A CONNECTION BETWEEN © AND ¢

MICHAEL D. HIRSCHHORN

ABSTRACT. We find an expression for 7 as a limit involving the golden ratio ¢.

1. INTRODUCTION

We prove that
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as n — 00, where ¢ is the golden ratio, and consequently,
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In order to carry out this program, we use the methods developed in two earlier papers on the

Apéry numbers [2, 3].

2. THE DOMINANT TERM
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The first step is to find the value of k for which the term (Z) (n + k
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If we suppose k = On, where 6 is to be determined, and divide by n?, we find
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If we let n — oo, this becomes
03 = (1+6)(1 - 0)2
or
1—-6—-6*=0.
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It follows that

where ¢ is the golden ratio.
Thus, the value of k that we seek is given by

k=~ 0n
where 0 =

S

At k = 6n, the value of the term is
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after considerable simplification.
Now,
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(see Figure 1.).

At points near 0n, the terms of the sum are given by
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FIGURE 1. The case n = 1000, showing the points (k, (2)2(":]“)) for
bn+4
580 < k < 660, together with the vertical x = 2, 0<y< ¢ T
¢ (2mn)2
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since
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- (ﬁ;l) +3=2V5+5=(2+V5)V5 = ¢*V5.

44 VOLUME 53, NUMBER 1



A CONNECTION BETWEEN 7 AND ¢

Thus, the terms are essentially distributed normally, with o2 = ﬁ, and the sum is given
by
n 2 00
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as claimed (see Figure 2.).
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FIGURE 2. The case m = 1000, showing the points (k, (2)2(n+k))

n

for 550 < k < 690, together with the approximating normal,

¢5n+4 ¢3\/g n 2
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3. THE CORRECTION TERM

n 2

k

Let s, = Z <Z> <nj; ) It was stated by Apéry [1] and proved by A. van der Poorten
k=0

(see Section 4) that s,, satisfies the recurrence

(n+ 1)23n+1 — (11n2 + 11In + 3)s, — n%s,_1 =0,
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We now suppose that
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5
where C = ¢i and ® = ¢°, and substitute into the recurrence, to obtain
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If we now divide by C'®", and multiply by n, we find
1 al as as
1+—|®(1
<+n> <+n—i—1+(n—i—1)2+(n—i—1)3+ >

11 3 a a a
—<11+—+—2> (+2+5+5 )
n n n n n

-1

—<1—%> <1>—1<1+na_11+(ni21)2+(ni31)3+--->:0.
I u I u

n+l 14w n-1 1-u

O(1+u)(1 + aru + (ag — ar)u? + (a3 — 2a +ar)u +---)
— (11 + 11u + 3u?)(1 4 agu + agu® + azu® +---)

— o (1t u+u® + v+ )1+ aru+ (ag + ar)u® + (a3 + 209 + ar)u’ + - --)
=0.

If we set — = u,

, and expand in powers of u, we find

We now set the coeflicients of the powers of u equal to zero, and solve for aq, a2, a3 and so on.
The constant term and the coefficient of u are automatically zero, because we had ® correct
and the factor n~! correct. The coefficient of u? is

day — (1lag 4 11a; + 3) — @ Hag + 2a; + 1) =0,

or
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We find
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If we continue in the same way, we find
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and so on.
This completes the proof.
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4. THE RECURRENCE

A. van der Poorten’s proof [5] goes as follows.
If we define

Fk) = (K + (6n+ 3)k — (110 + 9n + 2)) <”>2 <” + k>

k
2
n n—+k
oo =) ()
then it is easy to verify that

fk) = f(k=1) = (n+1)2%g(n+1) — (11n% + 11n + 3)g(n) — ng(n — 1).
The recurrence follows on summing over k from 0 to n + 1.

Following the work of Sister Celine Fasenmyer and Petrovsek, Wilf and Zeilberger [4], the
discovery of such identities is routine.

and
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