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Abstract. It is fairly easy to show that

n! ∼ Cn
n+ 1

2 e
−n as n → ∞,

and it is then standard procedure to use Wallis’ product to show that

C =
√
2π.

The purpose of this note is to show that there is an alternative route to determining C.

1. Introduction

It is fairly easy to show that

n! ∼ Cnn+
1

2 e−n as n → ∞,

and it is then standard procedure to use Wallis’ product to show that

C =
√
2π.

The purpose of this note is to show that there is an alternative route to determining C, and
consequently a nonstandard way to derive Wallis’ product.

2. The Usual Procedure, From Wallis to Stirling

If we let
un = n!

/

nn+
1

2 e−n,

then
un

un−1

≈ exp

{

−
1

12n2

}

,

from which it follows that
un → C as n → ∞,

where C is a nonzero constant, and so

n! ∼ Cnn+
1

2 e−n as n → ∞.

Now, Wallis’ product, which follows from the fact that
∫ π

2

0

sinn θ dθ

is a decreasing function of n, together with the facts that
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∫ π

2

0

sinn θ dθ =
n− 1

n
·
n− 3

n− 2
· · · · ·

4

5
·
2

3
· 1 if n is odd,

=
n− 1

n
·
n− 3

n− 1
· · · · ·

3

4
·
1

2
·
π

2
if n is even

says that

π

4
=

(

1−
1

32

)(

1−
1

52

)(

1−
1

72

)

· · · ,

or, equivalently,

2

π
=

(

1−
1

22

)(

1−
1

42

)(

1−
1

62

)

· · · ,

or, yet again,

π = lim
n→∞

24nn!4

n(2n)!2
.

Taken together with

n! ∼ Cnn+
1

2 e−n,

this gives

C2

2
= π,

so

C =
√
2π

and

n! ∼
√
2πn

(n

e

)n

,

which is Stirling’s formula.
For all this, see for example, [1, Vol. II, pp. 616–618].

3. Stirling Without Wallis

In this section we show that

n! ∼
√
2πn

(n

e

)n

without using Wallis’ product.
We start with the series for en,

en = 1 + n+
n2

2!
+ · · ·+

nn−1

(n− 1)!
+

nn

n!
+ · · ·

=

∞
∑

k=0

nk

k!
.

322 VOLUME 52, NUMBER 4



STIRLING WITHOUT WALLIS

The (equally) largest term in this expansion occurs when k = n, and is H =
nn

n!
. Nearby

terms are given by

nn+k

(n+ k)!
= H ·

nn+k

(n+ k)!

/nn

n!

= H ·
n

n+ 1
· · ·

n

n+ k

= H · exp
{

− log

(

1 +
1

n

)

− · · · − log

(

1 +
k

n

)}

≈ H · exp
{

−
1

n
− · · · −

k

n

}

≈ H · exp
{

−
k2 + k

2n

}

,

for terms to the right of n, or by

nn−k

(n− k)!
= H ·

nn−k

(n− k)!

/nn

n!

= H ·
n− 1

n
· · ·

n− k + 1

n

= H · exp
{

log

(

1−
1

n

)

+ · · ·+ log

(

1−
k − 1

n

)}

≈ H · exp
{

−
1

n
− · · · −

k − 1

n

}

≈ H · exp
{

−
k2 − k

2n

}

for terms to the left of n.
So the distribution function is close to

f(x) = H exp

{

−
(x− n)2 + (x− n)

2n

}

= H exp

{

−
(x− n+ 1

2
)2 − 1

4

2n

}

= H exp

{

−
(x− (n− 1

2
))2

2n
+

1

8n

}

.

Thus the terms are distributed roughly normally about the mean (n − 1

2
) with standard

deviation σ given by

σ2 = n,

or

σ =
√
n.

It follows that

en =
∞
∑

k=0

nk

k!
≈ He

1

8n

∫

∞

−∞

exp

{

−
x2

2n

}

dx ≈ Hσ
√
2π =

√
2πn

nn

n!
,
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Figure 1. The case n = 1000, showing the points (k,
nk

k!
) for 900 ≤ k ≤ 1100,

together with the normal y =
nn

n!
exp

{

−
(

x− (n− 1

2
)
)2

2n
+

1

8n

}

.

and so

n! ≈
√
2πn

(n

e

)n

.

Of course, this argument can be tightened (with a fair bit of trouble) to give

n! ∼
√
2πn

(n

e

)n

.

From this we easily find that

lim
n→∞

24nn!4

n(2n)!2
= π,

which is Wallis’ product.
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