SOME BINOMIAL IDENTITIES ARISING FROM A PARTITION OF AN n-DIMENSIONAL CUBE

ANDRZEJ P. KISIELEWICZ

Abstract

Using a partition of the cube $[0,2)^{n}$ into boxes obtained from a cube tiling of \mathbb{R}^{n} constructed by Lagarias and Shor, proofs of three well-known binomial identities related to the Lucas cube are given.

1. Introduction

A cube tiling of \mathbb{R}^{n} is a family of cubes $[0,2)^{n}+T=\left\{[0,2)^{n}+t: t \in T\right\}$, where $T \subset \mathbb{R}^{n}$, which fill in the whole space without gaps and overlaps. In [4] Lagarias and Shor constructed a cube tiling code of \mathbb{R}^{n}. In this note we show how it can be used to prove the following well-known identities:

$$
\begin{gather*}
\sum_{k \geq 0}\binom{n-k}{k} \frac{n}{n-k} 2^{k}=2^{n}+(-1)^{n}, \tag{1.1}\\
\sum_{k \geq 0}\binom{n-k}{k} 2^{k}=\frac{2^{n+1}+(-1)^{n}}{3} \tag{1.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{k \geq 0}\binom{n-k}{k} \frac{k}{n-k} 2^{k}=\frac{2^{n}+(-1)^{n} 2}{3} . \tag{1.3}
\end{equation*}
$$

The code of Lagarias and Shor is constructed as follows. Let $n \geq 3$ be an odd positive integer, and let A be an $n \times n$ circulant matrix of the form $\mathrm{A}=\mathrm{A}(n)=\operatorname{circ}(1,2,0, \ldots, 0)$. Let A^{T} be the transpose of A . By $V(\mathrm{~A})$ and $V\left(\mathrm{~A}^{T}\right)$ we denote the sets of all possible sums of distinct rows in A and A^{T}, respectively. Moreover, we add to these sets the vector $(0, \ldots, 0)$. Let

$$
V=V_{e}(\mathrm{~A}) \cup\left(V_{o}\left(\mathrm{~A}^{T}\right)+(2, \ldots, 2)\right) \quad \bmod 4,
$$

where $V_{e}(\mathrm{~A})$ denotes the set of all vectors in $V(\mathrm{~A})$ with an even number of 3 's, and $V_{o}\left(\mathrm{~A}^{T}\right)$ is the set of all vectors in $V\left(\mathrm{~A}^{T}\right)$ with an odd number of 0 's. We will refer to the code V as the Lagarias-Shor cube tiling code. This code has very interesting applications. Originally in [4] it was used to design a certain cube tiling of \mathbb{R}^{n} that was the basis for estimating distances between cubes in cube tilings of \mathbb{R}^{n}. Recently in [3] the Lagarias-Shor cube tiling code was used to construct interesting partitions and matchings of an n-dimensional cube.

To obtain a cube tiling of \mathbb{R}^{n} from the code V, let $T=V-\mathbf{1}+4 \mathbb{Z}^{n}$, where $\mathbf{1}=(1, \ldots, 1)$. It follows from [4, Proposition 3.1 and Theorem 4.1] that $[0,2)^{n}+T$ is a cube tiling of \mathbb{R}^{n}. (To be precise, a tiling considered in [4] is of the form $[0,1)^{n}+T^{\prime}$, where $T^{\prime}=\frac{1}{2} V+2 \mathbb{Z}^{n}$, but $[0,2)^{n}+T=[0,2)^{n}+2 T^{\prime}-1$.) In the proofs of the identities (1.1)-(1.3) we do not need the entire tiling $[0,2)^{n}+T$ but only the cubes from it that intersect the cube $[0,2)^{n}$. These cubes induce a partition of the cube $[0,2)^{n}$ of the form $\mathcal{F}=\left\{[0,2)^{n} \cap\left([0,2)^{n}+t\right): t \in T\right\}$. Our proofs of the identities (1.1)-(1.3) are based on the properties of the partition \mathcal{F}.

THE FIBONACCI QUARTERLY

All three identities are related to the Lucas cube Λ_{n}. This is a graph whose vertices are all elements of the box $\{0,1\}^{n}$ which do not contain two consecutive 1's in the cyclic order (i.e., in $\left(v_{1}, \ldots, v_{n}\right) \in\{0,1\}^{n}$ the coordinates v_{1} and v_{n} are consecutive) and in which two vertices are adjacent if they differ in exactly one position. It is known that $\binom{n-k}{k} \frac{n}{n-k}$ is the number of all vertices in the Lucas cube Λ_{n} of weight k, i.e., containing k 1's. This is also the number of all k-element subsets of the set $[n]=\{1, \ldots, n\}$ without two consecutive integers in the cyclic order ([5]). The number of all vertices in Λ_{n} of weight k which have 1 at the i th position, $i \in[n]$, is equal to $\binom{n-k}{k} \frac{k}{n-k}$, while $\binom{n-k}{k}$ is the number of all vertices in Λ_{n} of weight k which have 0 at the i th position.

In the last section we show that for $n \geq 3$ odd, the set of all vertices of the Lucas cube Λ_{n} is a selector of a partition of the box $\{0,1\}^{n}$ into boxes, which is a discrete analogue of the above mentioned partition \mathcal{F} of the cube $[0,2)^{n}$.

There are many tiling proofs that rely on counting the number of 1-dimensional tilings of a $1 \times n$ board by polyominoes (squares, dominoes, etc.) (see [1, 2]). In our case we examine just one partition of the n-dimensional cube $[0,2)^{n}$ into boxes and the structure of that partition which reflects the local structure of the tiling $[0,2)^{n}+T$ is exploited.

2. Proofs

Since the Lagarias-Shor cube tiling code is defined for odd numbers, we prove identities (1.1)-(1.3) for odd and even positive integers separately.

Proof of (1.1) for $n \geq 3$ odd. We intersect the cube $[0,2)^{n}$ with the cubes from the tiling $[0,2)^{n}+T$. Let $\mathcal{F}(n)=\mathcal{F}=\left\{[0,2)^{n} \cap\left([0,2)^{n}+t\right): t \in T\right\}$. Since $[0,2)^{n}+T$ is a tiling, \mathcal{F} is a partition of the cube $[0,2)^{n}$ into boxes. Let $m(K)$ denote the volume of the box $K \in \mathcal{F}$, and let $m(\mathcal{F})=\sum_{K \in \mathcal{F}} m(K)$. For every $K \in \mathcal{F}$ we have $m(K)=2^{k}$, where k is the number of 1 's in the vector $v \in V$ such that $K=[0,2)^{n} \cap\left([0,2)^{n}+v-\mathbf{1}\right)$. Let $M_{k}=\left|\left\{K \in \mathcal{F}: m(K)=2^{k}\right\}\right|$. The family \mathcal{F} is a partition of $[0,2)^{n}$ and therefore $m(\mathcal{F})=2^{n}$ and

$$
m(\mathcal{F})=\sum_{k \geq 0} M_{k} 2^{k} .
$$

Note now that if $v \in V$ contains 3 at some position $i \in[n]$, then the cubes $[0,2)^{n}+v-\mathbf{1}$ and $[0,2)^{n}$ are disjoint. This means that these two cubes intersect if and only if $v \in U \cup$ $\{(0, \ldots, 0),(2, \ldots, 2)\}$, where U consists of all sums of non-adjacent rows of the matrix A, and the row numbers are in the cyclic order (thus, the first and last rows are adjacent). Therefore, for $k \geq 1$ the number M_{k} is equal to the number of all k-element subsets of the set $\{1, \ldots, n\}$ without two consecutive integers in the cyclic order, and $M_{0}=2$ because $[0,1)^{n}$ and $[1,2)^{n}$ are the only cubes in \mathcal{F} with volume 1 . Hence, $M_{k}=\binom{n-k}{k} \frac{n}{n-k}$ for $k \geq 1$. This completes the proof of (1.1) for $n \geq 3$ odd.

This proof needs only the portion $U=U(n)$ of the Lagarias-Shor cube tiling code, where the code U consists of all sums of non-adjacent rows of the matrix $\mathrm{A}(n)$, and the row numbers of $\mathrm{A}(n)$ are in the cyclic order. For example,

$$
\mathrm{A}(5)=\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 2 \\
2 & 0 & 0 & 0 & 1
\end{array}\right], \quad \mathrm{U}(5)=\left[\begin{array}{lllll}
1 & 2 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 & 2 \\
2 & 0 & 0 & 0 & 1 \\
1 & 2 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 & 2 \\
0 & 1 & 2 & 1 & 2 \\
2 & 1 & 2 & 0 & 1 \\
2 & 0 & 1 & 2 & 1
\end{array}\right]
$$

where the rows of the matrix $\mathrm{U}(5)$ are the vectors of the family $U(5)$.
Observe that if we replace 2 by 0 in every vector $v \in U \cup\{(0, \ldots, 0)\}$, then we obtain the set of all vertices in the Lucas cube Λ_{n}.

To prove (1.2) and (1.3) for $n \geq 3$ odd let $\mathcal{F}_{0}^{i}, \mathcal{F}_{2}^{i}$ and $\mathcal{F}_{1}^{i}, i \in[n]$, denote the sets of all boxes in \mathcal{F} which have the factors $[0,1),[1,2)$ and $[0,2)$ at the i th position, respectively. Since $\mathcal{F}=\left\{[0,2)^{n} \cap\left([0,2)^{n}+v-\mathbf{1}\right): v \in U \cup\{(0, \ldots, 0),(2, \ldots, 2)\}\right\}$, for every $k \in\{0,1,2\}$ the set \mathcal{F}_{k}^{i} consists of all boxes in \mathcal{F} which are determined by the vectors $v \in U \cup\{(0, \ldots, 0),(2, \ldots, 2)\}$ such that $v_{i}=k$. Let

$$
m\left(\mathcal{F}_{02}^{i}\right)=\sum_{K \in \mathcal{F}_{02}^{i}} m(K) \text { and } m\left(\mathcal{F}_{1}^{i}\right)=\sum_{K \in \mathcal{F}_{1}^{i}} m(K),
$$

where $\mathcal{F}_{02}^{i}=\mathcal{F}_{0}^{i} \cup \mathcal{F}_{2}^{i}$.
The partition \mathcal{F} (Figure 1) has the structure which will be utilized below. Note that for every $i \in[n]$ the set $\bigcup \mathcal{F}_{02}^{i}$, is an i-cylinder, i.e., for every line segment $l_{i} \subset[0,2)^{n}$ of length 2 which is parallel to the i th edge of the cube $[0,2)^{n}$ we have

$$
\begin{equation*}
l_{i} \subset \bigcup \mathcal{F}_{02}^{i} \text { or } l_{i} \cap \bigcup \mathcal{F}_{02}^{i}=\emptyset . \tag{2.1}
\end{equation*}
$$

Obviously, the set $\bigcup \mathcal{F}_{1}^{i}$ is an i-cylinder too.

Figure 1. The boxes in \mathcal{F} are determined by the vectors $U=$ $\{(1,2,0),(0,1,2),(2,0,1)\}$ (the three "long" boxes) and $\{(0,0,0),(2,2,2)\}$ (the two unit cubes).

Proof of (1.2) and (1.3) for $n \geq 3$ odd. We will calculate $m\left(\mathcal{F}_{02}^{i}\right)$ and $m\left(\mathcal{F}_{1}^{i}\right)$. For every $v \in U$ we have $v_{i}=1$ if and only if $v_{i+1}=2$. Thus, $\mathcal{F}_{2}^{i+1}=\mathcal{F}_{1}^{i} \cup\left\{[1,2)^{n}\right\}$ and then $m\left(\mathcal{F}_{2}^{i+1}\right)=$ $m\left(\mathcal{F}_{1}^{i}\right)+1$ (clearly, $n+1$ is taken modulo n). It follows from (2.1) that $m\left(\mathcal{F}_{0}^{i}\right)=m\left(\mathcal{F}_{2}^{i}\right)$ (see Figure 1). Since A is a circulant matrix, we have $m\left(\mathcal{F}_{1}^{i}\right)=m\left(\mathcal{F}_{1}^{j}\right)$ for $i, j \in[n]$, and

THE FIBONACCI QUARTERLY

$m(\mathcal{F})=m\left(\mathcal{F}_{0}^{i}\right)+m\left(\mathcal{F}_{2}^{i}\right)+m\left(\mathcal{F}_{1}^{i}\right)$ because \mathcal{F} is a partition. Thus, $2^{n}=3 m\left(\mathcal{F}_{1}^{i}\right)+2$ and consequently

$$
\begin{equation*}
m\left(\mathcal{F}_{02}^{i}\right)=\frac{2\left(2^{n}+1\right)}{3} \text { and } m\left(\mathcal{F}_{1}^{i}\right)=\frac{2^{n}-2}{3} . \tag{2.2}
\end{equation*}
$$

As it was noted before the proof, the code $U \cup\{(0, \ldots, 0)\}$ can be identified with the set of all vertices in the Lucas cube Λ_{n}. Since $\binom{n-k}{k} \frac{k}{n-k}$ is the number of all vertices of weight k in Λ_{n} with 1 at the first position, we have $\left|\mathcal{F}_{1}^{1}\right|=\sum_{k \geq 1}\binom{n-k}{k} \frac{k}{n-k}$, and consequently

$$
m\left(\mathcal{F}_{1}^{1}\right)=\sum_{k \geq 1}\binom{n-k}{k} \frac{k}{n-k} 2^{k},
$$

which, by (2.2), gives (1.3) for $n \geq 3$ odd. Since

$$
\sum_{k \geq 0}\binom{n-k}{k} \frac{n}{n-k} 2^{k}=\sum_{k \geq 0}\binom{n-k}{k} 2^{k}+\sum_{k \geq 0}^{n}\binom{n-k}{k} \frac{k}{n-k} 2^{k},
$$

the proof of the identity (1.2) for $n \geq 3$ odd is also completed.
For $n \geq 3$ odd all three identities are strongly related to the partition \mathcal{F}. The sums $\sum_{k \geq 1}\binom{n-k}{k} 2^{k}+2$ and $\sum_{k \geq 1}\binom{n-k}{k} \frac{k}{n-k} 2^{k}$ are the total volumes of the boxes from the partition \mathcal{F} which belong to the sets \mathcal{F}_{02}^{i} and \mathcal{F}_{1}^{i}, respectively (the number 2 in the first sum is the sum of the volumes of the boxes $[0,1)^{n}$ and $\left.[1,2)^{n}\right)$. The summands $\binom{n-k}{k} 2^{k}$ and $\binom{n-k}{k} \frac{k}{n-k} 2^{k}$ for $k=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$ are the total volumes of the boxes in \mathcal{F}_{02}^{i} and \mathcal{F}_{1}^{i}, respectively which have exactly k factors $[0,2)$.

From now on we assume that $n \geq 3$ is an odd number. The identities (1.1)-(1.3) for $n-1 \geq 2$ even can be derived from the partitions $\mathcal{F}(n)$ and $\mathcal{F}(n-2)$, where $\mathcal{F}(1)=\{[0,1),[1,2)\}$.
Proofs of (1.1)-(1.3) for $n-1 \geq 2$ even. Denote by r_{1}, \ldots, r_{n} the rows of the matrix $\mathrm{A}(n)$, and let $\mathcal{G}=\mathcal{G}(n-1) \subset \mathcal{F}(n)$ be the set of all boxes which are determined by the vectors $v \in U(n)$ which are sums of non-adjacent rows from the set $\left\{r_{1}, \ldots, r_{n-1}\right\}$, where r_{1} and r_{n-1} are treated as adjacent. Thus, the number $|\mathcal{G}|$ is the same as the number of all vertices in the Lucas cube Λ_{n-1}. Consequently

$$
m(\mathcal{G})=\sum_{k \geq 1}\binom{n-1-k}{k} \frac{n-1}{n-1-k} 2^{k} .
$$

Since $\mathcal{G}_{0}^{n}=\mathcal{F}_{0}^{n} \backslash\left\{[0,1)^{n}\right\}$, it follows that $m\left(\mathcal{G}_{0}^{n}\right)=m\left(\mathcal{F}_{0}^{n}\right)-1$, and by (2.2) and the fact that $m\left(\mathcal{F}_{0}^{n}\right)=m\left(\mathcal{F}_{2}^{n}\right)$ we get

$$
m\left(\mathcal{G}_{0}^{n}\right)=\frac{2\left(2^{n-1}-1\right)}{3}
$$

We now calculate $m\left(\mathcal{G}_{2}^{n}\right)$. Every box in \mathcal{G}_{2}^{n} is generated by a vector $v \in U$ which has 2 at the nth position. Therefore, $v=r_{n-1}+\sum_{i \in I} r_{i}$ for some $I \subset\{2, \ldots, n-3\}$. Let R be the set of all such sums $\sum_{i \in I} r_{i}$. Every vector in R is a sum of non-adjacent rows from the set $\left\{r_{2}, \ldots, r_{n-3}\right\}$, where r_{2} and r_{n-3} are not treated as adjacent. Let $U_{0}^{n-2}(n-2)$ be the set of all vectors in $U(n-2)$ having 0 at the last position. Observe now that the function $b: R \rightarrow U_{0}^{n-2}(n-2)$ defined by the formula $b(u)=\sum_{i \in I-1} h_{i}$, where h_{1}, \ldots, h_{n-2} are rows of the matrix $\mathrm{A}(n-2)$
and $I-1=\{i-1: i \in I\}$, is a bijection. Therefore, $m\left(\mathcal{G}_{2}^{n}\right)=2 m\left(\mathcal{F}_{0}^{n-2}(n-2)\right)$ (recall that we add r_{n-1} to $\left.\sum_{i \in I} r_{i}\right)$. By (2.1), $m\left(\mathcal{F}_{0}^{n-2}(n-2)\right)=m\left(\mathcal{F}_{2}^{n-2}(n-2)\right)$, and by (2.2),

$$
m\left(\mathcal{G}_{2}^{n}\right)=\frac{2^{n-1}+2}{3}
$$

Thus, $m(\mathcal{G})=m\left(\mathcal{G}_{0}^{n}\right)+m\left(\mathcal{G}_{2}^{n}\right)=2^{n-1}$ because $\mathcal{G}_{1}^{n}=\emptyset$. This completes the proof of (1.1) for $n-1 \geq 2$ even.

Since $m\left(\mathcal{G}_{2}^{i+1}\right)=m\left(\mathcal{G}_{1}^{i}\right), m\left(\mathcal{G}_{1}^{i}\right)=m\left(\mathcal{G}_{1}^{j}\right)$ and $m(\mathcal{G})=m\left(\mathcal{G}_{1}^{i}\right)+m\left(\mathcal{G}_{02}^{i}\right)$ for $i, j \in[n-1]$, it follows that

$$
m\left(\mathcal{G}_{1}^{i}\right)=\frac{2^{n-1}+2}{3} \text { and } m\left(\mathcal{G}_{02}^{i}\right)=\frac{2\left(2^{n-1}-1\right)}{3}
$$

for $i \in[n-1]$. By the definition of the set \mathcal{G}, we have $\left|\mathcal{G}_{1}^{1}\right|=\sum_{k \geq 1}\binom{n-1-k}{k} \frac{k}{n-1-k}$, and thus

$$
m\left(\mathcal{G}_{1}^{1}\right)=\sum_{k \geq 1}\binom{n-1-k}{k} \frac{k}{n-1-k} 2^{k}
$$

which proves (1.3) for $n-1 \geq 2$ even. Having this in the same manner as for $n \geq 3$ odd, we prove (1.2) for $n-1 \geq 2$ even.

3. Vertices of the Lucas Cube as a Selector

Let $L=L(n)$ be the code that arises from $U=U(n)$ by making in every vector $v \in U$ the following substitutions: $0 \rightarrow 0,2 \rightarrow 1$ and $1 \rightarrow *$. For example,

$$
\mathrm{L}(5)=\left[\begin{array}{ccccc}
* & 1 & 0 & 0 & 0 \\
0 & * & 1 & 0 & 0 \\
0 & 0 & * & 1 & 0 \\
0 & 0 & 0 & * & 1 \\
1 & 0 & 0 & 0 & * \\
* & 1 & * & 1 & 0 \\
* & 1 & 0 & * & 1 \\
0 & * & 1 & * & 1 \\
1 & * & 1 & 0 & * \\
1 & 0 & * & 1 & *
\end{array}\right]
$$

where the rows of the matrix $\mathrm{L}(5)$ are the vectors of the family $L(5)$.
The set L consists of all sums of non-adjacent rows of the matrix $\operatorname{circ}(*, 1,0, \ldots, 0)$, where the row numbers of this matrix are in the cyclic order. Therefore, if we replace $*$ by 0 in every vector of $L \cup\{(0, \ldots, 0)\}$, then we obtain the set $V\left(\Lambda_{n}\right)$ of all vertices in the Lucas cube Λ_{n}.

The code $L \cup\{(0, \ldots, 0),(1, \ldots, 1)\}$ induces a partition \mathcal{L} of the discrete box $\{0,1\}^{n}$ into boxes which is a discrete analogue of the partition \mathcal{F} from the previous section. The boxes $K(l)=K_{1}(l) \times \cdots \times K_{n}(l) \in \mathcal{L}$, where $l \in L \cup\{(0, \ldots, 0),(1, \ldots, 1)\}$, are of the form

$$
K_{i}(l)=\left\{\begin{aligned}
\{0\} & \text { if } l_{i}=0, \\
\{1\} & \text { if } l_{i}=1, \\
\{0,1\} & \text { if } l_{i}=*
\end{aligned}\right.
$$

for $i \in[n]$, and $|K(l)|=2^{k}$ for every box $K(l) \in \mathcal{L}$ having k factors $\{0,1\}$. Therefore, the proofs from the previous section can be repeated, but this time we consider the partition \mathcal{L} instead of \mathcal{F}.

THE FIBONACCI QUARTERLY

Observe now that for every $n \geq 3$ odd the set $V\left(\Lambda_{n}\right)$ of the vertices of the Lucas cube is a selector of the family of boxes $\mathcal{L} \backslash\{\{1\} \times \cdots \times\{1\}\}$: for every $v \in V\left(\Lambda_{n}\right)$ there is exactly one $K(l) \in \mathcal{L} \backslash\{\{1\} \times \cdots \times\{1\}\}$ such that

$$
v \in K(l) .
$$

Indeed, let $K(l) \in \mathcal{L} \backslash\{\{1\} \times \cdots \times\{1\}\}$ and pick $v=\left(v_{1}, \ldots, v_{n}\right) \in K(l)$ in the following way:

$$
v_{i}= \begin{cases}0 & \text { if } K_{i}(l)=\{0\}, \\ 1 & \text { if } K_{i}(l)=\{1\}, \\ 0 & \text { if } K_{i}(l)=\{0,1\} .\end{cases}
$$

Since l does not contain two consecutive 1's in the cyclic order and if $K_{i}=\{0,1\}$, then $K_{i+1}=\{1\}$, it follows that $v \in V\left(\Lambda_{n}\right)$ and for every $w \in K(l), w \neq v$, there is $i \in[n]$ such that $w_{i}=1$ while $v_{i}=0$. Thus, $K(l) \cap V\left(\Lambda_{n}\right)=\{v\}$.

References

[1] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, The Dolciani Mathematical Expositions, Vol. 27, Mathematical Association of America, Washington, DC, 2003.
[2] K. S. Briggs, D. P. Little, and J. A. Sellers, Combinatorial proofs of various q-Pell identities via tilings, Ann. Combin., 14 (2010), 407-418.
[3] A. P. Kisielewicz, Partitions and balanced matchings of an n-dimensional cube, European J. Combin., 40 (2014), 93-107.
[4] J. C. Lagarias and P. W. Shor, Cube tilings of \mathbb{R}^{n} and nonlinear codes, Discrete Comput. Geom., 11 (1994), 359-391.
[5] E. Munarini, C. P. Cippo, and N. Z. Salvi, On the Lucas cubes, The Fibonacci Quarterly, 39.1 (2001), 12-21.

MSC2010: 05A19, 52C22
Wydzia£ Matematyki, Informatyki i Ekonometrì, Uniwersytet Zielonogórski, ul. Z. Szafrana 4A, 65-516 Zielona Góra, Poland

E-mail address: A.Kisielewicz@wmie.uz.zgora.pl

