SYMMETRIES OF STIRLING NUMBER SERIES

PAUL THOMAS YOUNG

ABSTRACT. We consider Dirichlet series generated by weighted Stirling numbers, focusing
on a symmetry of such series which is reminiscent of a duality relation of negative-order
poly-Bernoulli numbers. These series are connected to several types of zeta functions and
this symmetry plays a prominent role. We do not know whether there are combinatorial
explanations for this symmetry, as there are for the related poly-Bernoulli identity.

1. INTRODUCTION

This paper is concerned with the Dirichlet series
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where s(m, j|r) denotes the weighted Stirling number of the first kind [4, 5] defined for non-
negative integers m, j and r € C by the vertical generating function
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where (), = z(x—1)---(x—m+1) denotes the falling factorial. If j is a nonnegative integer,
S;.r(s,a) converges for r,s,a € C such that R(s) > R(r) and R(a) > —j; when r € Z* it has
poles of order 7 + 1 at s = 1,2, ..,r and of order at most j at nonpositive integers s. When
J = 0 we recover the Barnes multiple zeta functions, and when j = 1 we obtain special values
of non-strict multiple zeta functions, also known as zeta-star values (see section 3). We will
focus on the symmetric identity

Sjy"'(k—i_l?l_t):Sk,t(.j_‘_lvl_r): (14)

valid for integers » < k and ¢ < j, which bears a striking resemblance to a symmetric identity
of poly-Bernoulli polynomials (Theorem 6.1 below). Since this poly-Bernoulli identity has
known combinatorial interpretations in the case where r = ¢ = 0, we find it interesting to ask
whether the symmetry (1.4) may be proved or interpreted in terms of counting arguments.

2. STIRLING AND 7-STIRLING NUMBERS

The weighted Stirling numbers of the first kind s(n, k|r) may be defined by either (1.2) or
(1.3), or by the recursion

s(n+ 1,k|r) = s(n,k — 1|r) — (n+ r)s(n, k|r) (2.1)
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with initial conditions s(n,n|r) = 1, s(n,0|r) = (—r),. Their dual companions [8] are the
weighted Stirling numbers of the second kind S(n,k|r) [4, 5] which may be defined by the
vertical generating function

T m . tn
e"(e! —1)™ =m! Z S(n,m|r)a, (2.2)

the horizontal generating function
" =Y S(n,klr)(x —r)g, (2.3)
k=0
or by the recursion
S(n+1,k|r) = S(n,k—1|r) + (k +r)S(n, k|r) (2.4)
with initial conditions S(n,n|r) =1, S(n,0|r) = r". It is clear that both s(n, k|r) and S(n, k|r)
are polynomials in r with integer coefficients of degree n — k whose derivatives are given by
s'(n,klr) = (k+ 1)s(n, k + 1|r) and S'(n, klr) = nS(n — 1,k|r). (2.5)

For combinatorial interpretations, when the “weight” r is a nonnegative integer we may
write
. 2.6
J+r (26)
in terms of r-Stirling numbers [ZL, which count the number of permutations of {1,2,...,n}
having k cycles, with the elements 1,2, ...,r restricted to appear in different cycles [3, 1].
When r = 0 these definitions reduce to those of the usual Stirling numbers, and in that case
the parameter r is often suppressed in the notation. Furthermore if j = 1 and r» > 0 the

(1™ s(im, jlr) = [’“]

coefficients (—1)™*1s(m, 1|r)/m! are called hyperharmonic numbers HI" defined by qY = 1
for m > 0, H([)r} =0, and

gl =5 gl (2.7)
i=1
ct. |1, 14, . us H, = H,;, " denotes the usual harmonic number.
f. [1, 14, 9]). Thus H, = HJ d h 1h i b

3. DIRICHLET SERIES IDENTITIES

Our interest in the series (1.1) is derived from the fact that they specialize to known multiple
zeta functions when j = 0,1. First, the series Sp1(s,1) is the Riemann zeta function ((s);
more generally for 7 € Z7 the series Sy (s, a) is a Barnes multiple zeta function ¢, (s, a) [15, 16]
defined for R(s) > r and R(a) > 0 by

o0 oo
Grls,a) =D > (a+ti+-+1t,)" (3.1)

t1=0 tr=0
If we view (,(s,a) as an analytic function of its order r as in [15, 16], then we can view
Sjr(s,a) = j'D(r(s,a) by means of (2.5), where D, denotes the derivative d/dr. From this
identification we deduce from ([16], Corollary 2) that the series S;,(s,a) is convergent when

R(s) > R(r) and R(a) > —j.

206 VOLUME 52, NUMBER 5



SYMMETRIES OF STIRLING NUMBER SERIES

For r € Z* the series Sy ,(s,0) is also a specialization of a non-strict multiple zeta function,
namely 51 ,(s,0) = (*(s,0,...,0,1), where
~——
r—1
N 1
< (Sl, ceny Sm) = Z 51 _s2  _Sm (32)
ny>ng > 2nm>1
([9], Prop. 2.1). The zeta-star values are related to Arakawa-Kaneko zeta functions, whose
values at negative integers are given by the poly-Bernoulli numbers Bﬁf’ ([9, 6]).
The series (1.1) satisfies several identities.
Theorem 3.1. The following identities hold where defined.
i. We have Sj,(s,a) = Sj,(s,a+ 1)+ 5;,-1(s,a).
ii. Forr € Z* we have Sj,(s,a) = Sjo(s,a) + Y 1_; Sjt(s,a+1).
iii. For 0 <m <7 we have Sj,(s,a) = > 120 (7)Sjr—t(s,a+m —1t).
iv. We have
Sir(s,a) —aSjr(s+1,a) =Sj—1,41(s+1,a+1)+7Sj,11(s+1,a+1).
v. (Symmetry relation.) For integers r < k and t < j we have
Sir(k+1,1—1t) =Sk (j+1,1—7).
Thus when it converges, the series Sj,(k + 1,1 —t) is invariant under (j, k,r,t) —
(k,j,t,r).

Proof. Identity (i) follows from the Stirling number recurrence (2.1), or equivalently from the
difference equation

Gr(s,a) — Cr(s,a+1) =(r—1(s,a) (3.3)
([15], eq. (2.1)) of the Barnes multiple zeta functions. Identities (ii) and (iii) may be obtained
by induction from (i), or from Identity 5 and Identity 7 in [1]. To obtain (iv), we differentiate
the generating function (1.2) with respect to r and equate coefficients of ¢"/n! to obtain

s(n+1,4lr) = s(n,j — 1r + 1) = v s(n, jlr + 1), (3.4)

Dividing by (n +1)!(n +a)® and summing over n then yields (iv). By means of (2.5) we have
Sjr(s,a) = j!D}(r(s,a), and therefore the symmetry relation (v) follows from the identity

(k= D)DI Gk, 1 —7) = (5 — DIDF'G(j, 1 — 1) (3.5)
([16], Corollary 2). O

4. COMBINATORIAL INTERPRETATION

Restricting our attention to the case where r is a nonnegative integer, the symmetry relation
Theorem 3.1(v) may be written as

m-+r m+t
Z j+7” r _i k+t t
ml(m +1—t)k+1 m!(m+1—r)itl

(4.1)

for integers 0 < r < k and 0 < ¢t < j, where the r-Stirling number [Z]T = the number of
permutations of {1,2,...,n} having k cycles, with the elements 1,2, ...,r restricted to appear
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in different cycles. When r,t € {0, 1} this gives series identities for the usual Stirling numbers
of the first kind; for example, in

m m
=[5 = [
_— = _— 4.2
mz::j m!(m + 1)k+1 mz_:k m!(m + 1)+l (42)
we have [7};] /m! equal to the proportion of permutations of {1,...,m} which have k cycles.

Thus the left side of (4.2) may be viewed as a sum over permutations which have j cycles and
the right side as a sum over permutations which have k cycles.

Question 1: Can the identities (4.2) or (4.1) be proved by combinatorial means?

5. VALUES AT POSITIVE INTEGERS

The identities of section 3 may be used to demonstrate a large class of values of S;,(s,a)
which may be expressed as polynomials in values of the Riemann zeta function.

Theorem 5.1. When j € {0,1} or s € {1,2} we have S;j.(s,a) € Q[¢(2),{(3),¢(5),...] for
integers r < s and a > —j.

Proof. Write R = Q[((2),((3),¢(5),...]. When j =0 and r < 0 the sum for S;,(s,a) is finite,
and therefore rational, so the theorem is therefore true in that case. For j = 0 and r > 0 we
have Sp,(s,a) = (-(s,a) and we use the identity

r—1
1
Go(s,a) = (T_l)!kzos(r—l,kzm—l—l—r)cl(s—k‘,a) (5.1)
([16], eq. (3.3)) to prove the theorem in that case, since (i(s,a) € R for integers s > 1 and
a > 0. The theorem is therefore established for j = 0.
In the case 7 = 1 the theorem generalizes Euler’s classical identity

o] s—2
Sia(s,0) =3 T = 2051y - L -+ € R (52)
n=1 j=1
Kamano [9] proved that
(r — 1)181.(s,0) = o 57(3,0)+<k{ " }— " H,)g(sﬂ—k) (5.3)
! ;M L1 k+1 [k] !

which, together with (5.2), implies that S; ,(s,0) € R when r > 0. (Alternatively one can use
the recursion )
_—
§1,(5,0) = $11(5,0) + 3 7 (S1ls — 1,0) + Bk ) (54)
k=1
([14], Theorem 6), where B(k,s) is a linear polynomial in {{(j)}m>2, to show this). When
j=1and r = 0 we observe that S (1,a) = H,/a € Q for a € Z"; induction using Theorem
3.1(iv) then shows S1o(s,a) € R for all s > r and a > 0. So 51 ,(s,a) € R when either a =0
or r = 0; an induction argument using Theorem 3.1(i) shows that S; ,(s,a) € R when r > 0
and a > 0.
A similar induction argument, using Theorem 3.1(i) and (iv), shows that S ,(s,a) € R for
a > 0 when r is a negative integer and s > r. This completes the proof of the theorem for
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j € {0,1}. The statement concerning s € {1,2} then is obtained by the symmetry relation
Theorem 3.1(v). O

6. POLY-BERNOULLI POLYNOMIALS

In this final section we prove a finite sum symmetric identity which bears a striking re-
semblance to the infinite sum symmetric identity of Theorem 3.1(v). The weighted shifted

poly-Bernoulli numbers B%k)(a, r) of order k are defined by

_ e tn
d(1—et ka)e "t = Z]Bzgﬂ(a,r)H (6.1)
n=0
where D(z,8,a) = n;] (mz—i-ﬁ (lz2| < 1) (6.2)

is the Lerch transcendent. (The generalization (6.1) was communicated to me by Mehmet
Cenkci, to whom I am grateful). When a = 1 and » = 0 we obtain the usual poly-Bernoulli
numbers By = IB%SC)(I, 0) defined and studied by Kaneko [10], since in that case the Lerch
transcendent reduces to the usual order k polylogarithm function

0 m

Lip(z) = Y % (6.3)

The IB%q(lk) (a,r) are polynomials of degree n in r and they are polynomials of degree —k in a
when —k € ZT. When k=1 and a = 0 we have

ngl)(o,’l”) = (_1)an(T) (64)

in terms of the usual Bernoulli polynomials By, (z). The weighted Lerch poly-Bernoulli numbers
may also be expressed in terms of weighted Stirling numbers of the second kind as

s =0

m=0

(6.5)

Therefore in the case r = 0 these polynomials agree with the shifted poly-Bernoulli numbers
of ([12], §6). The weighted shifted poly-Bernoulli polynomials satisfy the following symmetric
identity.

Theorem 6.1. For all nonnegative integers n and k we have

BSM (1 —t,r) = BU ™ (1 -1, 1),
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Proof. This result was proved by Kaneko [10] in the case r = 0, t = 0, and the proof is adapted
from Kaneko’s proof. Straightforward calculation shows that

ZZBT(; )(l—a,x)aﬁ = Z@(l—e*,—k,l—a)e*l’ﬁ
k=0

k=0n=0
B i i (1 o eft)mefxtuk
B (m+1—a)"Fk!

k=0 m=0
9]
— et Z (1 o e—t)me(m-i-l—a)u
m=0
9]
_ e—zte(l—a)u Z((l - e—t)eu)m
m=0

e—xte(l—a)u
1—(1—et)en
e(l—x)te(l—a)u

et + et — etJru

is invariant under (¢,u, a,z) — (u,t,x,a).

This theorem says that the expression Bq(fk)(l —t,r) is a polynomial in r and ¢ which is
invariant under (n, k,r,t) — (k,n,t,r). In terms of weighted Stirling numbers it reads

n k
> (=1)™ T mlS(n,mlr)(m 41— )% = > (D)™ FmlS (k,mlt)(m + 1 — )" (6.7)
m=0 m=0

We find this identity to be strikingly similar to the symmetric identity, for » < k and t < j,

i (=1)™*s(m, jlr) _ i (=1)"™*s(m, klt)

| — )L T [ — )i+
o ml(m+1—1) :km.(m+1 )

(6.8)

given by Theorem 3.1(v). The two identities appear to share a kind of duality, but it is curious
that one identity is for finite sums and the other is for infinite series.

In the case r =t = 0, the poly-Bernoulli numbers Bgz_k) have found at least two important
combinatorial interpretations. In [2] it is shown that B~ equals the number of distinct n x k
lonesum matrices, where a lonesum matriz is a matrix with entries in {0, 1} which is uniquely
determined by its row and column sums. In [13] it is shown that the number of permutations
o of the set {1,2,...,n 4+ k} which satisfy —k < o(i) —i < n for all i is the poly-Bernoulli
number B;"“). Either of these two combinatorial interpretations make the r = ¢ = 0 case of
the symmetry relation of Theorem 6.1 obvious.

Question 2. Can the symmetric identity of Theorem 6.1 be proved by a counting argument
in cases where r and t are nonzero integers?
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