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Abstract. It is known that there are no four distinct squares that form an arithmetic pro-
gression. We present a slightly new proof of a more general result, summarize the various
proofs that there are no four squares in arithmetic progression, and carefully explain the error
in an incorrect proof that persists in the literature.

Although it is relatively easy to find examples of three distinct squares in arithmetic pro-
gression (the numbers 1, 25, and 49 provide one of infinitely many examples), it is known that
it is impossible to find an arithmetic progression consisting of four distinct squares. However,
there is no standard proof of this result. A literature search leaves a person somewhat sur-
prised by the variety of available proofs and puzzled by the persistence of one purported proof
that is incorrect. The purpose of this article is to offer a slightly new proof (one that is shorter
and clearer) of a more general result, to summarize the various proofs that there are no four
squares in arithmetic progression, and to carefully explain the error in the incorrect proof.

1. Introduction

Our goal is to prove that there are no distinct positive integers a, b, c, and d for which the
numbers a2, b2, c2, d2 form the terms of an arithmetic progression. We thus want to show that
the pair of equations a2 + c2 = 2b2 and b2 + d2 = 2c2 has no positive integer solutions other
than a = b = c = d. A slightly stronger version of this statement is to claim that there are no
positive integers a, d, and x that satisfy the equation a(a+d)(a+2d)(a+3d) = x2. Equations
such as these, where only integer solutions are considered, are called Diophantine equations.
There is a rich history behind these types of equations, but we leave such an exploration to
the reader.

In order to prove this result about squares, we need a few simple facts from elementary
number theory. For ease of reference, these are summarized below. Recall that an ordered
triple (a, b, c) of positive integers is a Pythagorean triple if a2 + b2 = c2. If the three integers
are relatively prime, then we say that (a, b, c) is a primitive Pythagorean triple. For proofs of
the following facts (primarily item (6)), the reader may consult almost any standard number
theory text such as [7] or [11].

(1) If 3 divides x2+y2, then 3 divides both x and y. Hence, if x and y are relatively prime
positive integers, then 3 does not divide x2 + y2 and gcd(x2 + y2, x2 + 4y2) = 1. In
particular, the hypotenuse in any primitive Pythagorean triple is not a multiple of 3.

(2) If x and y are relatively prime positive integers and xy is a square, then x and y are
squares.

(3) If u, v, x, and y are positive integers such that uv = xy and gcd(u, x) = 1 = gcd(v, y),
then u = y and v = x.
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(4) If u, v, x, and y are positive integers such that uv = xy and gcd(u, v) = 1 = gcd(x, y),
then there exist four pairwise relatively prime positive integers α, β, γ, and δ such
that u = αβ, v = γδ, x = αγ, and y = βδ. Note that α = gcd(u, x) and δ = gcd(v, y).

(5) If (a, b, c) is a primitive Pythagorean triple, then c is odd, the integers a and b have
opposite parity, and either a or b is divisible by 4.

(6) If (a, b, c) is a primitive Pythagorean triple and b is even, then there exist relatively
prime positive integers u and v such that v > u, u+v is odd, and a = v2−u2, b = 2uv,
and c = v2 + u2.

2. Primary Results

One way to prove that a Diophantine equation has no nontrivial solutions (that is, solutions
where the integers are not all equal) is the method of infinite descent. For such a proof, we
assume that an equation has a nontrivial solution involving positive integers, then proceed
to show that the equation has a smaller nontrivial solution. Since this process involving
decreasing positive integers cannot continue indefinitely, we obtain a contradiction and thus
conclude that the equation has no nontrivial solutions. The method of infinite descent is
equivalent to a proof that uses the Well-Ordering Property of the positive integers. This
property states that a nonempty set of positive integers has a least element. It is well-known
(and not difficult to establish) that this property is equivalent to the Principle of Mathematical
Induction. We will use the Well-Ordering Property, rather than the method of infinite descent,
to prove the following theorem.

Theorem 2.1. There are no Pythagorean triples of the forms (a, b, c) and (a, 2b, d).

Proof. Suppose there is a pair of Pythagorean triples with the forms (a, b, c) and (a, 2b, d).
We first show that we may assume that the two triples are primitive. If g = gcd(a, b) > 1,
then the triples can be represented as (gA, gB, gC) and (gA, 2gB, gD). We thus have a pair
of Pythagorean triples of the form (A,B,C) and (A, 2B,D), where gcd(A,B) = 1. If A is
odd, then both triples are primitive. If A = 2A1 is even (and thus B is odd), then the triples
become (2A1, B,C) and (2A1, 2B, 2D1) or (2A1, B,C) and (A1, B,D1), where gcd(A1, B) = 1.
We thus obtain a pair of primitive Pythagorean triples with the desired form.

With this information, suppose there is a pair of primitive Pythagorean triples of the forms
(a, b, c) and (a, 2b, d). By the Well-Ordering Property of the positive integers, we may assume
that b is the least positive integer with this property. Note that b ≥ 4 must be even and that
a, c, and d are all odd. By fact (6), there exist positive integers u, v, x, and y such that

gcd(u, v) = 1, v > u, u+ v is odd, a = v2 − u2, and b = 2uv;
gcd(x, y) = 1, y > x, x+ y is odd, a = y2 − x2, and 2b = 2xy.

Using a simple modulo 4 argument on the two representations of a, we find that u and x must
have the same parity. We will assume that x and u are odd and thus y and v are even; the
other case is similar. Since uv = x(y/2), we can use fact (4) to write u = αβ, v = γδ, x = αγ,
and y = 2βδ, where the four positive integers α, β, γ, and δ are pairwise relatively prime.
Note that α is odd and (since b is a multiple of 4) that δ = gcd(v, y/2) is even. Equating the
two expressions for a yields u2 + y2 = x2 + v2 and thus

β2(α2 + 4δ2) = γ2(α2 + δ2).

Since gcd(β, γ) = 1 and (by fact (1)) gcd(α2 + δ2, α2 + 4δ2) = 1, we may use fact (3) to find
that α2 + δ2 = β2 and α2 + 4δ2 = γ2. We thus have a pair of primitive Pythagorean triples
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of the forms (α, δ, β) and (α, 2δ, γ), where δ is an even positive integer and δ ≤ y/2 < y ≤ b.
This is a contradiction to the fact that b is the minimal such positive integer. �

A simple consequence of Theorem 2.1 is the following corollary. This statement is usually
proved directly using the method of infinite descent (see [6, 10, 15]). Since almost all of the
typical proofs of this fact use Pythagorean triples and their parameterizations, it seems more
natural to prove our Theorem 2.1 first.

Corollary 2.2. If p, q, and r are positive integers that satisfy p4−p2q2+ q4 = r2, then p = q.

Proof. Suppose that p 6= q and, without loss of generality, assume that q is greater than p.
Since p4−p2q2+q4 = r2, we find that (q2−p2, pq, r) and (q2−p2, 2pq, q2+p2) are Pythagorean
triples, a contradiction. �

We now prove our main result. The essential idea for this proof can be found in [5], but
we have streamlined the details using Theorem 2.1 rather than give a direct proof via infinite
descent.

Theorem 2.3. The product of four distinct positive integers that form an arithmetic progres-

sion cannot be a perfect square. In other words, there are no positive integers a, d, and x that

satisfy the equation a(a+ d)(a+ 2d)(a + 3d) = x2.

Proof. Suppose there are positive integers a, d, and x for which a(a+ d)(a+2d)(a+3d) = x2.
Without loss of generality, we may assume that a and d are relatively prime. By basic algebra,
we find that

x2 = a(a+ 3d)(a + d)(a+ 2d) = (a2 + 3ad)(a2 + 3ad+ 2d2) = (a2 + 3ad+ d2)2 − d4,

revealing that (x, d2, a2 + 3ad+ d2) is a primitive Pythagorean triple. Suppose first that d is
even. By fact (6), there exist relatively prime positive integers u and v with u even and v
odd such that d2 = 2uv and a2 + 3ad + d2 = u2 + v2. Since gcd(u, v) = 1 and the product
(u/2)v is a square, there exist (using fact (2)) relatively prime positive integers s and t such
that u = 2s2 and v = t2. It then follows that

(

a+
3d

2

)2

= a2 + 3ad+ d2 +
5

4
d2 = 4s4 + t4 + 5s2t2 = (s2 + t2)(4s2 + t2).

Since gcd(s2 + t2, 4s2 + t2) = 1 (see fact (1)), each of these numbers is a square (by fact (2)),
a contradiction to Theorem 2.1.

Now suppose that d is odd. By fact (6), there exist relatively prime positive integers u and
v such that v > u, u+ v is odd, d2 = v2 − u2 and a2 +3ad+ d2 = v2 + u2. Note that u is even
(the parity follows from a simple modulo 4 argument on the equation for d2). We then have

(2a+ 3d)2 = 4(a2 + 3ad+ d2) + 5d2 = (4v2 + 4u2) + (5v2 − 5u2) = 9v2 − u2,

which implies that (u, 2a + 3d, 3v) is a Pythagorean triple. By fact (1), it is necessary that 3
divides u and 2a+ 3d. It follows that

(v − u)
(

v −
u

3

)(

v +
u

3

)

(v + u) = (v2 − u2)
(9v2 − u2

9

)

=
(d(2a + 3d)

3

)

2

,

giving us four distinct positive integers that form an arithmetic progression whose product is
a square. Since the common difference is an even number 2u/3, we have a contradiction to
the first part of the proof. �

Corollary 2.4. There are no four distinct squares that form an arithmetic progression.
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Proof. This result is a simple consequence of the theorem. For the record, if we have four rel-
atively prime squares that form an arithmetic progression, then all of the squares are odd (use
a simple modulo 4 argument to verify this) and only the first half of the proof of Theorem 2.3
is needed. �

Corollary 2.5. Suppose that a and b are positive integers. If a2 + b2 is a square, then

a2 + 4ab+ b2 is not a square.

Proof. Suppose that a and b are positive integers for which both a2 + b2 and a2 +4ab+ b2 are
squares. Then the numbers (b − a)2, a2 + b2, (b + a)2, and a2 + 4ab + b2 are four squares in
arithmetic progression with common difference 2ab. �

3. Discussion

Suppose that (a, b, c) is a Pythagorean triple with b > a. Then (b − a)2, c2, (b + a)2 are
three squares in arithmetic progression (with common difference 2ab). For example, the triple
(8, 15, 17) yields the squares 72, 172, 232 with common difference 240. It is thus easy to find
three squares in arithmetic progression. In fact, if a2 < b2 < c2 are three relatively prime
squares in arithmetic progression, then all three squares are odd (use a modulo 4 argument on
a2 + c2 = 2b2 to obtain a contradiction if b is even) and the equation a2 + c2 = 2b2 becomes

(c− a

2

)

2

+
(c+ a

2

)

2

= b2, which shows that
(c− a

2
,
c+ a

2
, b
)

is a primitive Pythagorean triple. By fact (6), there exist relatively prime positive integers u
and v such that v > u, u+ v is odd, and either

c− a

2
= v2 − u2,

c+ a

2
= 2uv, b = v2 + u2

or
c+ a

2
= v2 − u2,

c− a

2
= 2uv, b = v2 + u2.

It follows that a = |v2 − u2 − 2uv|, b = v2 + u2, and c = v2 − u2 + 2uv. We can use this fact
to show that one proposed proof of Corollary 2.4 that appears in the literature is not valid.

Suppose that a2, b2, c2, d2 are four squares in arithmetic progression, where the integers
a, b, c, and d satisfy 0 < a < b < c < d. As outlined in Dickson ([3, p. 440]) and appearing
in various forms (see [8]), it is then claimed (see fact (4)) that there exist pairwise relatively
prime positive integers α, β, γ, and δ such that

b− a = 2αβ, b+ a = 2γδ, c− b = 2αγ, c+ b = 2βδ, d− c = 2αδ, d+ c = 2βγ,

where α and δ are defined by α = gcd(b−a, c−b)/2 and δ = gcd(b+a, c+b)/2. The proof then
uses the numbers α, β, γ, and δ to obtain a contradiction in several elementary steps. Since
all of the other proofs of Corollary 2.4 rely on a result that depends on infinite descent and
usually use fact (6) at some point, this short proof is already a bit suspicious. Some authors
have raised concerns about this proof (see [2] and [12]) but stop short of explicitly verifying
the error. We will do so here. Before proceeding, note that the inequality a+ b < b+ c < c+d
implies that the inequality δ < γ < β must be satisfied.

We begin by factoring the quantities b2− a2 and c2 − b2 using the known values of a, b, and
c in terms of the parameters u and v listed in the opening paragraph of this section. Suppose
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first that v2 − u2 − 2uv > 0. Then

b− a = (v2 + u2)− (v2 − u2 − 2uv) = 2u(v + u);

b+ a = (v2 + u2) + (v2 − u2 − 2uv) = 2v(v − u);

c− b = (v2 − u2 + 2uv) − (v2 + u2) = 2u(v − u);

c+ b = (v2 − u2 + 2uv) + (v2 + u2) = 2v(v + u).

It follows that α = u, β = v + u, γ = v − u, and δ = v, which contradicts the fact that the
inequality δ < γ is required. On the other hand, if v2 − u2 − 2uv < 0, then

b− a = 2v(v − u);

b+ a = 2u(v + u);

c− b = 2u(v − u);

c+ b = 2v(v + u);

giving α = v − u, β = v, γ = u, and δ = v + u, which also contradicts the fact that δ < γ is
required.

The contradiction reached here does not show that there are no four squares in arithmetic
progression. It merely shows that the equations d− c = 2αδ and d+ c = 2βγ do not give the
correct factorization. However, there may be other ways to factor d2 − c2. To give a concrete
example, suppose that u = 3 and v = 10. Using the above formulas, we find that a = 31,
b = 109, and c = 151. Since b2 − a2 = 10920 = c2 − b2, we are seeking factorizations xy of
10920 with 0 < x < y and both x and y are even and either x/2 or y/2 is odd. (This last
fact is a consequence of the fact that (b − a)/2 and (b + a)/2 have opposite parity.) Simple
factoring reveals that each of the products

2 · 5460, 4 · 2730, 6 · 1820, 10 · 1092, 12 · 910, 14 · 780, 20 · 546, 26 · 420,

28 · 390, 30 · 364, 42 · 260, 52 · 210, 60 · 182, 70 · 156, 78 · 140, 84 · 130

has the desired properties. For our choice of integers a, b, and c, we need the factorizations
b2 − a2 = 78 · 140 and c2 − b2 = 42 · 260. Since d + c > c + b, the larger of the factors must
be greater than 260, giving us ten possible choices from the above list. The proof outlined
in Dickson claims that exactly one of the many possible products gives d − c and d + c. As
we have seen, this particular choice leads to a contradiction, but it does not contradict the
existence of four squares in arithmetic progression. It merely shows that this factorization is
not an option. Hence, this approach to proving Corollary 2.4 is not valid.

A literature search for a proof of Corollary 2.4 reveals that there is no standard approach
to this problem. The comments in the article [12], as well as various discussion groups found
online (see [4, 9, 13, 14]), show that other mathematicians have also noticed this fact. Some
authors prove Corollary 2.4 directly (see, for instance, [10, 12, 16]) while others begin with the
statement of Theorem 2.3. In this case, the first step is often to use proof by cases to show
that each of the four numbers (assuming that they are relatively prime) must be a square;
the references [1], [6], and [17] take this approach. Some of the cases are easily dismissed
and the more challenging cases can be reduced to Corollary 2.2. At this point, the references
[1], [6], and [10] use the Pythagorean triple parameterization to again reduce the problem to
Corollary 2.2. The reference [12] uses a direct argument by descent (on the size of the difference
between squares), while [16] goes about proving that the quantity (v2 + u2)2 + 8uv(v2 − u2)
cannot be a square. This may seem like an odd approach, but note that this quantity is merely
the number a2+ b2+4ab that appears in Corollary 2.5 after using fact (6). The details behind
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this proof involve a variety of parameterizations, making the argument somewhat difficult
to follow. It is interesting to note how often Pythagorean triples of the form considered in
Theorem 2.1 appear in these proofs. In many cases (see [17]), using the Pythagorean triple
result rather than the quartic equation would make the proofs shorter and easier to follow.
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