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Abstract. There exists a class of polynomial families associated with integer sequences
whose ordinary generating functions have quadratic governing equations with functional (poly-
nomial) coefficients. In this paper we give necessary and sufficient conditions under which
corresponding members of two such polynomial families are equal, with some supporting
examples provided.

1. Introduction

Let A(x), B(x), C(x) ∈ Z[x], and suppose the (ordinary) generating function T (x) of a
sequence of integers satisfies a general quadratic governing equation

0 = A(x)T 2(x) +B(x)T (x) +C(x). (1.1)

The functional coefficients A(x), B(x), C(x) can be considered to give rise to a family of asso-
ciated polynomials α0(x), α1(x), α2(x), . . . , defined as

αn(x) = αn(A(x), B(x), C(x))

= (1, 0)

(

−B(x) A(x)
−C(x) 0

)n(
1
0

)

, n ≥ 0, (1.2)

and for which the first few polynomials are, explicitly,

α0(x) = 1,

α1(x) = −B(x),

α2(x) = B2(x)−A(x)C(x),

α3(x) = 2A(x)B(x)C(x)−B3(x),

α4(x) = B4(x)− 3A(x)B2(x)C(x) +A2(x)C2(x),

α5(x) = 4A(x)B3(x)C(x)− 3A2(x)B(x)C2(x)−B5(x), (1.3)

etc. A general closed form is [1, Eq. (52), p. 24]

αn(x) =
1

2n+1

[−B(x) + ρ(x)]n+1 − [−B(x)− ρ(x)]n+1

ρ(x)
, (1.4)

where ρ(x) = ρ(A(x), B(x), C(x)) =
√

B2(x)− 4A(x)C(x) is the ‘discriminant’ function for
(1.1). Some simplified instances of the general polynomial αn(x) are

αn(A(x), B(x), 0) = [−B(x)]n = αn(0, B(x), C(x)),

αn(A(x), 0, C(x)) =

{

0 n (odd) ≥ 1

[−A(x)C(x)]n/2 n (even) ≥ 0,
(1.5)
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whose proofs are omitted (simple reader exercise). From hereon we will assume, for conve-
nience, that the arguments A(x), B(x), C(x) of αn(x) are non-zero.

In [4] a new non-linear identity was established for this class of families on which, as seen
from the references therein, a considerable amount of work has been conducted and results
given for the particular Catalan, (Large) Schröder and Motzkin polynomial families (described
by respective instances Pn(x) = αn(x,−1, 1), Sn(x) = αn(x, x− 1, 1) and Mn(x) = αn(x

2, x−
1, 1)) that form a natural grouping and are associated with their namesake sequences, see OEIS
Sequence Nos. A000108, A006318 and A001006 [5]. Specializations of the general polynomial
αn(A(x), B(x), C(x)) in the context of the Fibonacci sequence, as noted by the referee of [4],
provide an interesting observation and in turn motivation for further analysis here in which we
explore conditions under which corresponding members of two polynomial families are equal.
Accordingly, results are formulated and examples included.

2. A Conjecture and Formal Results

2.1. A Conjecture. Let {Fn}∞0 = {1, 1, 2, 3, 5, . . .} = {F0, F1, F2, F3, F4, . . .} denote the Fi-
bonacci sequence, with (n+ 1)th term Fn. We already know [3, Eq. (13), p. 47] that, setting
A(x) = −1, B(x) = C(x) = 1, the polynomial αn(−1, 1, 1) evaluates to (−1)nFn (n ≥ 0), a
result easily checked by hand for n = 0, . . . , 5 using (1.3). With a sign change in the polyno-
mial arguments it is immediate via (1.2) that αn(1,−1,−1) = Fn (n ≥ 0) (of course knowing
the closed form [(1 +

√
5)n+1 − (1 −

√
5)n+1]/2n+1

√
5 for Fn, both results follow from (1.4)),

and we find, too, that

αn(1,−1,−1) = αn(−1,−1, 1) = Fn, n ≥ 0. (2.1)

This is an interesting result since it translates as the matrix identity

(1, 0)

(

1 1
1 0

)n(
1
0

)

= (1, 0)

(

1 −1
−1 0

)n(
1
0

)

, n ≥ 0, (2.2)

which is not obvious. Equation (2.2), together with other similar examples such as

(1, 0)

(

−2 4
−5 0

)n(
1
0

)

= (1, 0)

(

−2 −2
10 0

)n(
1
0

)

,

(1, 0)

(

1 −3
−4 0

)n(
1
0

)

= (1, 0)

(

1 2
6 0

)n(
1
0

)

= (1, 0)

(

1 12
1 0

)n(
1
0

)

,

(1, 0)

(

−5 −4
4 0

)n(
1
0

)

= (1, 0)

(

−5
√
2

−8
√
2 0

)n(
1
0

)

(2.3)

(all checked computationally for many values of n ≥ 0) lead naturally to a conjecture, a quick
glance at the structure of the polynomials in (1.3) suggesting that this is not an unreasonable
one to make.

Let A(x), A′(x), B(x), B′(x), C(x), C ′(x) ∈ Z[x]. Noting that α0 = 1 for A(x), B(x), C(x)
arbitrary, and that α1 = α1(B(x)), the conjecture is that, for n ≥ 2, αn(A(x), B(x), C(x)) =
αn(A

′(x), B′(x), C ′(x)) ⇔ B(x) = B′(x) and A(x)C(x) = A′(x)C ′(x).
As far as producing an argument to confirm the proposed condition of necessity, this is

straightforward since we have a prior result on which to draw. We assume that αn(A(x), B(x),
C(x)) = αn(A

′(x), B′(x), C ′(x)) for some n ≥ 2. Applying directly the somewhat unusual
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Theorem 3 of [1, p. 21], which states that

αn(A(x), B(x), C(x)) = [−B(x)]nPn

(

A(x)C(x)

B2(x)

)

, n ≥ 0, (2.4)

in terms of the (n + 1)th Catalan polynomial Pn(x), we infer Bn(x)Pn(A(x)C(x)/B2(x))
= B′n(x)Pn(A

′(x)C ′(x)/B′2(x)); this holds for B(x) = B′(x), A(x)C(x) = A′(x)C ′(x). Note
that (2.4) follows readily from the interesting result [2, Eq. (21), p. 142]

(

1 x
y 0

)n

=

(

Pn(−xy) xPn−1(−xy)
yPn−1(−xy) xyPn−2(−xy)

)

(2.5)

giving the evaluation of the nth power of the matrix
(

1 x
y 0

)

as a matrix whose entries involve

Catalan polynomials having common argument −xy throughout. Employing (2.5) under the
assumption that B(x) = B′(x), A(x)C(x) = A′(x)C ′(x), it is easy enough (and so omitted) to
conclude that αn(A(x), B(x), C(x)) = αn(A

′(x), B′(x), C ′(x)) for n ≥ 2 in consequence from
a simple reverse argument, which is the suggested condition of sufficiency.

2.2. Formal Results. While the sufficiency condition put forward is indeed correct, the nec-
essary condition as stated is false for it is oversimplistic through the sole use of (2.4). We
formally establish, therefore, conditions under which corresponding members of different poly-
nomial families are equal as separate statements in terms of implications, and we do so in a
more rigorous, and hence more satisfactory, fashion. Note that the actual definition of the
general Catalan polynomial plays a role in the necessary condition.

Theorem 2.1. (Sufficiency.) If B(x) = B′(x) and A(x)C(x) = A′(x)C ′(x) then, for n ≥ 2,
αn(A(x), B(x), C(x)) = αn(A

′(x), B′(x), C ′(x)).

Proof. We prove this by showing, equivalently, that αn(A(x), B(x), C(x)) = αn(−A(x)C(x)/z,
B(x),−z) (n ≥ 2) for arbitrary z = z(x) 6= 0, which we achieve through a constructive first
principles approach (note that we have an alternative proof, given in the Appendix).

Suppose n ≥ 2, and let M(x) be the matrix

M(x) = M(A(x), B(x), C(x)) =

(

−B(x) A(x)
−C(x) 0

)

(T.1)

integral to the definition (1.2) of αn(x) = (1, 0)Mn(x)
(

1

0

)

. Defining two other matrices

L(x; z) =

(

−B(x) −A(x)C(x)/z
z 0

)

, K(x; z) =

(

B(x)/C(x) A(x)/z
1 0

)

, (T.2)

we begin by observing the judicious decomposition

M(x) = K(x; z)L(x; z)K−1(x; z), (T.3)

from which

αn(x) = (1, 0)Mn(x)

(

1
0

)

= (1, 0)[K(x; z)L(x; z)K−1(x; z)]n
(

1
0

)

= (1, 0)K(x; z) · Ln(x; z) ·K−1(x; z)

(

1
0

)

. (T.4)
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We suppose Ln(x; z) has form

Ln(x; z) =

(

α∗ β∗

γ∗ δ∗

)

(T.5)

for assumed α∗ = α∗(x; z), . . . , δ∗ = δ∗(x; z). Then, with

(1, 0)K(x; z) = (B(x)/C(x), A(x)/z), K−1(x; z)

(

1
0

)

=

(

0
z/A(x)

)

, (T.6)

(T.4) delivers

αn(A(x), B(x), C(x)) = αn(x; z(x)) =
B(x)β∗z

A(x)C(x)
+ δ∗. (T.7)

We now express the self-satisfying equation Ln+1(x; z) = Ln+1(x; z) as

L(x; z)

(

α∗ β∗

γ∗ δ∗

)

=

(

α∗ β∗

γ∗ δ∗

)

L(x; z), (T.8)

or

(

0 0
0 0

)

= L(x; z)

(

α∗ β∗

γ∗ δ∗

)

−
(

α∗ β∗

γ∗ δ∗

)

L(x; z)

=

(

Q1(x; z) Q2(x; z)
Q3(x; z) Q4(x; z)

)

, (T.9)

where

Q1(x; z) = −(A(x)C(x)γ∗/z + β∗z),

Q2(x; z) = A(x)C(x)(α∗ − δ∗)/z −B(x)β∗,

Q3(x; z) = (α∗ − δ∗)z +B(x)γ∗,

Q4(x; z) = A(x)C(x)γ∗/z + β∗z, (T.10)

after some elementary algebra. Equating entries across (T.9), we have first that 0 = Q1(x; z) =
−Q4(x; z) ⇒ γ∗ = −β∗z2/(A(x)C(x)), so that 0 = Q3(x; z) ⇒

α∗ = δ∗ − B(x)γ∗

z
= δ∗ − B(x)

z

(

− β∗z2

A(x)C(x)

)

= δ∗ +
B(x)β∗z

A(x)C(x)
. (T.11)
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Thus,1 from (and in order) (1.2),(T.2),(T.5),(T.11) and (T.7), we can make the deduction

αn(−A(x)C(x)/z,B(x),−z) = (1, 0)

(

−B(x) −A(x)C(x)/z
z 0

)n(
1
0

)

= (1, 0)Ln(x; z)

(

1
0

)

= (1, 0)

(

α∗ β∗

γ∗ δ∗

)(

1
0

)

= α∗

= δ∗ +
B(x)β∗z

A(x)C(x)

= αn(A(x), B(x), C(x)), (T.12)

as required. �

A simple counter-example to the conjectured condition of necessity demonstrates a need
for its revision for we find, with B(x) = B′(x) = (x + 1)(x + 2), A(x) = A′(x) = x + 1,
C(x) = x+2, C ′(x) = 3x3 +15x2 +23x+10 (for which clearly A(x)C(x) 6= A′(x)C ′(x)), that
α4(A(x), B(x), C(x)) = (x+ 1)2(x+ 2)2(x4 + 6x3 + 10x2 + 3x− 1) = α4(A

′(x), B′(x), C ′(x)).

Theorem 2.2. (Necessity.) Let n ≥ 2 and define a function

Dn(A(x), A
′(x), B(x), C(x), C ′(x)) =

b 1

2
nc

∑

i=1

(

n− i

i

)( −1

B2(x)

)i i−1
∑

j=0

[A(x)C(x)]j [A′(x)C ′(x)]i−1−j .

If two corresponding polynomial family members αn(A(x), B(x), C(x)) and αn(A
′(x), B(x),

C ′(x)) are equal, then either A(x)C(x) = A′(x)C ′(x) or Dn(A(x), A
′(x), B(x), C(x), C ′(x)) =

0.

Proof. Consider, for n ≥ 2, the equality of two polynomials αn(A(x), B(x), C(x)) and αn(A
′(x),

B(x), C ′(x)), which necessarily means Pn(A(x)C(x)/B2(x)) = Pn(A
′(x)C ′(x)/B2(x)) by (2.4).

Appealing to the form Pn(x) =
∑bn/2c

i=0

(n−i
i

)

(−x)i of the general Catalan polynomial (see this
and other formats in [1, Eqs. (9)-(11), p. 6], together with P0(x), . . . , P7(x) listed [1, Eq. (13),
p. 7]2), this implied condition now becomes

0 =

b 1

2
nc

∑

i=0

(

n− i

i

)

(−1)i

[

(

A(x)C(x)

B2(x)

)i

−
(

A′(x)C ′(x)

B2(x)

)i
]

=

b 1

2
nc

∑

i=1

(

n− i

i

)

(−1)i

[

(

A(x)C(x)

B2(x)

)i

−
(

A′(x)C ′(x)

B2(x)

)i
]

. (T.13)

1Although not actually used in the proof, for the sake of completeness we note here that Q2(x; z) =
A(x)C(x)(α∗

− δ∗)/z − B(x)β∗ = A(x)C(x)[−B(x)γ∗/z]/z − B(x)β∗ = −A(x)B(x)C(x)γ∗/z2 − B(x)β∗ =
−A(x)B(x)C(x)[−β∗z2/(A(x)C(x))]/z2 − B(x)β∗ = B(x)β∗

− B(x)β∗ = 0, and hence see that the system of
equations given by (T.9) and (T.10) is a consistent one.

2We note in passing, for the interested reader, that [1, Eqs. (29),(31), p. 17] give the same first few (Large)
Schröder and Motzkin polynomials in explicit form.
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Using the well-known result si − ti = (s − t)
∑i−1

j=0
sjti−1−j with s = A(x)C(x)/B2(x), t =

A′(x)C ′(x)/B2(x), this reads

0 =

b 1

2
nc

∑

i=1

(

n− i

i

)

(−1)i ·
(

A(x)C(x)−A′(x)C ′(x)

B2i(x)

) i−1
∑

j=0

[A(x)C(x)]j [A′(x)C ′(x)]i−1−j

= [A(x)C(x) −A′(x)C ′(x)]Dn(A(x), A
′(x), B(x), C(x), C ′(x)); (T.14)

thus, for (T.14) to be satisfied then either Dn(A(x), A
′(x), B(x), C(x), C ′(x)) = 0 or A(x)C(x)

= A′(x)C ′(x). �

We finish with some examples and remarks.

Examples (Theorem 2.2). By way of illustration we see that in the earlier example for which
A(x) = A′(x) = x+ 1, B(x) = (x+ 1)(x + 2), C(x) = x+ 2, C ′(x) = 3x3 + 15x2 + 23x + 10,
then we observe the specific equality α4(A(x), B(x), C(x)) = α4(A

′(x), B(x), C ′(x)) due to

the fact that D4(A(x), A
′(x), B(x), C(x), C ′(x)) =

∑

2

i=1

(

4−i
i

)

[−1/B2(x)]i
∑i−1

j=0
[A(x)C(x)]j

[A′(x)C ′(x)]i−1−j = [A(x)C(x) + A′(x)C ′(x) − 3B2(x)]/B4(x) vanishes in this instance. A
similar example is described by the equality of polynomials α4(5, x, x

2) and α4(−2x, x, x)
from different families (both being 11x4) since D4(5,−2x, x, x2, x) = [(5)(x2) + (−2x)(x) −
(3)(x2)]/x4 = 0.

We also see that, for example,

α5(2(x
2 − 1),−

√

15/2x2, 5(x2 + 1)) = α5(10,−
√

15/2x2, 1)

= 75
√
30x2(2− 2x4 + 3x8/8), (2.6)

since D5(2(x
2 − 1), 10,−

√

15/2x2, 5(x2 + 1), 1) = 0 (where, in general, D5(A(x), A
′(x), B(x),

C(x), C ′(x)) = [3A(x)C(x) + 3A′(x)C ′(x)− 4B2(x)]/B4(x)).

Remark 2.1. We observe that α2,3(A(x), B(x), C(x)) = α2,3(A
′(x), B(x), C ′(x)) only when

A(x)C(x) = A′(x)C ′(x), for neither D2(A(x), A
′(x), B(x), C(x), C ′(x)) = −1/B2(x), nor

D3(A(x), A
′(x), B(x), C(x), C ′(x)) = −2/B2(x), are ever zero; this observation is immediate

also from the definition of α2(x) and α3(x) in (1.3).

Finally, further examples confirming the correctness of Theorems 2.1 and 2.2 are given,
which is felt to be instructive. Choose A(x) = 2x, A′(x) = 8x2, C(x) = 32x3, C ′(x) = 8x2.

With (a) B(x) = Ba(x) = 8
√

2/3x2 then D4(2x, 8x
2, Ba(x), 32x

3, 8x2) = 0, while with (b)

B(x) = Bb(x) = 4
√
6x2 then D5(2x, 8x

2, Bb(x), 32x
3, 8x2) = 0, but αn(2x,Ba,b(x), 32x

3) =
αn(8x

2, Ba,b(x), 8x
2) in both (a),(b) cases for every n ≥ 2 because the sufficient, and domi-

nating, condition A(x)C(x) = A′(x)C ′(x) for this to occur is also satisfied.

Remark 2.2. For completeness we note that in this final example, and that of (2.6), we have
drawn B(x) from R[x]. This indicates that the theorems in fact hold in a wider context than
stated in terms of the sets from which A(x), B(x), C(x) in (1.1) may belong.
Remark 2.3. It is worth pointing out that no closed form exists for the double sum Dn.
Rewriting the inner sum (over j) as [(AC)i−(A′C ′)i]/(AC−A′C ′), and denoting the summand
of Dn as the function si(n,A,A

′, B,C,C ′), it is found that the ratio si+1/si is not a rational
function of i (in the sense that the summand is not a so called hypergeometric term), and thus
Dn cannot be summed to a closed form.
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3. Summary

In this paper we have developed further analysis on a particular class of polynomial fam-
ilies associated with integer sequences whose ordinary generating functions have quadratic
governing equations with polynomial coefficients; in particular, necessary and sufficient condi-
tions under which corresponding members of different polynomial families are equal have been
formulated, and results checked with some illustrative examples.

Future study will hopefully reveal more mathematical properties of these polynomials, as-
sociated with which a number of open problems remain.

Appendix

Here we reprove the equivalent result for Theorem 2.1.

Proof. Define

P(x; z) =

(

−z/C(x) 0
0 1

)

, (A.1)

with L(x; z) as in (T.2). Then we see

M(x) = P(x; z)L(x; z)P−1(x; z), (A.2)

and so

αn(A(x), B(x), C(x)) = (1, 0)Mn(x)

(

1
0

)

= (1, 0)P(x; z) · Ln(x; z) ·P−1(x; z)

(

1
0

)

= (−z/C(x), 0) ·
(

α̂ β̂

γ̂ δ̂

)

·
(

−C(x)/z
0

)

= α̂, (A.3)

assuming that Ln(x; z) has the form

Ln(x; z) =

(

α̂ β̂

γ̂ δ̂

)

(A.4)

with α̂ = α̂(x; z), . . . , δ̂ = δ̂(x; z). Making the simple observation that

(1, 0)

(

α̂ β̂

γ̂ δ̂

)(

1
0

)

= (−z/C(x), 0)

(

α̂ β̂

γ̂ δ̂

)(

[−z/C(x)]−1

0

)

, (A.5)

however, we can immediately infer that α̂ = αn(−A(x)C(x)/z,B(x),−z) and the proof is
complete via (A.3) as required. �
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