FIBONACCI NUMBERS CLOSE TO A POWER OF 2

SHANE CHERN AND ALVIN CUI

Abstract. In this paper, we find all Fibonacci numbers which are close to a power of 2.

1. Introduction

Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$, and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. There is a rich history on the problem of finding Fibonacci numbers of a particular form. For example, Bugeaud, Mignotte, and Siksek [3] showed that the only Fibonacci perfect powers are $0,1,8,144$. Authors also studied Fibonacci numbers of the form $q^{a} y^{t}[2], y^{t} \pm 1[1]$, etc. For more details, see D26 of Guy's famous book Unsolved Problems in Number Theory [5].

We say that a number n is close to a positive number m, if it satisfies

$$
|n-m|<\sqrt{m} .
$$

In this paper we are interested in Fibonacci numbers which are close to a power of 2. More precisely, our main result is the following theorem.

Theorem 1.1. There are only 8 Fibonacci numbers which are close to a power of 2. Namely, the solutions $\left(F_{n}, 2^{m}\right)$ of the inequality

$$
\begin{equation*}
\left|F_{n}-2^{m}\right|<2^{m / 2} \tag{1.1}
\end{equation*}
$$

are $(1,2),(2,2),(3,2),(3,4),(5,4),(8,8),(13,16)$, and $(34,32)$.

2. Preliminaries

We first recall the Binet formula for Fibonacci numbers,

$$
\begin{equation*}
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { for } n \geq 0 \tag{2.1}
\end{equation*}
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2=-1 / \alpha$ are the roots of the characteristic equation $x^{2}-x-1=0$ of the Fibonacci sequence. It implies that

$$
\begin{equation*}
\alpha^{n-2} \leq F_{n} \leq \alpha^{n-1} \tag{2.2}
\end{equation*}
$$

holds for all $n \geq 1$.
Then, we recall a lower bound for a linear form in logarithms which is given by Matveev [7].
Lemma 2.1. Let \mathbb{K} be a number field of degree D over $\mathbb{Q}, \gamma_{1}, \ldots, \gamma_{t}$ be positive reals of \mathbb{K}, and b_{1}, \ldots, b_{t} be rational integers. Let

$$
B \geq \max \left\{\left|b_{1}\right|, \ldots,\left|b_{t}\right|\right\}
$$

and

$$
\Lambda:=1-\gamma_{1}^{b_{1}} \cdots \gamma_{t}^{b_{t}} .
$$

Let A_{1}, \ldots, A_{t} be real numbers such that

$$
A_{i} \geq \max \left\{D h\left(\gamma_{i}\right),\left|\log \gamma_{i}\right|, 0.16\right\}, \quad i=1, \ldots, t .
$$

Then, assuming that $\Lambda \neq 0$, we have

$$
\log |\Lambda|>-1.4 \times 30^{t+3} \times t^{4.5} \times D^{2}(1+\log D)(1+\log B) A_{1} \cdots A_{t} .
$$

As usual, the logarithmic height of a d-degree algebraic number γ is defined as

$$
h(\gamma):=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \left(\max \left\{\left|\gamma^{(i)}\right|, 1\right\}\right)\right),
$$

with

$$
f(X):=a_{0} \prod_{i=1}^{d}\left(X-\gamma^{(i)}\right) \in \mathbb{Z}[X]
$$

being the minimal primitive polynomial over the integers with positive leading coefficient a_{0} and γ as a root.

At last, to reduce the upper bound which is generally too large, we need a variant of the Baker-Davenport Lemma, which is due to Dujella and Pethö [4]. Here, for a real number x, let $\| x| |:=\min \{|x-n|: n \in \mathbb{Z}\}$ denote the distance from x to the nearest integer.

Lemma 2.2. Suppose that M is a positive integer, and A, B are positive reals with $B>1$. Let p / q be the convergent of the continued fraction expansion of the irrational number γ such that $q>6 M$, and let $\epsilon=\|\mu q\|-M\|\gamma q\|$, where μ is a real number. If $\epsilon>0$, then there is no solution of the inequality

$$
0<m \gamma-n+\mu<A B^{-m}
$$

in positive integers m and n with

$$
\frac{\log (A q / \epsilon)}{\log B} \leq m \leq M
$$

Now, we are ready to prove our main result. The proof is somewhat motivated by Marques and Togbé [6].

3. Proof of Theorem 1.1

3.1. The case $m \leq 10$. In Table 1, we list the first 10 intervals of $S_{m}:=\left(2^{m}-2^{m / 2}, 2^{m}+2^{m / 2}\right)$, and find all the Fibonacci numbers in them. We get that the only Fibonacci numbers which are close to 2^{m} with $m \leq 10$ are $1,2,3,5,8,13,34$.
3.2. The case $m>10$. By (2.1), we have

$$
\left|F_{n}-\frac{\alpha^{n}}{\sqrt{5}}\right|=\frac{1}{\sqrt{5} \alpha^{n}} .
$$

Combining it with (1.1), we get

$$
\left|2^{m}-\frac{\alpha^{n}}{\sqrt{5}}\right|<2^{m / 2}+\frac{1}{\sqrt{5} \alpha^{n}},
$$

Table 1

m	Integers in S_{m}	Fibonacci numbers in S_{m}
1	$1,2,3$	$1,2,3$
2	$3,4,5$	3,5
3	$6,7,8,9$	8
4	$13,14, \ldots, 19$	13
5	$27,28, \ldots, 37$	34
6	$57,58, \ldots, 71$	
7	$117,118, \ldots, 139$	
8	$241,242, \ldots, 271$	
9	$490,491, \ldots, 534$	
10	$993,994, \ldots, 1055$	

which can be rewritten as

$$
\begin{equation*}
\left|1-2^{-m} \alpha^{n} \sqrt{5}^{-1}\right|<2^{-m / 2}+\frac{1}{2^{m} \alpha^{n} \sqrt{5}}<2^{-m / 2+1} \tag{3.1}
\end{equation*}
$$

In order to apply Lemma 2.1, we take $\gamma_{1}=2, \gamma_{2}=\alpha$, and $\gamma_{3}=\sqrt{5}$. For this choice, we have $D=2, h\left(\gamma_{2}\right)=(\log \alpha) / 2$, and $h\left(\gamma_{3}\right)=(\log 5) / 2$. Thus, we can take $A_{1}=2 \log 2, A_{2}=\log \alpha$, and $A_{3}=\log 5$. Also, according to (1.1) and (2.2), we have

$$
2^{m}-2^{m / 2}<F_{n}<\alpha^{n-1}
$$

which yields $m \leq n$. Hence, we have $B=n$. It is easy to see that

$$
\Lambda=1-2^{-m} \alpha^{n} \sqrt{5}^{-1} \neq 0 .
$$

By Lemma 2.1, we get

$$
\log |\Lambda|>-1.4 \times 30^{6} \times 3^{4.5} \times 2^{2} \times(1+\log 2) \times(1+\log n) \times 2 \log 2 \times \log \alpha \times \log 5
$$

From (3.1), we have

$$
\log |\Lambda|<(-m / 2+1) \log 2 .
$$

Therefore, we get

$$
\begin{equation*}
m / 2-1<1.6 \times 10^{12} \times(1+\log n) \tag{3.2}
\end{equation*}
$$

By (1.1) and (2.2), we have,

$$
\alpha^{n-2}<F_{n}<2^{m}+2^{m / 2}<\alpha^{-2} \cdot 2^{m+2}
$$

which yields

$$
\begin{equation*}
n<((m+2) \log 2) /(\log \alpha) . \tag{3.3}
\end{equation*}
$$

Combining it with (3.2), and by a calculation in Mathematica, we obtain

$$
m<1.1 \times 10^{14} \quad \text { and } \quad n<1.6 \times 10^{14} .
$$

Now we are going to reduce the upper bounds of m and n. According to Bugeaud, Mignotte, and Siksek [3], no Fibonacci number equals 2^{m} when $m>10$. Therefore, we discuss this case in two parts.
(I) $F_{n}>2^{m}$. Noting that

$$
\alpha^{n} / \sqrt{5}>F_{n}-1 \geq 2^{m},
$$

we have

$$
-m \log 2+n \log \alpha-\log \sqrt{5}>0
$$

Since $x<e^{x}-1$, using (3.1) and (3.3), we get

$$
\begin{align*}
0<-m \log 2+n \log \alpha-\log \sqrt{5} & <2^{-m / 2+1} \\
& <2^{-\frac{\log \alpha}{2 \log 2} n+2} \\
& <4 \times 1.25^{-n} \tag{3.4}
\end{align*}
$$

By dividing by $\log 2$ on both sides above, (3.4) can be rewritten as

$$
\begin{equation*}
0<n \frac{\log \alpha}{\log 2}-m-\frac{\log \sqrt{5}}{\log 2}<\frac{4}{\log 2} \times 1.25^{-n} \tag{3.5}
\end{equation*}
$$

To apply Lemma 2.2 , we take $\gamma=(\log \alpha) /(\log 2), \mu=(-\log \sqrt{5}) /(\log 2), A=4 /(\log 2)$, and $B=1.25$. It is easy to see that γ is irrational. Let q_{n} be the denominator of the nth convergent of the continued fraction of γ. Taking $M=1.6 \times 10^{14}$, we have

$$
q_{34}=2683806884597620>6 M,
$$

and then $\epsilon=\left\|\mu q_{34}\right\|-M\left\|\gamma q_{34}\right\|=0.436226 \ldots$. Hence there is no solution to inequality (3.5) (and then no solution to inequality (1.1)) for n in the range

$$
\left[\left\lfloor\frac{\log \left(A q_{34} / \epsilon\right)}{\log B}\right\rfloor+1, M\right] \supset\left[171,1.6 \times 10^{14}\right] .
$$

Thus, $n<171$.
(II) $F_{n}<2^{m}$. Note that for negative x, we have

$$
0<-x<e^{-x}-1=e^{-x}\left|e^{x}-1\right|
$$

Here, we take

$$
x=-m \log 2+n \log \alpha-\log \sqrt{5}<0 .
$$

Note also that

$$
\left|e^{x}-1\right|<\frac{4}{1.25^{n}}<\frac{1}{2}
$$

Since x is negative, this shows that $e^{x} \in(1 / 2,1)$, so that $e^{-x}<2$. Now, we obtain

$$
0<m \frac{\log 2}{\log \alpha}-n+\frac{\log \sqrt{5}}{\log \alpha}<\frac{8}{\log \alpha} \times 1.25^{-n} .
$$

Through a similar argument, we get $m<174$ and $n<254$.
3.3. A calculation in Mathematica. Let $x=\left(\log F_{n}\right) /(\log 2)$. Note that $x>4$ since $n \geq m>10$. Note also that

$$
2^{x+1}-2^{(x+1) / 2}>2^{x}=F_{n} .
$$

Therefore, for the case $F_{n}>2^{m}$, we have

$$
\frac{\log F_{n}}{\log 2}<m<\frac{\log F_{n}}{\log 2}+1
$$

THE FIBONACCI QUARTERLY

So we only need to check whether F_{n} is in $\left(2^{m}, 2^{m}+2^{m / 2}\right)$, where

$$
m=\left\lfloor\frac{\log F_{n}}{\log 2}\right\rfloor+1
$$

Through a calculation in Mathematica, we conclude that there is no such n. For the case $F_{n}<2^{m}$, through a similar calculation, we deduce that no such n exists. This completes the proof.

4. Comments

If we replace the base 2 in Theorem 1.1 by an arbitrary positive integer $a \geq 2$, we can see that there are finitely many Fibonacci numbers which are close to a^{m} for each a, respectively. Indeed, the arguments give a relatively small upper bound of $n(a)$ (or $m(a)$) for small a.

Acknowledgments

We would like to thank the anonymous referee for several handwritten suggestions. Also, according to the referee's constructive comments, we modified the proof in Subsection 3.2 for the case $F_{n}<2^{m}$.

References

[1] Y. Bugeaud, M. Mignotte, F. Luca, and S. Siksek, Fibonacci numbers at most one away from a perfect power, Elem. Math., 63.2 (2008), 65-75.
[2] Y. Bugeaud, M. Mignotte, and S. Siksek, Sur les nombres de Fibonacci de la forme $q^{k} y^{p}$, C. R. Math. Acad. Sci. Paris, 339.5 (2004), 327-330.
[3] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163.3 (2006), 969-1018.
[4] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49.195 (1998), 291-306.
[5] R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., New York, Springer-Verlag, 2004.
[6] D. Marques and A. Togbé, Fibonacci and Lucas numbers of the form $2^{a}+3^{b}+5^{c}$, Proc. Japan Acad. Ser. A Math. Sci., 89.3 (2013), 47-50.
[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Ross. Akad. Nauk Ser. Mat., 64.6 (2000), 125-180; (translation in: Izv. Math., 64.6 (2000), 1217-1269).

MSC2010: 11B39, 11J86
Department of Mathematics, Zhejiang University, Hangzhou, 310027, China
E-mail address: chenxiaohang92@gmail.com
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh PA, 15213

E-mail address: alvin.cui@sv.cmu.edu

