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Abstract. We consider here an aspect of Zeckendorf representations of integers. In partic-
ular, we obtain the structure of the set of positive integers such that each element of this set
contains Fk in its Zeckendorf representation.

1. Introduction

In order to set the scene, by way of an example we let D denote the infinite set of all positive
integers such that, when expressed in decimal notation, each has a ‘3’ appearing in its ‘tens’
column. We term this a fixed-term decimal representation. Note that

D = {30, 31, 32, . . . , 39, 130, 131, 132, . . . , 139, 230, 231, 232, . . . , 239, 330, . . .},
which may in fact be written somewhat more succinctly as follows:

D = {100n + 30 + j : 0 ≤ j ≤ 9, n ≥ 0}.
It is of course possible to obtain similar fixed-term representations of integers in binary, ternary,
and so on.

In this paper we consider the corresponding situation for the Zeckendorf representation of
integers. In particular, we study here the structure of the set of positive integers Z(k) such
that each of the integers in this set contains Fk in its Zeckendorf representation for some fixed
k ≥ 2. We also extend this idea by allowing more than one term to be fixed.

2. Some Initial Definitions and Results

Zeckendorf’s Theorem [8] states that every n ∈ N has a unique representation as the sum of
distinct Fibonacci numbers that does not include any consecutive Fibonacci numbers. Some-
what more formally, for any n ∈ N there exists an increasing sequence of positive integers of
length k ∈ N, (c1, c2, . . . , ck) say, such that c1 ≥ 2, ci ≥ ci−1 + 2 for i = 2, 3, . . . , k, and

n =

k
∑

i=1

Fci .

Relatively straightforward proofs of this result are given in [1, 7].
As will be seen, there is an intimate connection between the elements of Z(k) and a math-

ematical object known as the golden string [4, 5]. We will use known properties of the golden
string in order to reveal the structure of the set Z(k).

Definition 2.1. Let X and Y be finite strings of symbols. We use X : Y to denote the

concatenation of X and Y .

Definition 2.2. The golden string,

S = BABBABABBABBABABBABAB . . . ,
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is an infinite string that may be obtained recursively as follows. We start with the strings

S1 = B and S2 = BA. In order to obtain S3 we concatenate S2 and S1 as follows:

S3 = S2 : S1 = BAB.

Next,

S4 = S3 : S2 = BABBA,

and so on. In general Sk = Sk−1 : Sk−2 for k ≥ 3, and it is clear that Sk contains Fk+1 letters,

comprising Fk−1 A’s and Fk B’s, noting that F0 = 0.

The following three lemmas will be used in Section 3, each of which is easily proved by
induction.

Lemma 2.3. For any j ≥ 1, the (F2j)th character of S is B and the (F2j+1)th character of

S is A.

Lemma 2.4. Let m,n ∈ N. If Fj and Fk are the largest summands in the Zeckendorf repre-

sentations of m and n, respectively, then j > k implies that m > n.

Lemma 2.5. For n ≥ 1,

Fk+2n+1 − (Fk+2n + Fk+2n−2 + · · ·+ Fk+2) = Fk+1

and

Fk+2(n+1) − (Fk+2n+1 + Fk+2n−1 + · · ·+ Fk+3) = Fk+2.

3. Fixed-Term Representations

Let Xk denote the set of all positive integers such that each has Fk as the smallest summand
in its Zeckendorf representation. Next, let Qk = (q(1), q(2), q(3), . . .) be the strictly increasing
infinite sequence that results on arranging the elements of Xk into ascending numerical order.
If we replace each term q(i) in Qk with an ordered list of the summands in its Zeckendorf
representation, we obtain Table 1, in which the rth row contains the list of summands of the
rth smallest element from Xk.

Lemma 3.1. For j ≥ 2, the rows of Table 1 for which Fk+j is the largest summand are those

numbered from Fj + 1 to Fj+1 inclusive.

Proof. As is easily checked, the statement of the lemma is true for j = 2 and j = 3. Now assume
that it is true for all j such that 2 ≤ j ≤ m for some m ≥ 3. By the inductive hypothesis,
bearing in mind Lemma 2.4, the total number of rows for which the largest summand is no
greater than Fk+m−1 is

1 + (F3 − F2) + (F4 − F3) + · · ·+ (Fm − Fm−1) = Fm.

Note further that, since no consecutive Fibonacci numbers may appear in any Zeckendorf
representation, the number of rows in Table 1 for which the largest summand is no greater
than Fk+m−1 is the same as the number of rows for which Fk+m+1 is the largest summand. It is
thus the case that Fm gives the number of rows possessing Fk+m+1 as their largest summand.

Finally, also by way of the inductive hypothesis, the rows for which Fk+m is the largest
summand are those numbered from Fm +1 to Fm+1 inclusive. It follows that the rows having
Fk+m+1 as the largest summand are those numbered from Fm+1 + 1 to Fm+1 + Fm = Fm+2

inclusive, as required. �
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Fk

Fk Fk+2

Fk Fk+3

Fk Fk+4

Fk Fk+2 Fk+4

Fk Fk+5

Fk Fk+2 Fk+5

Fk Fk+3 Fk+5

Fk Fk+6

Fk Fk+2 Fk+6

Fk Fk+3 Fk+6

Fk Fk+4 Fk+6

Fk Fk+2 Fk+4 Fk+6

Fk Fk+7
...

Table 1. The Zeckendorf representations, in numerical order, of the positive
integers having Fk as their smallest summand.

Lemma 3.2. For j ≥ 1,

q(j + 1)− q(j) =

{

Fk+1, if A is the jth character of S;

Fk+2, if B is the jth character of S.
(3.1)

Proof. It is straightforward to check that the statement of the lemma is true for j such that
1 ≤ j ≤ F4 − 1. Now assume that it is true for 1 ≤ j ≤ Fm − 1 for some m ≥ 4. From Lemma
3.1 we know that the first Fm−1 rows of Table 1 are those for which the largest summand is no
greater than Fk+m−2, and furthermore that the rows for which Fk+m is the largest summand
are those numbered from Fm + 1 to Fm+1 inclusive. The ordering of the rows, in conjunction
with these results, then implies that

q (i+ Fm) = q(i) + Fk+m

for i = 1, 2, . . . , Fm−1.
We now have, for i = 1, 2, . . . , Fm−1 − 1,

q (i+ 1 + Fm)− q (i+ Fm) = (q(i+ 1) + Fk+m)− (q(i) + Fk+m)

= q(i+ 1)− q(i).

By way of the construction of S, the substring comprising its first Fm−1 characters is identical
to the substring of its characters numbered from Fm+1 to Fm+1 inclusive. From this it follows
that (3.1) is satisfied when Fm + 1 ≤ j ≤ Fm+1 − 1.

We now just need to consider the case q (Fm + 1)− q (Fm). On using Lemma 2.5 it may be
seen that if m is even then

q (Fm + 1)− q (Fm) = Fk+m − (Fk+m−1 + Fk+m−3 + · · ·+ Fk+3) = Fk+2,

while if m is odd it is the case that

q (Fm + 1)− q (Fm) = Fk+m − (Fk+m−1 + Fk+m−3 + · · ·+ Fk+2) = Fk+1.
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From this, in conjunction with Lemma 2.3, it follows that (3.1) is true for all 1 ≤ j ≤ Fm+1−1,
thereby completing the proof of the lemma. �

We will need to make use of a further result associated with the golden string. The following
appears in [6] and is proved in [4].

Lemma 3.3. The number of B’s amongst the first n characters of S is given by
⌊

n+ 1

φ

⌋

,

where

φ =
1 +

√
5

2

is the golden ratio and bxc denotes the largest integer not exceeding x.

We are now in a position to be able to specify the structure of Z(k), the set of all integers
such that, for some fixed k ≥ 2, each contains Fk in its Zeckendorf representation.

Theorem 3.4. For k ≥ 2, the set of all positive integers having the summand Fk in their

Zeckendorf representation is given by

Z(k) =

{

Fk

⌊

n+ φ2

φ

⌋

+ nFk+1 + j : 0 ≤ j ≤ Fk−1 − 1, n ≥ 0

}

.

Proof. From Lemma 3.2 we know that Xk is given by

{Fk + a(n)Fk+1 + b(n)Fk+2 : n ∈ N} ,

where a(n) and b(n) denote the number of A’s and B’s, respectively, amongst the first n

characters in the golden string. On using Lemma 3.3 it follows that

Fk + a(n)Fk+1 + b(n)Fk+2 = Fk +

(

n−
⌊

n+ 1

φ

⌋)

Fk+1 +

⌊

n+ 1

φ

⌋

Fk+2

= Fk +

⌊

n+ 1

φ

⌋

(Fk+2 − Fk+1) + nFk+1

= Fk

(

1 +

⌊

n+ 1

φ

⌋)

+ nFk+1

= Fk

⌊

n+ φ2

φ

⌋

+ nFk+1,

where, for the purposes of simplification in the final step, we have used the fact that φ2 = φ+1.
Finally, the elements of the set {F2, F3, . . . , Fk−2} can be used to obtain the Zeckendorf

representations of integers for which the largest summand is no greater than Fk−2. Such
representations, which generate all the integers from 1 to Fk−1−1 inclusive, may be ‘appended’
to any Zeckendorf representation having Fk as its smallest summand, giving rise to another
Zeckendorf representation. This completes the proof of the theorem. �

For example,

Z(5) = {5, 6, 7, 18, 19, 20, 26, 27, 28, 39, 40, 41, 52, 53, 54, 60, 61, 62, . . .}.
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Similarly, with Z(k, k+2) denoting the set of all integers such that, for some fixed k ≥ 2, each
contains both Fk and Fk+2 in its Zeckendorf representation, we have

Z(k, k + 2) =

{

Fk+2

⌊

n+ φ2

φ

⌋

+ nFk+3 + Fk + j : 0 ≤ j ≤ Fk−1 − 1, n ≥ 0

}

,

and then, extending the notation in an obvious way,

Z(k, k + 3) =

{

Fk+3

⌊

n+ φ2

φ

⌋

+ nFk+4 + Fk + j : 0 ≤ j ≤ Fk−1 − 1, n ≥ 0

}

.

However, the structure of Z(k, k+4) is somewhat different since we may now use Fk+2 in the
Zeckendorf representation. It is in fact given by

{

Fk+4

⌊

n+ φ2

φ

⌋

+ nFk+5 + Fk + j +mFk+2 : 0 ≤ j ≤ Fk−1 − 1, n ≥ 0, 0 ≤ m ≤ 1

}

.

We have, for example,

Z(5, 9) = {39, 40, 41, 52, 53, 54, 128, 129, 130, 141, 142, 143, 183, 184, 185, . . .}.
Note that Z(k, k + 2), Z(k, k + 3) and Z(k, k + 4) are each subsets of Z(k).

Readers interested in exploring Fibonacci representations of integers yet further might like
to refer to two classic articles in this regard [2, 3].
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