that σ−1
j (αi) = αs. But the above relation (3.4) is not possible since its

left-hand side is smaller than 3, because |αs| < 1 and

|2 + (k + 1)(αs − 2)| ≥ (k + 1)|αs − 2| − 2 > k − 1 ≥ 2,
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while its right-hand side exceeds L
(`)
m − 3/2 > 3 since m ≥ 7. Thus, Λ 6= 0.

Since h(γ1) = (log α)/k < (log 2)/k = (0.693147 . . .)/k and D ≤ k`, it follows that we can
take A1 := 0.7k > 0.7` > Dh(γ1). Similarly, we can take A2 := 0.7k.

We now observe that, by Lemma 2.3, we have that

h(γ3) ≤ log 9 + 3 log k + 3 log ` < log 9 + 6 log k ≤ 8 log k

for all k ≥ 3. So, let A3 := 8k2 log k. By recalling that n < m, we let B := m− 1. Applying
Theorem 2.2 to get a lower bound for |Λ| and comparing it with inequality (3.2), we get

exp
(

−C1(k) × (1 + log(m− 1)) (0.7k) (0.7k) (8k2 log k)
)

<
6

βm−1
,

where C1(k) := 1.4×306×34.5×D2×(1+logD) < 1.5×1011 k4 (1+2 log k). Taking logarithms
on both sides and performing the respective calculations, we get that

m− 1

log(m− 1)
< 7.41 × 1012 k8 log2 k, (3.5)

giving
m− 1 < 5.34 × 1014 k8 log3 k.

In the above we used the fact that inequality x/ log x < A implies x < 2A logA whenever
A ≥ 3 (see [2, p. 74]). Let us record this result for future use.

Lemma 3.1. If (n, k,m, `) is a nontrivial solution in positive integers of equation (1.1) with

k > ` ≥ 2, then ` ≤ m− 1 and the inequalities

6 ≤ n < m < 5.4× 1014 k8 log3 k

hold.

4. The Case of Small k

We next treat the cases when k ∈ [3, 800]. Note that for these values of the parameter k,
Lemma 3.1 gives us absolute upper bounds for n and m. However, these upper bounds are so
large that we wish to reduce them to a range where the solutions can be identified by using a
computer. To do this, we let

z1 := (n− 1) log α− (m− 1) log β + log µ(k, `), (4.1)

where µ(k, `) := (2α− 1)fk(α)((2β − 1)f`(β))
−1. Therefore, (3.2) can be rewritten as

|ez1 − 1| <
6

βm−1
. (4.2)

Since z1 6= 0 we distinguish the following cases. If z1 > 0, then it follows from (4.2) that

0 < z1 ≤ ez1 − 1 <
6

βm−1
.

Replacing z1 in the above inequality by its formula (4.1) and dividing both sides of the resulting
inequality by log β, we get

0 < (n− 1)

(

log α

log β

)

−m+

(

1 +
log µ(k, `)

log β

)

< 13 · β−(m−1), (4.3)

where we have used the fact 1/ log β < 2.1 once again. We let

γ̂ := γ̂(k, `) =
logα

log β
, µ̂ := µ̂(k, `) = 1 +

log µ(k, `)

log β
, A := 13 and B := B(`) = β.
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We also let Mk :=
⌊

5.4× 1014k8 log3 k
⌋

, which is an upper bound on n by Lemma 3.1. The
fact that γ̂ is an irrational number can be found in [4, p. 2129]. Thus, the above inequality
(4.3) yields

0 < (n− 1)γ̂ −m+ µ̂ < A · B−(m−1). (4.4)

It then follows from Lemma 2.4, applied to inequality (4.4), that

m− 1 <
log(Aq/ε)

logB
,

where q = q(k, `) > 6Mk is a denominator of a convergent of the continued fraction of γ̂ such
that ε = ε(k, `) = ||µ̂q|| −Mk||γ̂q|| > 0. A computer search with Mathematica revealed that
if k, ` ∈ [2, 800] with ` < k, then the maximum value of log(Aq/ε)/ logB is < 1600. Hence,
we deduce that the possible solutions (n, k,m, `) of the equation (1.1) for which k, ` are in the
range [2, 800] with ` < k and z1 > 0, all have m ∈ [7, 1600].

Next we treat the case z1 < 0. First of all, one checks easily that 6/βm−1 < 1/2 for all ` ≥ 2

since m ≥ 7. Thus, from (4.2), we have that |ez1 − 1| < 1/2 and therefore e|z1| < 2. Since
z1 < 0, we have

0 < |z1| ≤ e|z1| − 1 = e|z1||ez1 − 1| <
12

βm−1
.

In a similar way as in the case when z1 > 0, and by recalling that 1/ log α < 2 (since k ≥ 3),
we obtain

0 < (m− 1)γ̂ − n+ µ̂ < A · B−(m−1), (4.5)

where now

γ̂ := γ̂(k, `) =
log β

logα
, µ̂ := µ̂(k, `) = 1−

log µ(k, `)

logα
, A := 24 and B := B(`) = β.

Here, we also took Mk :=
⌊

5.4× 1014 k8 log3 k
⌋

, which is an upper bound on m by Lemma
3.1, and we applied Lemma 2.4 to inequality (4.5) for each k, ` ∈ [2, 800] with ` < k. In this
case, with the help of Mathematica, we found that the maximum value of log(Aq/ε)/ logB is
also < 1600. Thus, the possible solutions (n, k,m, `) of the equation (1.1) for which k, ` are in
the range [2, 800] with ` < k and z1 < 0, all have m ∈ [7, 1600].

Finally, we use Mathematica to compare L
(k)
n and L

(`)
m for the range 6 ≤ n,m ≤ 1600 and

2 ≤ k, ` ≤ 800, with n < m, ` < k and checked that the only solutions of the equation (1.1)
in this range are the trivial solutions given by (1.2). This completes the analysis in the case
k ∈ [3, 800].

5. The Case of Large k

From now on, we assume that k > 800. For such k we have

n < m < 5.4× 1014 k8 log3 k < 2k/2.

It then follows from Lemma 2.3 that

(2α− 1)fk(α)α
n−1 = 3 · 2n−2 + 3 · 2n−1η1 +

δ1
2

+ η1 δ1,

where η1 and δ1 are real numbers such that

|η1| <
2k

2k
and |δ1| <

2n+2

2k/2
.
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So, from the above equality, we get

∣

∣(2α − 1)fk(α)α
n−1 − 3 · 2n−2

∣

∣ < 3 ·
2nk

2k
+

2n+1

2k/2
+

2n+3k

23k/2
< 15 ·

2n−2

2k/2
, (5.1)

where the last inequality holds because k > 800. We will use estimate (5.1) later. Let us now
get some absolute upper bounds for the variables. In order to do so, we distinguish two cases.

5.1. The case m ≤ 2`/2. In this case, by using Lemma 2.3 once more, we get that

(2β − 1)f`(β)β
m−1 = 3 · 2m−2 + 3 · 2m−1η2 +

δ2
2

+ η2 δ2,

where now η2 and δ2 are real numbers such that

|η2| <
2`

2`
and |δ2| <

2m+2

2`/2
.

Then the same argument used to derive (5.1) leads to

∣

∣(2β − 1)f`(β)β
m−1 − 3 · 2m−2

∣

∣ < 45 ·
2m−2

2`/2
(5.2)

for all ` ≥ 2. Hence, using (5.1) and (5.2), we get

∣

∣(3 · 2m−2 − 3 · 2n−2)− ((2β − 1)f`(β)β
m−1 − (2α − 1)fk(α)α

n−1)
∣

∣ < 15 ·
2n−2

2k/2
+ 45 ·

2m−2

2`/2

giving
∣

∣2m−2 − 2n−2
∣

∣ < 19 ·
2m−2

2`/2
,

where we used (3.1) and the condition ` ≤ m− 1. Dividing the last inequality above by 2m−2,
we get

1

2
≤ 1− 2−(m−n) <

19

2`/2
.

So, 2`/2 < 38 and therefore ` ≤ 10. Recalling that we are treating the case m ≤ 2`/2, it follows
that n < m ≤ 37. But a quick inspection of the list of generalized Lucas numbers tells us that
the only solutions (n, k,m, `) of equation (1.1) with n ≤ 36, k > 800, m ≤ 37 and ` ≤ 10 are
the trivial solutions given by (1.2). This completes the analysis when m ≤ 2`/2.

5.2. The case 2`/2 < m. Here, we have the following chain of inequalities

2`/2 < m < 5.4× 1014 k8 log3 k < k14,

which follow directly from Lemma 3.1 together with the fact that k > 800. In particular,

` < 41 log k. (5.3)

On the other hand, combining (3.1) and (5.1), we get

∣

∣(2β − 1)f`(β)β
m−1 − 3 · 2n−2

∣

∣ <
∣

∣(2α − 1)fk(α)α
n−1 − (2β − 1)f`(β)β

m−1
∣

∣+ 15 ·
2n−2

2k/2

< 3 + 15 ·
2n−2

2k/2
.

Dividing both sides above by 3 · 2n−2, we arrive at
∣

∣

∣
2−(n−2) · βm−1 · 3−1(2β − 1)f`(β) − 1

∣

∣

∣
<

1

2n−2
+

5

2k/2
,
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which implies
∣

∣

∣
2−(n−2) · βm−1 · 3−1(2β − 1)f`(β)− 1

∣

∣

∣
<

6

2Γ
, (5.4)

where Γ := min{k/2, n − 2}. The proof that the left–hand side of inequality (5.4) is not zero
is quite analogous to that given in [4, p. 2134]. We omit the details.

We now lower bound the left-hand side of inequality (5.4) using linear forms in logarithms.
Here, Matveev’s Theorem together with a straightforward calculation, implies that

Γ < 4.46× 1012 `4 log2 ` logm. (5.5)

Now, let z2 := (m − 1) log β − (n − 2) log 2 + log µ(`) with µ(`) = 3−1(2β − 1)f`(β). So,
estimation (5.4) can be written as

|ez2 − 1| <
6

2Γ
. (5.6)

We distinguish two cases according to whether z2 is positive or negative. First, if z2 > 0, then
it follows from (5.6) that

0 < z2 ≤ ez2 − 1 <
6

2Γ
.

Thus,

0 < (m− 1)

(

log β

log 2

)

− n+

(

2 +
log µ(`)

log 2

)

< 9 · 2−Γ. (5.7)

We next treat the case z2 < 0. First of all, observe that 6/2Γ < 1/2 since k > 800 and n ≥ 6.

Thus, |ez2 − 1| < 1/2 leading to e|z2| < 2. So, from (5.6), we get

0 < |z2| ≤ e|z2| − 1 = e|z2||ez2 − 1| <
12

2Γ
.

Consequently,

0 < (n− 2)

(

log 2

log β

)

−m+

(

1−
log µ(`)

log β

)

< 26 · 2−Γ. (5.8)

In order to find some absolute upper bounds, we distinguish two subcases.

5.2.1. Case 1. Γ = k/2. Here, Lemma 3.1, together with bounds (5.3) and (5.5), yields

k < 2(4.46 × 1012)(41 log k)4 log2(41 log k) log(5.4 × 1014k8 log3 k).

Using Mathematica we obtained k < 2.8 × 1031. By Lemma 3.1 once again and (5.3), we get
n < m < 7.75 × 10271 and ` ≤ 2970. We record our conclusion as follows.

Lemma 5.1. If (n, k,m, `) is a nontrivial solution in positive integers of equation (1.1) with

n ≥ 6, k > 800, 2`/2 < m and k/2 ≤ n− 2, then the inequalities

n < m < 7.75 × 10271, k < 2.8 × 1031 and ` ≤ 2970.

hold.

We now reduce our previous bounds by again using Lemma 2.4. To avoid unnecessary
repetitions, we consider only the case z2 > 0. In this case, we take M := 7.75 × 10271 and we
use Lemma 2.4 on (5.7) for each ` ∈ [2, 2970]. A computer search with Mathematica revealed
that the maximum value of k/2 is at most 2980. Hence, we deduce that the possible solutions
(n, k,m, `) of the equation (1.1) for which ` ≤ 2970 and z2 > 0 all have k < 5960, and then
from Lemma 3.1 and (5.3) we get ` ≤ 360 and n < m < 5.7× 1047.
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With this new upper bound for m we repeated the process, i.e., we again applied Lemma
2.4 with M := 5.7 × 1047 for each ` ∈ [2, 360]. Here, we finally obtain that k < 740, which is
a contradiction. The same conclusion was obtained in the case z2 < 0.

5.2.2. Case 2. Γ = n− 2. We recall that we are in the situation 2`/2 < m. Thus,

` <
2 logm

log 2
< 3 logm. (5.9)

This, together with the bounds (2.2) and (5.5), tells us

2m− 11

3
< 4.46 × 1012(3 logm)4 log2(3 logm) logm.

Using Mathematica, we get an absolute upper bound for m, namely m < 9.1× 1024. So, from
(5.9), we get ` ≤ 180. We record what we have just proved.

Lemma 5.2. If (n, k,m, `) is a nontrivial solution in positive integers of equation (1.1) with

n ≥ 6, k > 800, 2`/2 < m and n− 2 < k/2, then the inequalities

n < m < 9.1 × 1024 and ` ≤ 180

hold.

Now, we would like to reduce our bound on n. If z2 > 0, then we take M := 9.1 × 1024,
which is an upper bound on m from Lemma 5.2, and we use Lemma 2.4 on inequality (5.7)
for each ` ∈ [2, 180].

Mathematica revealed that the maximum value of n− 2 is at most 185. Hence, we deduce
that the possible solutions (n, k,m, `) of the equation (1.1) for which ` ≤ 180 and z2 > 0 all
have n ≤ 190, and then from (2.2) and (5.9), we get m ≤ 290 and ` ≤ 17, respectively. The
same conclusion remains valid for the case z2 < 0.

Thus, we have reduced our problem to finding the solutions of (1.1) in the following range:
2 ≤ ` ≤ 17, 6 ≤ n ≤ 190, `+ 1 < m ≤ 290 and k > 800. But, for these values of n and k, we

have that L
(k)
n = 3 · 2n−2. Therefore, the problem is reduced to finding all the solutions of the

equation

L(`)
m = 3 · 2n−2 with 2 ≤ ` ≤ 17, `+ 1 < m ≤ 290 and 6 ≤ n ≤ 190. (5.10)

Finally, a quick check with a computer confirms that equation (5.10) has no solutions. Thus,
Theorem 1.1 is proved.
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