
FIBONACCI NUMBERS OF THE FORM xa ± xb ± 1

SHANTA LAISHRAM AND FLORIAN LUCA

Abstract. In this paper, we show that the Diophantine equation Fn = xa ± xb ± 1 has
only finitely many positive integer solutions (n, x, a, b) with n ≥ 3, max{a, b} ≥ 2 and x with
exactly two distinct prime factors.

1. Introduction

In this paper, we consider the Diophantine equation

Fn = xa ± xb ± 1 (1.1)

in positive integer variables n, x, a, b with max{a, b} ≥ 2 and n ≥ 3. Luca and Szalay [3]
showed that equation (1.1) has only finitely many positive integer solutions (n, x, a, b) with
prime x. We extend this result to the case when x has exactly two distinct prime factors.

Theorem 1.1. Equation (1.1) has only finitely many positive integer solutions (n, x, a, b) with
n ≥ 3, max{a, b} ≥ 2 and x having exactly two distinct prime factors. All such solutions have
max{a, b} < 4× 1014 and

x < exp
(

exp
(

exp
(

exp
(

5× 1045
))))

.

We point out that Bennett and Bugeaud [2] treated the similar equation (1.1) with Fn

replaced by some perfect power yq of integer exponent q ≥ 2.

2. Preliminary Results

For the proof of Theorem 1.1, we need the following explicit lower bound for a linear form
in logarithms of real algebraic numbers due to Matveev [4]. But first, we need to remind the
reader of the definition of the height of an algebraic number. Let η be an algebraic number of
degree d over Q with minimal primitive polynomial over the integers

f(X) = a0

d
∏

i=1

(X − η(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of η is given by

h(η) =
1

d

(

log a0 +

d
∑

i=1

log max{|η(i)|, 1}
)

.
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Lemma 2.1. (Matveev). Let L be a real number field of degree D, α1, α2, . . . , αt be non-zero
elements of L and b1, b2, . . . , bt be nonzero integers. Set B = max{b1, . . . , bt} and

Λ = αb1
1 · · ·αbt

t − 1.

Let A1, . . . , At be real numbers with

Aj ≥ max{Dh(αj), | log αj |, 0.16} for all 1 ≤ j ≤ t.

Assume that Λ 6= 0. Then

log |Λ| ≥ −1.4 · 30t+3t4.5D2(1 + logD)(1 + logB)A1 · · ·At.

We also recall the following result of Baker from 1964 (see [1]).

Lemma 2.2. (Baker). Let f(X) = a0X
d+a1X

d−1+ · · ·+ad ∈ Z[X] be a polynomial of degree
d. Let (x, y) be an integer solution to the equation

y2 = f(x).

If f(X) has at least three simple roots, then

max{|x|, |y|} ≤ exp(exp(exp((d10dH)d
2

))), (2.1)

where H = max{|a0|, . . . , |ad|}.
In order to be able to apply Lemma 2.2, we need the following result.

Lemma 2.3. Let a > b ≥ 1 be fixed integers and

f(X) = Xa + ε1X
b + ε2 and g(X) = 5f(X)2 + 4ε3, where ε1, ε2, ε3 ∈ {±1}.

Then g(X) has only simple roots.

Proof. Let x0 be a double zero of g(X). Then

g(x0) = 5f(x0)
2 + 4ε3 = 0 and g′(x0) = 5f(x0)f

′(x0) = 0. (2.2)

From the second equation (2.2), we get that either f(x0) = 0 or f ′(x0) = 0. If f(x0) = 0, the
the first equation (2.2) gives 4 = 0, which is false. Thus,

0 = f ′(x0) = axa−1
0 + ε1bx

b−1
0 = xb−1

0 (axa−b
0 + ε1b).

If x0 = 0, then the first equation (2.2) gives 5 + 4ε3 = 0, which is false. So xa−b
0 = −ε1b/a.

Returning to g(x0) = 0, we get

xb0(x
a−b
0 + ε1) + ε2 = f(x0) = ε4

√

−4ε3/5, (ε4 ∈ {±1})
and

xb0 =
−ε2 + ε4

√

−4ε3/5

ε1(a− b)/a
. (2.3)

Raising equation (2.3) to the power a− b, we get
(

−ε2 + ε4
√

−4ε3/5

ε1(a− b)/a

)a−b

= (xa−b
0 )b = (−ε1b/a)

b,

which leads to the conclusion that (−ε2 + ε4
√

−4ε3/5)
a−b ∈ Q. Analyzing this situation over

all the possibilities ε2, ε3, ε4 ∈ {±1}, we get to the conclusion that one of the numbers 2±
√
5

or 2±
√
−5 raised to some nonzero integer exponent is an integer, which is false. �
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3. Proof of Theorem 1.1

Without loss of generality, we may assume that n ≥ 500, a ≥ b and x ≥ 6 since x has
exactly two distinct prime factors. We rewrite equation (1.1) as

Fn ∓ 1 = xb(xa−b ± 1). (3.1)

From [3, Lemma 2], we know that

Fn + ε = Fn−δ

2

Ln+δ

2

(3.2)

where

δ =



















−ε if n ≡ 1 (mod 4)

ε if n ≡ −1 (mod 4)

−2ε if n ≡ 2 (mod 4)

2ε if n ≡ 0 (mod 4)

(ε ∈ {±1}).

Here and in what follows, Lm is the mth Lucas number. Since

Fn−δ

2

| Fn−δ, Ln+δ

2

| Fn+δ and gcd(Fu, Fv) = F(u,v),

we get that

gcd(Fn−δ

2

, Ln+δ

2

) | gcd(Fn−δ, Fn+δ) | F2|δ| | F4 = 3,

therefore,

gcd(Fn−δ

2

, Ln+δ

2

) = 1 or 3 and it is 3 exactly when n is even and n ≡ δ (mod 8).

From equations (3.1) and (3.2), we get

xb(xa−b ± 1) = Fn−δ

2

Ln+δ

2

.

Note that xa ± xb ± 1 is always odd. So, Fn is odd, therefore 3 - n. A case by case analysis
shows that either 3 | (n − δ)/2 or 3 | (n + δ)/2. We then write (n + ηδ)/2 = 3k for some
η ∈ {±1}. Recall that

F3k = Fk(5F
2
k + 3(−1)k) and L3k = Lk(L

2
k − 3(−1)k).

In each of the two cases, the above two factors are either coprime or their greatest common
divisor is exactly 3. Hence, we have from (3.2) that

xb(xa−b ± 1) =

{

F3kL3k+δ = Fk(5F
2
k + 3(−1)k)L3k+δ, if n−δ

2 = 3k;

F3k−δL3k = F3k−δLk(L
2
k − 3(−1)k), if n+δ

2 = 3k.
(3.3)

Hence, we can write xb(xa−b ± 1) = G1G2G3, where the pairwise greatest common divisor of
G1, G2 and G3 is either 1 or 3 (note that G1G2G3 is positive since otherwise it would be zero
and we would get that Fn = ±1, which is impossible since we are assuming that n ≥ 500). We
label the Gi’s such that G1 = min{G1, G2, G3}. From formula (3.3) and the fact that n ≥ 500
(so k ≥ 50), it is easy to see that G1 = Fk or Lk according to whether n+δ = 6k or n−δ = 6k,
respectively.

We now let x = pe11 pe22 , where p1 and p2 are distinct primes and e1 and e2 are positive
integer exponents. Suppose first that a = b. Then G1G2G3 = 2xa = 2pae1qae2 . The greatest
common divisor conditions imply G1 ≤ 6, so k ≤ 5, which is not possible since n ≥ 500.
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Assume next that a > b. From (3.3), we get xb = pe1b1 pe2b2 divides either 9G1G2, or 9G2G3,
or 9G3G1. Therefore,

xb ≤ 9G2G3 =
9(Fn ± 1)

G1
≤ 9(Fn + 1)

Fk
≤ α5 · αn−1

αk−2
= αn−k+6 < α

5n

6
+7

where α = (1 +
√
5)/2. Here, we used the fact that 9 < α5, Fk ≥ αk−2 for all k ≥ 1, and

Fn ≤ αn−1 − 1 for n ≥ 500. These inequalities are consequences of the Binet formula

Fn =
αn − βn

α− β
, where β = (1−

√
5)/2. (3.4)

On the other hand,

2xa + 1 ≥ xa ± xb ± 1 = Fn > αn−2 + 1 (n ≥ 500),

giving

xa >
αn−2

2
> αn−4.

Thus,

xb < α
5n

6
+7 <

(

αn−4
)

6

7 < x
6a

7 , so b <
6a

7
where in the above we used the fact that

5n

6
+ 7 <

6(n − 4)

7

which holds because n ≥ 500. Hence, a− b > a/7. This inequality together with (3.2) and the
Binet formula for the Fibonacci numbers (3.4) implies

∣

∣

∣

∣

αn

√
5
− xa

∣

∣

∣

∣

=

∣

∣

∣

∣

±xb +
βn

√
5
± 1

∣

∣

∣

∣

< 1.2xb,

where the right-most inequality holds because x ≥ 6 and b ≥ 1, giving
∣

∣

∣

∣

αnx−a

√
5

− 1

∣

∣

∣

∣

< 1.2x−(a−b). (3.5)

The above inequality (3.5) implies that the left-hand side is ≤ 1/2 since x ≥ 6 and a− b ≥ 1.
Hence,

∣

∣

∣

∣

αnx−a

√
5

− 1

∣

∣

∣

∣

≤ min

{

1

2
,
1.2

xa−b

}

≤ min

{

1

2
,
1.2

xa/7

}

≤ min

{

1

2
,

1

x(a−1)/7

}

. (3.6)

In the above chain of inequalities we used the fact that x ≥ 6 > 1.27. An argument of Shorey
and Stewart [5] implies that a is bounded. Let us recall their argument and use it to compute
an explicit bound for a. Write n = aq + r with 0 ≤ r < a. Then inequality (3.6) is

∣

∣

∣

∣

αr

√
5

(

αq

x

)a

− 1

∣

∣

∣

∣

≤ min

{

1

2
,

1

x(a−1)/7

}

. (3.7)

We apply Lemma 2.1 to the left-hand side above with the parameters L = Q(
√
5), t = 3,

α1 = α, α2 =
√
5, α3 = αq/x, b1 = r, b2 = 1, b3 = a. Hence,

Γ =
αr

√
5

(

αq

x

)a

− 1. (3.8)

NOVEMBER 2014 293



THE FIBONACCI QUARTERLY

Clearly D = 2 and B = a. We can take A1 = 0.5 ≥ max{2h(α1), log α1, 0.16}. Also, we can
take A2 = 1.7 > max{2h(α2), log α2, 0.16}. We need to compute A3. For this, we note that
the minimal polynomial of αq/x over Z is

f(Y ) = x2Y 2 − (αq + βq)xY + (−1)q.

The conjugate of αq/x is βq/x whose absolute value is clearly smaller than 1. Further, by
(3.7), we have

αr

√
5

(

αq

x

)a

≤ 3

2
, therefore

aq

x
≤ α−r/a

(

3
√
5

2

)1/a

< 2.

Hence,

h(α3) =
1

2

(

log x2 + logmax

{

1,
αq

x

})

≤ log x+
log 2

2
< 1.5 log x

since x ≥ 6. Thus, we can take A3 = 1.5 log x. We verify that Γ 6= 0. Indeed, if this were not
so, then we would get that

αnx−a

√
5

= 1.

After squaring and manipulating the above relation, we get α2n ∈ Q, implying n = 0, which
is false. So, we may apply Matveev’s Theorem Lemma 2.1 to the left-hand side of inequality
(3.7), getting

|Γ| > exp
(

−1.4× 306 × 34.5 × 22(1 + log 2)(1 + log a)× 0.5 × 1.7× 1.5 log x
)

. (3.9)

Hence,
|Γ| > exp(−1.3 × 1012(1 + log a) log x). (3.10)

Combining the above inequality (3.10) with inequality (3.7), we get

((a− 1)/7) log x < 1.3× 1012(1 + log a) log x

giving a < 4× 1014. This proves the assertion about a. Assume now that both a > b ≥ 1 are
fixed and let

f(X) = Xa ±Xb ± 1.

Inserting the relation Fn = f(x) into the formula

L2
n − 5F 2

n = 4(−1)n,

we get, with y = Ln, that
y2 = g(x), (3.11)

where g(X) = 5f(X)2 ± 4 ∈ Z[X]. We shall apply Lemma 2.2 to bound the solutions of
equation (3.11). The condition that g(X) has at least three simple zeros is satisfied since
deg(g(X)) = 2a ≥ 4 and by Lemma 2.3, the roots of g(X) are simple. Further, one checks
easily that H(g) ≤ 15. Now (2.1) implies that

x < exp
(

exp
(

exp
(

((2a)20a × 15)4a
2
)))

.

Inserting a < 4× 1014, we get the desired inequality for x. �
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