FIBONACCI NUMBERS OF THE FORM $x^{a} \pm x^{b} \pm 1$

SHANTA LAISHRAM AND FLORIAN LUCA

Abstract

In this paper, we show that the Diophantine equation $F_{n}=x^{a} \pm x^{b} \pm 1$ has only finitely many positive integer solutions (n, x, a, b) with $n \geq 3, \max \{a, b\} \geq 2$ and x with exactly two distinct prime factors.

1. Introduction

In this paper, we consider the Diophantine equation

$$
\begin{equation*}
F_{n}=x^{a} \pm x^{b} \pm 1 \tag{1.1}
\end{equation*}
$$

in positive integer variables n, x, a, b with $\max \{a, b\} \geq 2$ and $n \geq 3$. Luca and Szalay [3] showed that equation (1.1) has only finitely many positive integer solutions (n, x, a, b) with prime x. We extend this result to the case when x has exactly two distinct prime factors.

Theorem 1.1. Equation (1.1) has only finitely many positive integer solutions (n, x, a, b) with $n \geq 3, \max \{a, b\} \geq 2$ and x having exactly two distinct prime factors. All such solutions have $\max \{a, b\}<4 \times 10^{14}$ and

$$
x<\exp \left(\exp \left(\exp \left(\exp \left(5 \times 10^{45}\right)\right)\right)\right)
$$

We point out that Bennett and Bugeaud [2] treated the similar equation (1.1) with F_{n} replaced by some perfect power y^{q} of integer exponent $q \geq 2$.

2. Preliminary Results

For the proof of Theorem 1.1, we need the following explicit lower bound for a linear form in logarithms of real algebraic numbers due to Matveev [4]. But first, we need to remind the reader of the definition of the height of an algebraic number. Let η be an algebraic number of degree d over \mathbb{Q} with minimal primitive polynomial over the integers

$$
f(X)=a_{0} \prod_{i=1}^{d}\left(X-\eta^{(i)}\right) \in \mathbb{Z}[X]
$$

where the leading coefficient a_{0} is positive. The logarithmic height of η is given by

$$
h(\eta)=\frac{1}{d}\left(\log a_{0}+\sum_{i=1}^{d} \log \max \left\{\left|\eta^{(i)}\right|, 1\right\}\right)
$$

[^0]Lemma 2.1. (Matveev). Let \mathbb{L} be a real number field of degree $D, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ be non-zero elements of \mathbb{L} and $b_{1}, b_{2}, \ldots, b_{t}$ be nonzero integers. Set $B=\max \left\{b_{1}, \ldots, b_{t}\right\}$ and

$$
\Lambda=\alpha_{1}^{b_{1}} \cdots \alpha_{t}^{b_{t}}-1
$$

Let A_{1}, \ldots, A_{t} be real numbers with

$$
A_{j} \geq \max \left\{D h\left(\alpha_{j}\right),\left|\log \alpha_{j}\right|, 0.16\right\} \text { for all } 1 \leq j \leq t
$$

Assume that $\Lambda \neq 0$. Then

$$
\log |\Lambda| \geq-1.4 \cdot 30^{t+3} t^{4.5} D^{2}(1+\log D)(1+\log B) A_{1} \cdots A_{t}
$$

We also recall the following result of Baker from 1964 (see [1]).
Lemma 2.2. (Baker). Let $f(X)=a_{0} X^{d}+a_{1} X^{d-1}+\cdots+a_{d} \in \mathbb{Z}[X]$ be a polynomial of degree d. Let (x, y) be an integer solution to the equation

$$
y^{2}=f(x) .
$$

If $f(X)$ has at least three simple roots, then

$$
\begin{equation*}
\max \{|x|,|y|\} \leq \exp \left(\exp \left(\exp \left(\left(d^{10 d} H\right)^{d^{2}}\right)\right)\right) \tag{2.1}
\end{equation*}
$$

where $H=\max \left\{\left|a_{0}\right|, \ldots,\left|a_{d}\right|\right\}$.
In order to be able to apply Lemma 2.2, we need the following result.
Lemma 2.3. Let $a>b \geq 1$ be fixed integers and

$$
f(X)=X^{a}+\varepsilon_{1} X^{b}+\varepsilon_{2} \quad \text { and } \quad g(X)=5 f(X)^{2}+4 \varepsilon_{3}, \quad \text { where } \quad \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \in\{ \pm 1\} .
$$

Then $g(X)$ has only simple roots.
Proof. Let x_{0} be a double zero of $g(X)$. Then

$$
\begin{equation*}
g\left(x_{0}\right)=5 f\left(x_{0}\right)^{2}+4 \varepsilon_{3}=0 \quad \text { and } \quad g^{\prime}\left(x_{0}\right)=5 f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)=0 . \tag{2.2}
\end{equation*}
$$

From the second equation (2.2), we get that either $f\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)=0$. If $f\left(x_{0}\right)=0$, the the first equation (2.2) gives $4=0$, which is false. Thus,

$$
0=f^{\prime}\left(x_{0}\right)=a x_{0}^{a-1}+\varepsilon_{1} b x_{0}^{b-1}=x_{0}^{b-1}\left(a x_{0}^{a-b}+\varepsilon_{1} b\right) .
$$

If $x_{0}=0$, then the first equation (2.2) gives $5+4 \varepsilon_{3}=0$, which is false. So $x_{0}^{a-b}=-\varepsilon_{1} b / a$. Returning to $g\left(x_{0}\right)=0$, we get

$$
x_{0}^{b}\left(x_{0}^{a-b}+\varepsilon_{1}\right)+\varepsilon_{2}=f\left(x_{0}\right)=\varepsilon_{4} \sqrt{-4 \varepsilon_{3} / 5}, \quad\left(\varepsilon_{4} \in\{ \pm 1\}\right)
$$

and

$$
\begin{equation*}
x_{0}^{b}=\frac{-\varepsilon_{2}+\varepsilon_{4} \sqrt{-4 \varepsilon_{3} / 5}}{\varepsilon_{1}(a-b) / a} . \tag{2.3}
\end{equation*}
$$

Raising equation (2.3) to the power $a-b$, we get

$$
\left(\frac{-\varepsilon_{2}+\varepsilon_{4} \sqrt{-4 \varepsilon_{3} / 5}}{\varepsilon_{1}(a-b) / a}\right)^{a-b}=\left(x_{0}^{a-b}\right)^{b}=\left(-\varepsilon_{1} b / a\right)^{b},
$$

which leads to the conclusion that $\left(-\varepsilon_{2}+\varepsilon_{4} \sqrt{-4 \varepsilon_{3} / 5}\right)^{a-b} \in \mathbb{Q}$. Analyzing this situation over all the possibilities $\varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} \in\{ \pm 1\}$, we get to the conclusion that one of the numbers $2 \pm \sqrt{5}$ or $2 \pm \sqrt{-5}$ raised to some nonzero integer exponent is an integer, which is false.

THE FIBONACCI QUARTERLY

3. Proof of Theorem 1.1

Without loss of generality, we may assume that $n \geq 500, a \geq b$ and $x \geq 6$ since x has exactly two distinct prime factors. We rewrite equation (1.1) as

$$
\begin{equation*}
F_{n} \mp 1=x^{b}\left(x^{a-b} \pm 1\right) . \tag{3.1}
\end{equation*}
$$

From [3, Lemma 2], we know that

$$
\begin{equation*}
F_{n}+\varepsilon=F_{\frac{n-\delta}{2}} L_{\frac{n+\delta}{2}} \tag{3.2}
\end{equation*}
$$

where

$$
\delta=\left\{\begin{array}{ll}
-\varepsilon & \text { if } n \equiv 1 \quad(\bmod 4) \\
\varepsilon & \text { if } n \equiv-1 \quad(\bmod 4) \\
-2 \varepsilon & \text { if } n \equiv 2 \quad(\bmod 4) \\
2 \varepsilon & \text { if } n \equiv 0 \quad(\bmod 4)
\end{array} \quad(\varepsilon \in\{ \pm 1\})\right.
$$

Here and in what follows, L_{m} is the m th Lucas number. Since

$$
F_{\frac{n-\delta}{2}}\left|F_{n-\delta}, \quad L_{\frac{n+\delta}{2}}\right| F_{n+\delta} \quad \text { and } \quad \operatorname{gcd}\left(F_{u}, F_{v}\right)=F_{(u, v)}
$$

we get that

$$
\left.\operatorname{gcd}\left(F_{\frac{n-\delta}{2}}, L_{\frac{n+\delta}{2}}\right)\left|\operatorname{gcd}\left(F_{n-\delta}, F_{n+\delta}\right)\right| F_{2|\delta|} \right\rvert\, F_{4}=3,
$$

therefore,

$$
\operatorname{gcd}\left(F_{\frac{n-\delta}{2}}, L_{\frac{n+\delta}{2}}\right)=1 \text { or } 3 \text { and it is } 3 \text { exactly when } n \text { is even and } n \equiv \delta(\bmod 8)
$$

From equations (3.1) and (3.2), we get

$$
x^{b}\left(x^{a-b} \pm 1\right)=F_{\frac{n-\delta}{2}} L_{\frac{n+\delta}{2}} .
$$

Note that $x^{a} \pm x^{b} \pm 1$ is always odd. So, F_{n} is odd, therefore $3 \nmid n$. A case by case analysis shows that either $3 \mid(n-\delta) / 2$ or $3 \mid(n+\delta) / 2$. We then write $(n+\eta \delta) / 2=3 k$ for some $\eta \in\{ \pm 1\}$. Recall that

$$
F_{3 k}=F_{k}\left(5 F_{k}^{2}+3(-1)^{k}\right) \text { and } L_{3 k}=L_{k}\left(L_{k}^{2}-3(-1)^{k}\right) .
$$

In each of the two cases, the above two factors are either coprime or their greatest common divisor is exactly 3 . Hence, we have from (3.2) that

$$
x^{b}\left(x^{a-b} \pm 1\right)= \begin{cases}F_{3 k} L_{3 k+\delta}=F_{k}\left(5 F_{k}^{2}+3(-1)^{k}\right) L_{3 k+\delta}, & \text { if } \frac{n-\delta}{2}=3 k ; \tag{3.3}\\ F_{3 k-\delta} L_{3 k}=F_{3 k-\delta} L_{k}\left(L_{k}^{2}-3(-1)^{k}\right), & \text { if } \frac{n+\delta}{2}=3 k .\end{cases}
$$

Hence, we can write $x^{b}\left(x^{a-b} \pm 1\right)=G_{1} G_{2} G_{3}$, where the pairwise greatest common divisor of G_{1}, G_{2} and G_{3} is either 1 or 3 (note that $G_{1} G_{2} G_{3}$ is positive since otherwise it would be zero and we would get that $F_{n}= \pm 1$, which is impossible since we are assuming that $n \geq 500$). We label the G_{i} 's such that $G_{1}=\min \left\{G_{1}, G_{2}, G_{3}\right\}$. From formula (3.3) and the fact that $n \geq 500$ (so $k \geq 50$), it is easy to see that $G_{1}=F_{k}$ or L_{k} according to whether $n+\delta=6 k$ or $n-\delta=6 k$, respectively.

We now let $x=p_{1}^{e_{1}} p_{2}^{e_{2}}$, where p_{1} and p_{2} are distinct primes and e_{1} and e_{2} are positive integer exponents. Suppose first that $a=b$. Then $G_{1} G_{2} G_{3}=2 x^{a}=2 p^{a e_{1}} q^{a e_{2}}$. The greatest common divisor conditions imply $G_{1} \leq 6$, so $k \leq 5$, which is not possible since $n \geq 500$.

FIBONACCI NUMBERS OF THE FORM $x^{a} \pm x^{b} \pm 1$

Assume next that $a>b$. From (3.3), we get $x^{b}=p_{1}^{e_{1} b} p_{2}^{e_{2} b}$ divides either $9 G_{1} G_{2}$, or $9 G_{2} G_{3}$, or $9 G_{3} G_{1}$. Therefore,

$$
x^{b} \leq 9 G_{2} G_{3}=\frac{9\left(F_{n} \pm 1\right)}{G_{1}} \leq \frac{9\left(F_{n}+1\right)}{F_{k}} \leq \frac{\alpha^{5} \cdot \alpha^{n-1}}{\alpha^{k-2}}=\alpha^{n-k+6}<\alpha^{\frac{5 n}{6}+7}
$$

where $\alpha=(1+\sqrt{5}) / 2$. Here, we used the fact that $9<\alpha^{5}, F_{k} \geq \alpha^{k-2}$ for all $k \geq 1$, and $F_{n} \leq \alpha^{n-1}-1$ for $n \geq 500$. These inequalities are consequences of the Binet formula

$$
\begin{equation*}
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad \text { where } \quad \beta=(1-\sqrt{5}) / 2 \tag{3.4}
\end{equation*}
$$

On the other hand,

$$
2 x^{a}+1 \geq x^{a} \pm x^{b} \pm 1=F_{n}>\alpha^{n-2}+1 \quad(n \geq 500)
$$

giving

$$
x^{a}>\frac{\alpha^{n-2}}{2}>\alpha^{n-4}
$$

Thus,

$$
x^{b}<\alpha^{\frac{5 n}{6}+7}<\left(\alpha^{n-4}\right)^{\frac{6}{7}}<x^{\frac{6 a}{7}}, \quad \text { so } \quad b<\frac{6 a}{7}
$$

where in the above we used the fact that

$$
\frac{5 n}{6}+7<\frac{6(n-4)}{7}
$$

which holds because $n \geq 500$. Hence, $a-b>a / 7$. This inequality together with (3.2) and the Binet formula for the Fibonacci numbers (3.4) implies

$$
\left|\frac{\alpha^{n}}{\sqrt{5}}-x^{a}\right|=\left| \pm x^{b}+\frac{\beta^{n}}{\sqrt{5}} \pm 1\right|<1.2 x^{b},
$$

where the right-most inequality holds because $x \geq 6$ and $b \geq 1$, giving

$$
\begin{equation*}
\left|\frac{\alpha^{n} x^{-a}}{\sqrt{5}}-1\right|<1.2 x^{-(a-b)} . \tag{3.5}
\end{equation*}
$$

The above inequality (3.5) implies that the left-hand side is $\leq 1 / 2$ since $x \geq 6$ and $a-b \geq 1$. Hence,

$$
\begin{equation*}
\left|\frac{\alpha^{n} x^{-a}}{\sqrt{5}}-1\right| \leq \min \left\{\frac{1}{2}, \frac{1.2}{x^{a-b}}\right\} \leq \min \left\{\frac{1}{2}, \frac{1.2}{x^{a / 7}}\right\} \leq \min \left\{\frac{1}{2}, \frac{1}{x^{(a-1) / 7}}\right\} \tag{3.6}
\end{equation*}
$$

In the above chain of inequalities we used the fact that $x \geq 6>1.2^{7}$. An argument of Shorey and Stewart [5] implies that a is bounded. Let us recall their argument and use it to compute an explicit bound for a. Write $n=a q+r$ with $0 \leq r<a$. Then inequality (3.6) is

$$
\begin{equation*}
\left|\frac{\alpha^{r}}{\sqrt{5}}\left(\frac{\alpha^{q}}{x}\right)^{a}-1\right| \leq \min \left\{\frac{1}{2}, \frac{1}{x^{(a-1) / 7}}\right\} \tag{3.7}
\end{equation*}
$$

We apply Lemma 2.1 to the left-hand side above with the parameters $\mathbb{L}=\mathbb{Q}(\sqrt{5}), t=3$, $\alpha_{1}=\alpha, \alpha_{2}=\sqrt{5}, \alpha_{3}=\alpha^{q} / x, b_{1}=r, b_{2}=1, b_{3}=a$. Hence,

$$
\begin{equation*}
\Gamma=\frac{\alpha^{r}}{\sqrt{5}}\left(\frac{\alpha^{q}}{x}\right)^{a}-1 . \tag{3.8}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Clearly $D=2$ and $B=a$. We can take $A_{1}=0.5 \geq \max \left\{2 h\left(\alpha_{1}\right), \log \alpha_{1}, 0.16\right\}$. Also, we can take $A_{2}=1.7>\max \left\{2 h\left(\alpha_{2}\right), \log \alpha_{2}, 0.16\right\}$. We need to compute A_{3}. For this, we note that the minimal polynomial of α^{q} / x over \mathbb{Z} is

$$
f(Y)=x^{2} Y^{2}-\left(\alpha^{q}+\beta^{q}\right) x Y+(-1)^{q} .
$$

The conjugate of α^{q} / x is β^{q} / x whose absolute value is clearly smaller than 1. Further, by (3.7), we have

$$
\frac{\alpha^{r}}{\sqrt{5}}\left(\frac{\alpha^{q}}{x}\right)^{a} \leq \frac{3}{2}, \quad \text { therefore } \quad \frac{a^{q}}{x} \leq \alpha^{-r / a}\left(\frac{3 \sqrt{5}}{2}\right)^{1 / a}<2
$$

Hence,

$$
h\left(\alpha_{3}\right)=\frac{1}{2}\left(\log x^{2}+\log \max \left\{1, \frac{\alpha^{q}}{x}\right\}\right) \leq \log x+\frac{\log 2}{2}<1.5 \log x
$$

since $x \geq 6$. Thus, we can take $A_{3}=1.5 \log x$. We verify that $\Gamma \neq 0$. Indeed, if this were not so, then we would get that

$$
\frac{\alpha^{n} x^{-a}}{\sqrt{5}}=1 .
$$

After squaring and manipulating the above relation, we get $\alpha^{2 n} \in \mathbb{Q}$, implying $n=0$, which is false. So, we may apply Matveev's Theorem Lemma 2.1 to the left-hand side of inequality (3.7), getting

$$
\begin{equation*}
|\Gamma|>\exp \left(-1.4 \times 30^{6} \times 3^{4.5} \times 2^{2}(1+\log 2)(1+\log a) \times 0.5 \times 1.7 \times 1.5 \log x\right) . \tag{3.9}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
|\Gamma|>\exp \left(-1.3 \times 10^{12}(1+\log a) \log x\right) \tag{3.10}
\end{equation*}
$$

Combining the above inequality (3.10) with inequality (3.7), we get

$$
((a-1) / 7) \log x<1.3 \times 10^{12}(1+\log a) \log x
$$

giving $a<4 \times 10^{14}$. This proves the assertion about a. Assume now that both $a>b \geq 1$ are fixed and let

$$
f(X)=X^{a} \pm X^{b} \pm 1
$$

Inserting the relation $F_{n}=f(x)$ into the formula

$$
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n},
$$

we get, with $y=L_{n}$, that

$$
\begin{equation*}
y^{2}=g(x), \tag{3.11}
\end{equation*}
$$

where $g(X)=5 f(X)^{2} \pm 4 \in \mathbb{Z}[X]$. We shall apply Lemma 2.2 to bound the solutions of equation (3.11). The condition that $g(X)$ has at least three simple zeros is satisfied since $\operatorname{deg}(g(X))=2 a \geq 4$ and by Lemma 2.3, the roots of $g(X)$ are simple. Further, one checks easily that $H(g) \leq 15$. Now (2.1) implies that

$$
x<\exp \left(\exp \left(\exp \left(\left((2 a)^{20 a} \times 15\right)^{4 a^{2}}\right)\right)\right) .
$$

Inserting $a<4 \times 10^{14}$, we get the desired inequality for x.

4. Acknowledgements

We thank the referee for a careful reading of the paper and for comments and suggestions which improved its quality.

FIBONACCI NUMBERS OF THE FORM $x^{a} \pm x^{b} \pm 1$

References

[1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Math. Proc. Cambridge Philos. Soc., 65 (1969), 439-444.
[2] M. Bennett and Y. Bugeaud, Perfect powers with three digits, Mathematika, 60 (2014), 66-84.
[3] F. Luca and L. Szalay, Fibonacci numbers of the form $p^{a} \pm p^{b}+1$, The Fibonacci Quarterly, 45.2 (2007), 98-103.
[4] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat., 64 (2000), 125-180. (English transl. in Izv. Math. 64 (2000), 1217-1269.)
[5] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, J. Number Theory, 27 (1987), 324-352.

MSC2010: 11B39, 11D61, 11J86
Stat-Math Unit, India Statistical Institute, 7, S. J. S. Sansanwal Marg, New Delhi, 110016, India

E-mail address: shanta@isid.ac.in
Mathematical Institute, UNAM Juriquilla, Santiago de Querétaro 76230, Querétaro de Arteaga, México, and, School of Mathematics, University of the Witwatersrand, P. O. Box Wits 2050, South Africa

E-mail address: fluca@matmor.unam.mx

[^0]: Research supported in part by an Indo-Mexican project.
 Research supported in part by Projects PAPIIT IN104512, CONACyT Mexico-France 193539, CONACyT Mexico-India 163787 and a Marcos Moshinsky Fellowship.

