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Abstract. We find an expression for π as a limit involving the golden ratio φ.
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In order to carry out this program, we use the methods developed in two earlier papers on the
Apéry numbers [2, 3].

2. The Dominant Term

The first step is to find the value of k for which the term
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If we suppose k = θn, where θ is to be determined, and divide by n3, we find
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If we let n → ∞, this becomes
θ3 = (1 + θ)(1− θ)2,

or
1− θ − θ2 = 0.
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It follows that
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where φ is the golden ratio.
Thus, the value of k that we seek is given by
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At k ≈ θn, the value of the term is

H =

(

n

θn

)2(
n+ θn

n

)

=
n!(n+ θn)!

(θn)!3(n − θn)!2

≈

√
2πn

(n

e

)n√

2π(1 + θ)n

(

(1 + θ)n

e

)(1+θ)n

(

√
2πθn

(

θn

e

)θn
)3(

√

2π(1 − θ)n

(

(1− θ)n

e

)(1−θ)n
)2

=

(

1
√
2πn

)3 √
1 + θ

(
√
θ)3(

√
1− θ)2

(

(1 + θ)1+θ

θ3θ(1− θ)2(1−θ)

)n

after considerable simplification.
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(see Figure 1.).

At points near θn, the terms of the sum are given by
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Figure 1. The case n = 1000, showing the points (k,
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Thus, the terms are essentially distributed normally, with σ2 =
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as claimed (see Figure 2.).

Figure 2. The case n = 1000, showing the points (k,
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for 550 ≤ k ≤ 690, together with the approximating normal,
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3. The Correction Term
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. It was stated by Apéry [1] and proved by A. van der Poorten

(see Section 4) that sn satisfies the recurrence
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If we set
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We now set the coefficients of the powers of u equal to zero, and solve for a1, a2, a3 and so on.
The constant term and the coefficient of u are automatically zero, because we had Φ correct
and the factor n−1 correct. The coefficient of u2 is

Φa2 − (11a2 + 11a1 + 3)− Φ−1(a2 + 2a1 + 1) = 0,
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If we continue in the same way, we find
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and so on.
This completes the proof.
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4. The Recurrence

A. van der Poorten’s proof [5] goes as follows.
If we define

f(k) =
(

k2 + (6n + 3)k − (11n2 + 9n + 2)
)
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)2(
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then it is easy to verify that

f(k)− f(k − 1) = (n+ 1)2g(n + 1) − (11n2 + 11n+ 3)g(n) − n2g(n − 1).

The recurrence follows on summing over k from 0 to n+ 1.
Following the work of Sister Celine Fasenmyer and Petrovsek, Wilf and Zeilberger [4], the

discovery of such identities is routine.
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