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Abstract. In this paper, we find all Fibonacci numbers which are close to a power of 2.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1, and Fn+2 = Fn+1 +Fn for
all n ≥ 0. There is a rich history on the problem of finding Fibonacci numbers of a particular
form. For example, Bugeaud, Mignotte, and Siksek [3] showed that the only Fibonacci perfect
powers are 0, 1, 8, 144. Authors also studied Fibonacci numbers of the form qayt [2], yt±1 [1],
etc. For more details, see D26 of Guy’s famous book Unsolved Problems in Number Theory

[5].
We say that a number n is close to a positive number m, if it satisfies

|n−m| <
√
m.

In this paper we are interested in Fibonacci numbers which are close to a power of 2. More
precisely, our main result is the following theorem.

Theorem 1.1. There are only 8 Fibonacci numbers which are close to a power of 2. Namely,

the solutions (Fn, 2
m) of the inequality

|Fn − 2m| < 2m/2 (1.1)

are (1, 2), (2, 2), (3, 2), (3, 4), (5, 4), (8, 8), (13, 16), and (34, 32).

2. Preliminaries

We first recall the Binet formula for Fibonacci numbers,

Fn =
αn − βn

α− β
for n ≥ 0, (2.1)

where α = (1+
√
5)/2 and β = (1−

√
5)/2 = −1/α are the roots of the characteristic equation

x2 − x− 1 = 0 of the Fibonacci sequence. It implies that

αn−2 ≤ Fn ≤ αn−1 (2.2)

holds for all n ≥ 1.
Then, we recall a lower bound for a linear form in logarithms which is given by Matveev

[7].

Lemma 2.1. Let K be a number field of degree D over Q, γ1, . . . , γt be positive reals of K,

and b1, . . . , bt be rational integers. Let

B ≥ max {|b1| , . . . , |bt|} ,
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and

Λ := 1− γb11 · · · γbtt .

Let A1, . . . , At be real numbers such that

Ai ≥ max {Dh(γi), |log γi| , 0.16} , i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

log |Λ| > −1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At.

As usual, the logarithmic height of a d-degree algebraic number γ is defined as

h(γ) :=
1

d

(

log a0 +

d
∑

i=1

log
(

max
{
∣

∣

∣
γ(i)
∣

∣

∣
, 1
})

)

,

with

f(X) := a0

d
∏

i=1

(

X − γ(i)
)

∈ Z[X]

being the minimal primitive polynomial over the integers with positive leading coefficient a0
and γ as a root.

At last, to reduce the upper bound which is generally too large, we need a variant of the
Baker-Davenport Lemma, which is due to Dujella and Pethö [4]. Here, for a real number x,
let ||x|| := min {|x− n| : n ∈ Z} denote the distance from x to the nearest integer.

Lemma 2.2. Suppose that M is a positive integer, and A, B are positive reals with B > 1.
Let p/q be the convergent of the continued fraction expansion of the irrational number γ such

that q > 6M , and let ε = ||µq|| −M ||γq||, where µ is a real number. If ε > 0, then there is no

solution of the inequality

0 < mγ − n+ µ < AB−m

in positive integers m and n with

log(Aq/ε)

logB
≤ m ≤ M.

Now, we are ready to prove our main result. The proof is somewhat motivated by Marques
and Togbé [6].

3. Proof of Theorem 1.1

3.1. The case m ≤ 10. In Table 1, we list the first 10 intervals of Sm := (2m−2m/2, 2m+2m/2),
and find all the Fibonacci numbers in them. We get that the only Fibonacci numbers which
are close to 2m with m ≤ 10 are 1, 2, 3, 5, 8, 13, 34.

3.2. The case m > 10. By (2.1), we have
∣

∣

∣

∣

Fn − αn

√
5

∣

∣

∣

∣

=
1√
5αn

.

Combining it with (1.1), we get
∣

∣

∣

∣

2m − αn

√
5

∣

∣

∣

∣

< 2m/2 +
1√
5αn

,
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Table 1

m Integers in Sm Fibonacci numbers in Sm

1 1, 2, 3 1, 2, 3

2 3, 4, 5 3, 5

3 6, 7, 8, 9 8

4 13, 14, . . . , 19 13

5 27, 28, . . . , 37 34

6 57, 58, . . . , 71

7 117, 118, . . . , 139

8 241, 242, . . . , 271

9 490, 491, . . . , 534

10 993, 994, . . . , 1055

which can be rewritten as
∣

∣

∣
1− 2−mαn

√
5
−1
∣

∣

∣
< 2−m/2 +

1

2mαn
√
5
< 2−m/2+1. (3.1)

In order to apply Lemma 2.1, we take γ1 = 2, γ2 = α, and γ3 =
√
5. For this choice, we have

D = 2, h(γ2) = (log α)/2, and h(γ3) = (log 5)/2. Thus, we can take A1 = 2 log 2, A2 = log α,
and A3 = log 5. Also, according to (1.1) and (2.2), we have

2m − 2m/2 < Fn < αn−1,

which yields m ≤ n. Hence, we have B = n. It is easy to see that

Λ = 1− 2−mαn
√
5
−1 6= 0.

By Lemma 2.1, we get

log |Λ| > −1.4× 306 × 34.5 × 22 × (1 + log 2)× (1 + log n)× 2 log 2× log α× log 5.

From (3.1), we have

log |Λ| < (−m/2 + 1) log 2.

Therefore, we get

m/2− 1 < 1.6× 1012 × (1 + log n). (3.2)

By (1.1) and (2.2), we have,

αn−2 < Fn < 2m + 2m/2 < α−2 · 2m+2,

which yields

n < ((m+ 2) log 2)/(log α). (3.3)

Combining it with (3.2), and by a calculation in Mathematica, we obtain

m < 1.1× 1014 and n < 1.6× 1014.

Now we are going to reduce the upper bounds of m and n. According to Bugeaud, Mignotte,
and Siksek [3], no Fibonacci number equals 2m when m > 10. Therefore, we discuss this case
in two parts.
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(I) Fn > 2m. Noting that

αn/
√
5 > Fn − 1 ≥ 2m,

we have

−m log 2 + n logα− log
√
5 > 0.

Since x < ex − 1, using (3.1) and (3.3), we get

0 < −m log 2 + n logα− log
√
5 < 2−m/2+1

< 2
−

logα

2 log 2
n+2

< 4× 1.25−n. (3.4)

By dividing by log 2 on both sides above, (3.4) can be rewritten as

0 < n
logα

log 2
−m− log

√
5

log 2
<

4

log 2
× 1.25−n. (3.5)

To apply Lemma 2.2, we take γ = (log α)/(log 2), µ = (− log
√
5)/(log 2), A = 4/(log 2), and

B = 1.25. It is easy to see that γ is irrational. Let qn be the denominator of the nth convergent
of the continued fraction of γ. Taking M = 1.6× 1014, we have

q34 = 2683806884597620 > 6M,

and then ε = ||µq34|| −M ||γq34|| = 0.436226 . . .. Hence there is no solution to inequality (3.5)
(and then no solution to inequality (1.1)) for n in the range

[⌊

log(Aq34/ε)

logB

⌋

+ 1,M

]

⊃ [171, 1.6 × 1014].

Thus, n < 171.
(II) Fn < 2m. Note that for negative x, we have

0 < −x < e−x − 1 = e−x |ex − 1| .
Here, we take

x = −m log 2 + n log α− log
√
5 < 0.

Note also that

|ex − 1| < 4

1.25n
<

1

2
.

Since x is negative, this shows that ex ∈ (1/2, 1), so that e−x < 2. Now, we obtain

0 < m
log 2

logα
− n+

log
√
5

logα
<

8

log α
× 1.25−n.

Through a similar argument, we get m < 174 and n < 254.

3.3. A calculation in Mathematica . Let x = (log Fn)/(log 2). Note that x > 4 since
n ≥ m > 10. Note also that

2x+1 − 2(x+1)/2 > 2x = Fn.

Therefore, for the case Fn > 2m, we have

log Fn

log 2
< m <

log Fn

log 2
+ 1.
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So we only need to check whether Fn is in (2m, 2m + 2m/2), where

m =

⌊

logFn

log 2

⌋

+ 1.

Through a calculation in Mathematica, we conclude that there is no such n. For the case
Fn < 2m, through a similar calculation, we deduce that no such n exists. This completes the
proof.

4. Comments

If we replace the base 2 in Theorem 1.1 by an arbitrary positive integer a ≥ 2, we can see
that there are finitely many Fibonacci numbers which are close to am for each a, respectively.
Indeed, the arguments give a relatively small upper bound of n(a) (or m(a)) for small a.
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