STIRLING WITHOUT WALLIS

MICHAEL D. HIRSCHHORN

Abstract. It is fairly easy to show that

$$
n!\sim C n^{n+\frac{1}{2}} e^{-n} \text { as } n \rightarrow \infty,
$$

and it is then standard procedure to use Wallis' product to show that

$$
C=\sqrt{2 \pi} .
$$

The purpose of this note is to show that there is an alternative route to determining C.

1. Introduction

It is fairly easy to show that

$$
n!\sim C n^{n+\frac{1}{2}} e^{-n} \text { as } n \rightarrow \infty,
$$

and it is then standard procedure to use Wallis' product to show that

$$
C=\sqrt{2 \pi} .
$$

The purpose of this note is to show that there is an alternative route to determining C, and consequently a nonstandard way to derive Wallis' product.
2. The Usual Procedure, From Wallis to Stirling

If we let

$$
u_{n}=n!/ n^{n+\frac{1}{2}} e^{-n}
$$

then

$$
\frac{u_{n}}{u_{n-1}} \approx \exp \left\{-\frac{1}{12 n^{2}}\right\},
$$

from which it follows that

$$
u_{n} \rightarrow C \text { as } n \rightarrow \infty,
$$

where C is a nonzero constant, and so

$$
n!\sim C n^{n+\frac{1}{2}} e^{-n} \text { as } n \rightarrow \infty
$$

Now, Wallis' product, which follows from the fact that

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta
$$

is a decreasing function of n, together with the facts that

THE FIBONACCI QUARTERLY

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \sin ^{n} \theta d \theta & =\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \cdots \cdot \frac{4}{5} \cdot \frac{2}{3} \cdot 1 \text { if } n \text { is odd, } \\
& =\frac{n-1}{n} \cdot \frac{n-3}{n-1} \cdot \cdots \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \text { if } n \text { is even }
\end{aligned}
$$

says that

$$
\frac{\pi}{4}=\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{5^{2}}\right)\left(1-\frac{1}{7^{2}}\right) \cdots
$$

or, equivalently,

$$
\frac{2}{\pi}=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{4^{2}}\right)\left(1-\frac{1}{6^{2}}\right) \cdots,
$$

or, yet again,

$$
\pi=\lim _{n \rightarrow \infty} \frac{2^{4 n} n!^{4}}{n(2 n)!^{2}}
$$

Taken together with

$$
n!\sim C n^{n+\frac{1}{2}} e^{-n}
$$

this gives

$$
\frac{C^{2}}{2}=\pi
$$

so

$$
C=\sqrt{2 \pi}
$$

and

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n},
$$

which is Stirling's formula.
For all this, see for example, [1, Vol. II, pp. 616-618].

3. Stirling Without Wallis

In this section we show that

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

without using Wallis' product.
We start with the series for e^{n},

$$
\begin{aligned}
e^{n} & =1+n+\frac{n^{2}}{2!}+\cdots+\frac{n^{n-1}}{(n-1)!}+\frac{n^{n}}{n!}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{n^{k}}{k!} .
\end{aligned}
$$

The (equally) largest term in this expansion occurs when $k=n$, and is $H=\frac{n^{n}}{n!}$. Nearby terms are given by

$$
\begin{aligned}
\frac{n^{n+k}}{(n+k)!} & =H \cdot \frac{n^{n+k}}{(n+k)!} / \frac{n^{n}}{n!} \\
& =H \cdot \frac{n}{n+1} \cdots \frac{n}{n+k} \\
& =H \cdot \exp \left\{-\log \left(1+\frac{1}{n}\right)-\cdots-\log \left(1+\frac{k}{n}\right)\right\} \\
& \approx H \cdot \exp \left\{-\frac{1}{n}-\cdots-\frac{k}{n}\right\} \\
& \approx H \cdot \exp \left\{-\frac{k^{2}+k}{2 n}\right\}
\end{aligned}
$$

for terms to the right of n, or by

$$
\begin{aligned}
\frac{n^{n-k}}{(n-k)!} & =H \cdot \frac{n^{n-k}}{(n-k)!} / \frac{n^{n}}{n!} \\
& =H \cdot \frac{n-1}{n} \cdots \frac{n-k+1}{n} \\
& =H \cdot \exp \left\{\log \left(1-\frac{1}{n}\right)+\cdots+\log \left(1-\frac{k-1}{n}\right)\right\} \\
& \approx H \cdot \exp \left\{-\frac{1}{n}-\cdots-\frac{k-1}{n}\right\} \\
& \approx H \cdot \exp \left\{-\frac{k^{2}-k}{2 n}\right\}
\end{aligned}
$$

for terms to the left of n.
So the distribution function is close to

$$
\begin{aligned}
f(x) & =H \exp \left\{-\frac{(x-n)^{2}+(x-n)}{2 n}\right\} \\
& =H \exp \left\{-\frac{\left(x-n+\frac{1}{2}\right)^{2}-\frac{1}{4}}{2 n}\right\} \\
& =H \exp \left\{-\frac{\left(x-\left(n-\frac{1}{2}\right)\right)^{2}}{2 n}+\frac{1}{8 n}\right\} .
\end{aligned}
$$

Thus the terms are distributed roughly normally about the mean ($n-\frac{1}{2}$) with standard deviation σ given by

$$
\sigma^{2}=n
$$

or

$$
\sigma=\sqrt{n}
$$

It follows that

$$
e^{n}=\sum_{k=0}^{\infty} \frac{n^{k}}{k!} \approx H e^{\frac{1}{8 n}} \int_{-\infty}^{\infty} \exp \left\{-\frac{x^{2}}{2 n}\right\} d x \approx H \sigma \sqrt{2 \pi}=\sqrt{2 \pi n} \frac{n^{n}}{n!},
$$

Figure 1. The case $n=1000$, showing the points $\left(k, \frac{n^{k}}{k!}\right)$ for $900 \leq k \leq 1100$, together with the normal $y=\frac{n^{n}}{n!} \exp \left\{-\frac{\left(x-\left(n-\frac{1}{2}\right)\right)^{2}}{2 n}+\frac{1}{8 n}\right\}$.
and so

$$
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Of course, this argument can be tightened (with a fair bit of trouble) to give

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} .
$$

From this we easily find that

$$
\lim _{n \rightarrow \infty} \frac{2^{4 n} n!^{4}}{n(2 n)!^{2}}=\pi
$$

which is Wallis' product.

References

[1] T. M. Apostol, Calculus, Xerox College Publishing, Waltham, Massachusetts, 1969.
MSC2010: 26A09, 41A60
School of Mathematics and Statistics, UNSW, Sydney, Australia 2052
E-mail address: m.hirschhorn@unsw.edu.au

