ON APPROXIMATING EULER'S CONSTANT

JENICĂ CRÎNGANU

Abstract. The aim of this paper is to improve the result obtained by Hirschhorn in 2011 about the inequalities for the Euler-Mascheroni constant.

1. Introduction

The sequence defined by

$$
\gamma_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n, n \geq 1
$$

is convergent to a limit denoted $\gamma=0,5772 \ldots$ now known as the Euler-Mascheroni constant. Several estimates for $\gamma_{n}-\gamma$ have been given in the literature, for example:

$$
\begin{gathered}
\frac{1}{2(n+1)}<\gamma_{n}-\gamma<\frac{1}{2(n-1)}, n \geq 2, \quad[5] \\
\frac{1}{2(n+1)}<\gamma_{n}-\gamma<\frac{1}{2 n}, n \geq 1, \quad[7] \\
\frac{1}{2 n+1}<\gamma_{n}-\gamma<\frac{1}{2 n}, n \geq 1, \quad[3,4] \\
\frac{1}{2 n+\frac{2}{5}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}}, n \geq 1, \quad[6] \\
\frac{1}{2 n+\frac{2 \gamma-1}{1-\gamma}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}}, n \geq 1 . \quad[1,6]
\end{gathered}
$$

Using the elementary technique of the Maclaurin series for $\ln (1+x)$, Hirschhorn [2] obtained in 2011 the following estimate:

$$
\frac{1}{2 n+\frac{1}{3}+\frac{1}{18 n}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}+\frac{1}{32 n}}, n \geq 2
$$

In this paper we obtain a better estimate for the right inequality and, for the left inequality we remark that $\frac{1}{18}$ is the best constant using an elementary sequence method.

2. The Main Result

Theorem 2.1. (i) For every $a \geq \frac{1}{18}$ we have

$$
\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}}<\gamma_{n}-\gamma \text { for all } n \geq 1
$$

ON APPROXIMATING EULER'S CONSTANT

(ii) For every $0<a<\frac{1}{18}$ there exists $n_{a} \in N$ such that

$$
\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}}, \text { for all } n \geq n_{a}
$$

Consequently, $a=\frac{1}{18}$ is the best constant for the inequality of (i).
Proof. We consider the sequence

$$
a_{n}=\gamma_{n}-\gamma-\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}}, \text { for } a>0,
$$

and we show that $a_{n}>0$ for all $n \geq 1$, if $a \geq \frac{1}{18}$, and, for $0<a<\frac{1}{18}$ there exists $n_{a} \in N$ such that $a_{n}<0$ for all $n \geq n_{a}$.
(i) Since $\left(a_{n}\right)$ converges to zero we prove that $\left(a_{n}\right)$ is strictly decreasing. Then we should look at $a_{n+1}-a_{n}=f(n)$, where

$$
f(n)=\frac{1}{n+1}-\ln (n+1)+\ln n-\frac{1}{2 n+\frac{7}{3}+\frac{a}{n+1}}+\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}} .
$$

The derivative of function f is equal to

$$
f^{\prime}(n)=\frac{P(n)}{n(n+1)^{2}\left(6 n^{2}+n+3 a\right)^{2}\left(6 n^{2}+13 n+3 a+7\right)^{2}},
$$

where

$$
\begin{aligned}
P(n)= & 216(18 a-1) n^{6}+312(45 a-2) n^{5}+\left(2916 a^{2}+20322 a-551\right) n^{4} \\
& +\left(7020 a^{2}+14961 a-94\right) n^{3}+\left(648 a^{3}+6318 a^{2}+5526 a+49\right) n^{2} \\
& +\left(756 a^{3}+2430 a^{2}+735 a\right) n+81 a^{4}+378 a^{3}+441 a^{2} .
\end{aligned}
$$

If $a=\frac{1}{18}$ then

$$
P(n)=156 n^{5}+578 n^{4}+\frac{4553}{6} n^{3}+\frac{6761}{18} n^{2}+\frac{94211}{1944} n+\frac{1849}{1296}>0,
$$

for all $n \geq 1$, and then f is strictly increasing. We have $f(\infty)=0$ and then it follows that $f(n)<0$ for all $n \geq 1$, so that $\left(a_{n}\right)_{n \geq 1}$ is strictly decreasing. Since $\left(a_{n}\right)$ converges to zero it follows that $a_{n}>0$ for all $n \geq 1$, so that

$$
\frac{1}{2 n+\frac{1}{3}+\frac{1}{18 n}}<\gamma_{n}-\gamma, \text { for all } n \geq 1
$$

If $a>\frac{1}{18}$ then $\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}}<\frac{1}{2 n+\frac{1}{3}+\frac{1}{18 n}}$ and so

$$
\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}}<\gamma_{n}-\gamma, \text { for all } n \geq 1
$$

(ii) If $a<\frac{1}{18}$ then there exists $n_{a} \in N$ such that $P(n)<0$ for all $n \geq n_{a}$ and then f is strictly decreasing on $\left[n_{a}, \infty\right)$. Since $f(\infty)=0$ it follows that $f(n)>0$ for all $n \geq n_{a}$, so that $\left(a_{n}\right)_{n \geq n_{a}}$

THE FIBONACCI QUARTERLY

is strictly increasing. The sequence $\left(a_{n}\right)$ converges to zero and then it follows that $a_{n}<0$ for all $n \geq n_{a}$, so that

$$
\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}+\frac{a}{n}} \text { for all } n \geq n_{a}
$$

Now we find the constant n_{a} in some particular cases. For example, if $a=\frac{1}{31} \in\left(\frac{1}{32}, \frac{1}{18}\right)$, then
$P(n)=-\frac{2808}{31} n^{6}-\frac{5304}{31} n^{5}+\frac{103387}{961} n^{4}+\frac{380477}{961} n^{3}+\frac{6966751}{29791} n^{2}+\frac{782421}{29791} n+\frac{435600}{923521}<0$, for all $n \geq 2$, and so

$$
\frac{1}{2 n+\frac{1}{3}+\frac{1}{18 n}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}+\frac{1}{31 n}}, \text { for all } n \geq 2 .
$$

If $a=\frac{1}{19} \in\left(\frac{1}{32}, \frac{1}{18}\right)$, then

$$
P(n)=-\frac{216}{19} n^{6}+\frac{2184}{19} n^{5}+\frac{190123}{361} n^{4}+\frac{251027}{361} n^{3}+\frac{2451667}{6859} n^{2}+\frac{312261}{6859} n+\frac{166464}{130321}<0,
$$

for all $n \geq 13$ and so

$$
\frac{1}{2 n+\frac{1}{3}+\frac{1}{18 n}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}+\frac{1}{19 n}} \text {, for all } n \geq 13 .
$$

Let us remark that a direct calculus shows that these inequalities hold and for $n \in\{9,10,11,12\}$, and then

$$
\frac{1}{2 n+\frac{1}{3}+\frac{1}{18 n}}<\gamma_{n}-\gamma<\frac{1}{2 n+\frac{1}{3}+\frac{1}{19 n}}, \text { for all } n \geq 9
$$

References

[1] H. Alzer, Inequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg, 68 (1998), 363-372.
[2] M. D. Hirschhorn, Approximating Euler's constant, The Fibonacci Quarterly, 49.3 (2011), 243-248.
[3] C. Mortici and A. Vernescu, An improvement of the convergence speed of the sequence $\left(\gamma_{n}\right)_{n \geq 1}$ converging to Euler's constant, An. Stiint. Univ. "Ovidius" Constanta, 13.1 (2005), 97-100.
[4] C. Mortici and A. Vernescu, Some new facts in discrete asymptotic analysis, Math. Balkanica (NS), 21 (2007), 301-308.
[5] S. R. Tims and J. A. Tyrrel, Approximate evaluation of Euler's constant, Math. Gaz., 55 (1971), 65-67.
[6] L. Toth, Problem E3432, Amer. Math. Monthly, 98.3 (1991), 264.
[7] R. M. Young, Euler's constant, Math. Gaz., 75.472 (1991), 187-190.
MSC2010: 40A05, 11Y60, 33B15
Department of Mathematics and Computer Science, "Dunărea de Jos" University of Galaţi, Domnească No 111, Galaţi, Romania

E-mail address: jcringanu@ugal.ro

