SOME BINOMIAL IDENTITIES ARISING FROM A PARTITION OF AN *n*-DIMENSIONAL CUBE

ANDRZEJ P. KISIELEWICZ

ABSTRACT. Using a partition of the cube $[0,2)^n$ into boxes obtained from a cube tiling of \mathbb{R}^n constructed by Lagarias and Shor, proofs of three well-known binomial identities related to the Lucas cube are given.

1. INTRODUCTION

A cube tiling of \mathbb{R}^n is a family of cubes $[0,2)^n + T = \{[0,2)^n + t : t \in T\}$, where $T \subset \mathbb{R}^n$, which fill in the whole space without gaps and overlaps. In [4] Lagarias and Shor constructed a cube tiling code of \mathbb{R}^n . In this note we show how it can be used to prove the following well-known identities:

$$\sum_{k\geq 0} \binom{n-k}{k} \frac{n}{n-k} 2^k = 2^n + (-1)^n, \tag{1.1}$$

$$\sum_{k>0} \binom{n-k}{k} 2^k = \frac{2^{n+1} + (-1)^n}{3} \tag{1.2}$$

and

$$\sum_{k \ge 0} \binom{n-k}{k} \frac{k}{n-k} 2^k = \frac{2^n + (-1)^n 2}{3}.$$
(1.3)

The code of Lagarias and Shor is constructed as follows. Let $n \ge 3$ be an odd positive integer, and let A be an $n \times n$ circulant matrix of the form $A = A(n) = \operatorname{circ}(1, 2, 0, \dots, 0)$. Let A^T be the transpose of A. By V(A) and $V(A^T)$ we denote the sets of all possible sums of distinct rows in A and A^T , respectively. Moreover, we add to these sets the vector $(0, \dots, 0)$. Let

 $V = V_e(\mathbf{A}) \cup (V_o(\mathbf{A}^T) + (2, \dots, 2)) \mod 4,$

where $V_e(\mathbf{A})$ denotes the set of all vectors in $V(\mathbf{A})$ with an even number of 3's, and $V_o(\mathbf{A}^T)$ is the set of all vectors in $V(\mathbf{A}^T)$ with an odd number of 0's. We will refer to the code V as the *Lagarias-Shor cube tiling code*. This code has very interesting applications. Originally in [4] it was used to design a certain cube tiling of \mathbb{R}^n that was the basis for estimating distances between cubes in cube tilings of \mathbb{R}^n . Recently in [3] the Lagarias-Shor cube tiling code was used to construct interesting partitions and matchings of an *n*-dimensional cube.

To obtain a cube tiling of \mathbb{R}^n from the code V, let $T = V - \mathbf{1} + 4\mathbb{Z}^n$, where $\mathbf{1} = (1, \ldots, 1)$. It follows from [4, Proposition 3.1 and Theorem 4.1] that $[0,2)^n + T$ is a cube tiling of \mathbb{R}^n . (To be precise, a tiling considered in [4] is of the form $[0,1)^n + T'$, where $T' = \frac{1}{2}V + 2\mathbb{Z}^n$, but $[0,2)^n + T = [0,2)^n + 2T' - \mathbf{1}$.) In the proofs of the identities (1.1)-(1.3) we do not need the entire tiling $[0,2)^n + T$ but only the cubes from it that intersect the cube $[0,2)^n$. These cubes induce a partition of the cube $[0,2)^n$ of the form $\mathcal{F} = \{[0,2)^n \cap ([0,2)^n + t) : t \in T\}$. Our proofs of the identities (1.1)-(1.3) are based on the properties of the partition \mathcal{F} .

NOVEMBER 2014

THE FIBONACCI QUARTERLY

All three identities are related to the Lucas cube Λ_n . This is a graph whose vertices are all elements of the box $\{0,1\}^n$ which do not contain two consecutive 1's in the cyclic order (i.e., in $(v_1, \ldots, v_n) \in \{0,1\}^n$ the coordinates v_1 and v_n are consecutive) and in which two vertices are adjacent if they differ in exactly one position. It is known that $\binom{n-k}{k} \frac{n}{n-k}$ is the number of all vertices in the Lucas cube Λ_n of weight k, i.e., containing k 1's. This is also the number of all k-element subsets of the set $[n] = \{1, \ldots, n\}$ without two consecutive integers in the cyclic order ([5]). The number of all vertices in Λ_n of weight k which have 1 at the *i*th position, $i \in [n]$, is equal to $\binom{n-k}{k} \frac{k}{n-k}$, while $\binom{n-k}{k}$ is the number of all vertices in Λ_n of weight k which have 0 at the *i*th position.

In the last section we show that for $n \geq 3$ odd, the set of all vertices of the Lucas cube Λ_n is a selector of a partition of the box $\{0,1\}^n$ into boxes, which is a discrete analogue of the above mentioned partition \mathcal{F} of the cube $[0,2)^n$.

There are many tiling proofs that rely on counting the number of 1-dimensional tilings of a $1 \times n$ board by polyominoes (squares, dominoes, etc.) (see [1, 2]). In our case we examine just one partition of the *n*-dimensional cube $[0, 2)^n$ into boxes and the structure of that partition which reflects the local structure of the tiling $[0, 2)^n + T$ is exploited.

2. Proofs

Since the Lagarias-Shor cube tiling code is defined for odd numbers, we prove identities (1.1)-(1.3) for odd and even positive integers separately.

Proof of (1.1) for $n \geq 3$ odd. We intersect the cube $[0,2)^n$ with the cubes from the tiling $[0,2)^n + T$. Let $\mathcal{F}(n) = \mathcal{F} = \{[0,2)^n \cap ([0,2)^n + t) : t \in T\}$. Since $[0,2)^n + T$ is a tiling, \mathcal{F} is a partition of the cube $[0,2)^n$ into boxes. Let m(K) denote the volume of the box $K \in \mathcal{F}$, and let $m(\mathcal{F}) = \sum_{K \in \mathcal{F}} m(K)$. For every $K \in \mathcal{F}$ we have $m(K) = 2^k$, where k is the number of 1's in the vector $v \in V$ such that $K = [0,2)^n \cap ([0,2)^n + v - \mathbf{1})$. Let $M_k = |\{K \in \mathcal{F} : m(K) = 2^k\}|$. The family \mathcal{F} is a partition of $[0,2)^n$ and therefore $m(\mathcal{F}) = 2^n$ and

$$m(\mathcal{F}) = \sum_{k \ge 0} M_k 2^k.$$

Note now that if $v \in V$ contains 3 at some position $i \in [n]$, then the cubes $[0,2)^n + v - 1$ and $[0,2)^n$ are disjoint. This means that these two cubes intersect if and only if $v \in U \cup \{(0,\ldots,0),(2,\ldots,2)\}$, where U consists of all sums of non-adjacent rows of the matrix A, and the row numbers are in the cyclic order (thus, the first and last rows are adjacent). Therefore, for $k \ge 1$ the number M_k is equal to the number of all k-element subsets of the set $\{1,\ldots,n\}$ without two consecutive integers in the cyclic order, and $M_0 = 2$ because $[0,1)^n$ and $[1,2)^n$ are the only cubes in \mathcal{F} with volume 1. Hence, $M_k = \binom{n-k}{k} \frac{n}{n-k}$ for $k \ge 1$. This completes the proof of (1.1) for $n \ge 3$ odd. \Box

This proof needs only the portion U = U(n) of the Lagarias-Shor cube tiling code, where the code U consists of all sums of non-adjacent rows of the matrix A(n), and the row numbers of A(n) are in the cyclic order. For example,

$$A(5) = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad U(5) = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 0 & 1 \\ 1 & 2 & 1 & 2 & 0 \\ 1 & 2 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 0 & 1 \\ 2 & 0 & 1 & 2 & 1 \end{bmatrix},$$

where the rows of the matrix U(5) are the vectors of the family U(5).

Observe that if we replace 2 by 0 in every vector $v \in U \cup \{(0, \ldots, 0)\}$, then we obtain the set of all vertices in the Lucas cube Λ_n .

To prove (1.2) and (1.3) for $n \geq 3$ odd let $\mathcal{F}_0^i, \mathcal{F}_2^i$ and $\mathcal{F}_1^i, i \in [n]$, denote the sets of all boxes in \mathcal{F} which have the factors [0,1), [1,2) and [0,2) at the *i*th position, respectively. Since $\mathcal{F} = \{[0,2)^n \cap ([0,2)^n + v - \mathbf{1}) : v \in U \cup \{(0,\ldots,0), (2,\ldots,2)\}\}$, for every $k \in \{0,1,2\}$ the set \mathcal{F}_k^i consists of all boxes in \mathcal{F} which are determined by the vectors $v \in U \cup \{(0,\ldots,0), (2,\ldots,2)\}$ such that $v_i = k$. Let

$$m(\mathcal{F}_{02}^i) = \sum_{K \in \mathcal{F}_{02}^i} m(K) \text{ and } m(\mathcal{F}_1^i) = \sum_{K \in \mathcal{F}_1^i} m(K),$$

where $\mathcal{F}_{02}^i = \mathcal{F}_0^i \cup \mathcal{F}_2^i$.

The partition \mathcal{F} (Figure 1) has the structure which will be utilized below. Note that for every $i \in [n]$ the set $\bigcup \mathcal{F}_{02}^i$, is an *i*-cylinder, i.e., for every line segment $l_i \subset [0,2)^n$ of length 2 which is parallel to the *i*th edge of the cube $[0,2)^n$ we have

$$l_i \subset \bigcup \mathcal{F}_{02}^i \text{ or } l_i \cap \bigcup \mathcal{F}_{02}^i = \emptyset.$$
 (2.1)

Obviously, the set $\bigcup \mathcal{F}_1^i$ is an *i*-cylinder too.

1

FIGURE 1. The boxes in \mathcal{F} are determined by the vectors $U = \{(1,2,0), (0,1,2), (2,0,1)\}$ (the three "long" boxes) and $\{(0,0,0), (2,2,2)\}$ (the two unit cubes).

Proof of (1.2) and (1.3) for $n \geq 3$ odd. We will calculate $m(\mathcal{F}_{02}^i)$ and $m(\mathcal{F}_1^i)$. For every $v \in U$ we have $v_i = 1$ if and only if $v_{i+1} = 2$. Thus, $\mathcal{F}_2^{i+1} = \mathcal{F}_1^i \cup \{[1,2)^n\}$ and then $m(\mathcal{F}_2^{i+1}) = m(\mathcal{F}_1^i) + 1$ (clearly, n + 1 is taken modulo n). It follows from (2.1) that $m(\mathcal{F}_0^i) = m(\mathcal{F}_2^i)$ (see Figure 1). Since A is a circulant matrix, we have $m(\mathcal{F}_1^i) = m(\mathcal{F}_1^j)$ for $i, j \in [n]$, and

NOVEMBER 2014

THE FIBONACCI QUARTERLY

 $m(\mathcal{F}) = m(\mathcal{F}_0^i) + m(\mathcal{F}_2^i) + m(\mathcal{F}_1^i)$ because \mathcal{F} is a partition. Thus, $2^n = 3m(\mathcal{F}_1^i) + 2$ and consequently

$$m(\mathcal{F}_{02}^i) = \frac{2(2^n+1)}{3}$$
 and $m(\mathcal{F}_1^i) = \frac{2^n-2}{3}$. (2.2)

As it was noted before the proof, the code $U \cup \{(0, \ldots, 0)\}$ can be identified with the set of all vertices in the Lucas cube Λ_n . Since $\binom{n-k}{k} \frac{k}{n-k}$ is the number of all vertices of weight k in Λ_n with 1 at the first position, we have $|\mathcal{F}_1^1| = \sum_{k \ge 1} \binom{n-k}{k} \frac{k}{n-k}$, and consequently

$$m(\mathcal{F}_1^1) = \sum_{k \ge 1} \binom{n-k}{k} \frac{k}{n-k} 2^k,$$

which, by (2.2), gives (1.3) for $n \ge 3$ odd. Since

$$\sum_{k \ge 0} \binom{n-k}{k} \frac{n}{n-k} 2^k = \sum_{k \ge 0} \binom{n-k}{k} 2^k + \sum_{k \ge 0}^n \binom{n-k}{k} \frac{k}{n-k} 2^k,$$

the proof of the identity (1.2) for $n \ge 3$ odd is also completed.

For $n \geq 3$ odd all three identities are strongly related to the partition \mathcal{F} . The sums $\sum_{k\geq 1} \binom{n-k}{k} 2^k + 2$ and $\sum_{k\geq 1} \binom{n-k}{k} \frac{k}{n-k} 2^k$ are the total volumes of the boxes from the partition \mathcal{F} which belong to the sets \mathcal{F}_{02}^i and \mathcal{F}_1^i , respectively (the number 2 in the first sum is the sum of the volumes of the boxes $[0,1)^n$ and $[1,2)^n$). The summands $\binom{n-k}{k} 2^k$ and $\binom{n-k}{k} \frac{k}{n-k} 2^k$ for $k = 1, \ldots, \lfloor \frac{n}{2} \rfloor$ are the total volumes of the boxes in \mathcal{F}_{02}^i and \mathcal{F}_1^i , respectively which have exactly k factors [0,2).

From now on we assume that $n \ge 3$ is an odd number. The identities (1.1)–(1.3) for $n-1 \ge 2$ even can be derived from the partitions $\mathcal{F}(n)$ and $\mathcal{F}(n-2)$, where $\mathcal{F}(1) = \{[0,1), [1,2)\}$.

Proofs of (1.1)-(1.3) for $n-1 \ge 2$ even. Denote by r_1, \ldots, r_n the rows of the matrix A(n), and let $\mathcal{G} = \mathcal{G}(n-1) \subset \mathcal{F}(n)$ be the set of all boxes which are determined by the vectors $v \in U(n)$ which are sums of non-adjacent rows from the set $\{r_1, \ldots, r_{n-1}\}$, where r_1 and r_{n-1} are treated as adjacent. Thus, the number $|\mathcal{G}|$ is the same as the number of all vertices in the Lucas cube Λ_{n-1} . Consequently

$$m(\mathcal{G}) = \sum_{k \ge 1} \binom{n-1-k}{k} \frac{n-1}{n-1-k} 2^k.$$

Since $\mathcal{G}_0^n = \mathcal{F}_0^n \setminus \{[0,1)^n\}$, it follows that $m(\mathcal{G}_0^n) = m(\mathcal{F}_0^n) - 1$, and by (2.2) and the fact that $m(\mathcal{F}_0^n) = m(\mathcal{F}_2^n)$ we get

$$m(\mathcal{G}_0^n) = \frac{2(2^{n-1}-1)}{3}.$$

We now calculate $m(\mathcal{G}_2^n)$. Every box in \mathcal{G}_2^n is generated by a vector $v \in U$ which has 2 at the *n*th position. Therefore, $v = r_{n-1} + \sum_{i \in I} r_i$ for some $I \subset \{2, \ldots, n-3\}$. Let *R* be the set of all such sums $\sum_{i \in I} r_i$. Every vector in *R* is a sum of non-adjacent rows from the set $\{r_2, \ldots, r_{n-3}\}$, where r_2 and r_{n-3} are not treated as adjacent. Let $U_0^{n-2}(n-2)$ be the set of all vectors in U(n-2) having 0 at the last position. Observe now that the function $b: R \to U_0^{n-2}(n-2)$ defined by the formula $b(u) = \sum_{i \in I-1} h_i$, where h_1, \ldots, h_{n-2} are rows of the matrix A(n-2)

BINOMIAL IDENTITIES

and $I - 1 = \{i - 1 : i \in I\}$, is a bijection. Therefore, $m(\mathcal{G}_2^n) = 2m(\mathcal{F}_0^{n-2}(n-2))$ (recall that we add r_{n-1} to $\sum_{i \in I} r_i$). By (2.1), $m(\mathcal{F}_0^{n-2}(n-2)) = m(\mathcal{F}_2^{n-2}(n-2))$, and by (2.2),

$$m(\mathcal{G}_2^n) = \frac{2^{n-1}+2}{3}.$$

Thus, $m(\mathcal{G}) = m(\mathcal{G}_0^n) + m(\mathcal{G}_2^n) = 2^{n-1}$ because $\mathcal{G}_1^n = \emptyset$. This completes the proof of (1.1) for $n-1 \ge 2$ even.

Since $m(\mathcal{G}_2^{i+1}) = m(\mathcal{G}_1^i)$, $m(\mathcal{G}_1^i) = m(\mathcal{G}_1^j)$ and $m(\mathcal{G}) = m(\mathcal{G}_1^i) + m(\mathcal{G}_{02}^i)$ for $i, j \in [n-1]$, it follows that

$$m(\mathcal{G}_1^i) = \frac{2^{n-1}+2}{3}$$
 and $m(\mathcal{G}_{02}^i) = \frac{2(2^{n-1}-1)}{3}$

for $i \in [n-1]$. By the definition of the set \mathcal{G} , we have $|\mathcal{G}_1^1| = \sum_{k \ge 1} \binom{n-1-k}{k} \frac{k}{n-1-k}$, and thus

$$m(\mathcal{G}_1^1) = \sum_{k \ge 1} \binom{n-1-k}{k} \frac{k}{n-1-k} 2^k$$

which proves (1.3) for $n-1 \ge 2$ even. Having this in the same manner as for $n \ge 3$ odd, we prove (1.2) for $n-1 \ge 2$ even.

3. Vertices of the Lucas Cube as a Selector

Let L = L(n) be the code that arises from U = U(n) by making in every vector $v \in U$ the following substitutions: $0 \to 0, 2 \to 1$ and $1 \to *$. For example,

$$\mathbf{L}(5) = \begin{bmatrix} * & 1 & 0 & 0 & 0 \\ 0 & * & 1 & 0 & 0 \\ 0 & 0 & * & 1 & 0 \\ 0 & 0 & 0 & * & 1 \\ 1 & 0 & 0 & 0 & * \\ * & 1 & * & 1 & 0 \\ * & 1 & 0 & * & 1 \\ 0 & * & 1 & * & 1 \\ 1 & * & 1 & 0 & * \\ 1 & 0 & * & 1 & * \end{bmatrix},$$

where the rows of the matrix L(5) are the vectors of the family L(5).

The set L consists of all sums of non-adjacent rows of the matrix circ(*, 1, 0, ..., 0), where the row numbers of this matrix are in the cyclic order. Therefore, if we replace * by 0 in every vector of $L \cup \{(0, ..., 0)\}$, then we obtain the set $V(\Lambda_n)$ of all vertices in the Lucas cube Λ_n .

The code $L \cup \{(0, \ldots, 0), (1, \ldots, 1)\}$ induces a partition \mathcal{L} of the discrete box $\{0, 1\}^n$ into boxes which is a discrete analogue of the partition \mathcal{F} from the previous section. The boxes $K(l) = K_1(l) \times \cdots \times K_n(l) \in \mathcal{L}$, where $l \in L \cup \{(0, \ldots, 0), (1, \ldots, 1)\}$, are of the form

$$K_i(l) = \begin{cases} \{0\} & \text{if } l_i = 0, \\ \{1\} & \text{if } l_i = 1, \\ \{0, 1\} & \text{if } l_i = * \end{cases}$$

for $i \in [n]$, and $|K(l)| = 2^k$ for every box $K(l) \in \mathcal{L}$ having k factors $\{0, 1\}$. Therefore, the proofs from the previous section can be repeated, but this time we consider the partition \mathcal{L} instead of \mathcal{F} .

NOVEMBER 2014

THE FIBONACCI QUARTERLY

Observe now that for every $n \geq 3$ odd the set $V(\Lambda_n)$ of the vertices of the Lucas cube is a *selector* of the family of boxes $\mathcal{L} \setminus \{\{1\} \times \cdots \times \{1\}\}$: for every $v \in V(\Lambda_n)$ there is exactly one $K(l) \in \mathcal{L} \setminus \{\{1\} \times \cdots \times \{1\}\}$ such that

 $v \in K(l).$

Indeed, let $K(l) \in \mathcal{L} \setminus \{\{1\} \times \cdots \times \{1\}\}$ and pick $v = (v_1, \ldots, v_n) \in K(l)$ in the following way:

$$v_i = \begin{cases} 0 & \text{if } K_i(l) = \{0\}, \\ 1 & \text{if } K_i(l) = \{1\}, \\ 0 & \text{if } K_i(l) = \{0, 1\} \end{cases}$$

Since *l* does not contain two consecutive 1's in the cyclic order and if $K_i = \{0, 1\}$, then $K_{i+1} = \{1\}$, it follows that $v \in V(\Lambda_n)$ and for every $w \in K(l)$, $w \neq v$, there is $i \in [n]$ such that $w_i = 1$ while $v_i = 0$. Thus, $K(l) \cap V(\Lambda_n) = \{v\}$.

References

- A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, The Dolciani Mathematical Expositions, Vol. 27, Mathematical Association of America, Washington, DC, 2003.
- [2] K. S. Briggs, D. P. Little, and J. A. Sellers, Combinatorial proofs of various q-Pell identities via tilings, Ann. Combin., 14 (2010), 407–418.
- [3] A. P. Kisielewicz, Partitions and balanced matchings of an n-dimensional cube, European J. Combin., 40 (2014), 93–107.
- [4] J. C. Lagarias and P. W. Shor, Cube tilings of ℝⁿ and nonlinear codes, Discrete Comput. Geom., 11 (1994), 359–391.
- [5] E. Munarini, C. P. Cippo, and N. Z. Salvi, On the Lucas cubes, The Fibonacci Quarterly, 39.1 (2001), 12–21.

MSC2010: 05A19, 52C22

Wydział Matematyki, Informatyki i Ekonometrii, Uniwersytet Zielonogórski, ul. Z. Szafrana 4a, 65-516 Zielona Góra, Poland

E-mail address: A.Kisielewicz@wmie.uz.zgora.pl