THE ZECKENDORF REPRESENTATION OF A BEATTY-RELATED FIBONACCI SUM

MARTIN GRIFFITHS

Abstract

We obtain here the Zeckendorf representation of a sum of Fibonacci numbers indexed by a particular Beatty sequence known as the lower Wythoff sequence.

1. Introduction

Let $\lfloor x\rfloor$ be the floor function, denoting the largest integer not exceeding x, and let $\alpha>1$ be an irrational number. The strictly increasing sequence of positive integers $\mathcal{B}(\alpha)=(\lfloor n \alpha\rfloor)_{n \geq 1}$ is known as a Beatty sequence. We are interested here in a particular Beatty sequence known as the lower Wythoff sequence. It is given by $\mathcal{B}(\phi)$, where

$$
\phi=\frac{1+\sqrt{5}}{2}
$$

is the golden ratio. In this paper we obtain the Zeckendorf representation for

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n} F_{\lfloor k \phi\rfloor}, \tag{1.1}
\end{equation*}
$$

the sum of the Fibonacci numbers indexed by the first n terms of $\mathcal{B}(\phi)$. Some preliminary results are given in Section 2, and the main theorem is proved in Section 3.

2. Some Initial Results

Zeckendorf's Theorem $[1,3,4]$ states that every $n \in \mathbb{N}$ has a unique representation as the sum of distinct Fibonacci numbers that does not include any consecutive Fibonacci numbers. Somewhat more formally, for any $n \in \mathbb{N}$ there exists an increasing sequence of positive integers of length $k \in \mathbb{N},\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ say, such that $c_{1} \geq 2, c_{i} \geq c_{i-1}+2$ for $i=2,3, \ldots, k$, and

$$
n=\sum_{i=1}^{k} F_{c_{i}} .
$$

Relatively straightforward proofs of this result are given in [1, 3]. Note that the representation of S_{n} as a sum of Fibonacci numbers as given in (1.1) is not, in general, its Zeckendorf representation. Indeed, there exist values of k for which $\lfloor k \phi\rfloor$ and $\lfloor(k+1) \phi\rfloor$ are consecutive integers.

As we shall see, the complementary sequence to $\mathcal{B}(\phi)$ is also of relevance here. It is given by $\mathcal{B}\left(\phi^{2}\right)=\left(\left\lfloor n \phi^{2}\right\rfloor\right)_{n \geq 1}$, and termed the upper Wythoff sequence. We will make use of the fact that, as a pair of complementary sequences, $\mathcal{B}(\phi)$ and $\mathcal{B}\left(\phi^{2}\right)$ satisfy both $\mathcal{B}(\phi) \cap \mathcal{B}\left(\phi^{2}\right)=\emptyset$ and $\mathcal{B}(\phi) \cup \mathcal{B}\left(\phi^{2}\right)=\mathbb{N}$.

The notation $\{x\}$ will be adopted to represent $x-\lfloor x\rfloor$, the fractional part of x. It is the case that $0 \leq\{x\}<1$ for any $x \in \mathbb{R}$, but, for each $n \in \mathbb{N}$, the irrationality of ϕ implies that
$0<\{n \phi\}<1$. We will also make use of the equality $\phi^{2}=\phi+1$ and its many rearrangements throughout.

We now give a lemma concerning Beatty sequences, a sketch proof of which is given in [2]. For the sake of both clarity and completeness, however, we provide a detailed proof here. There then follow two further lemmas.

Lemma 2.1. Let $\alpha>1$ be an irrational number and j a positive integer. Then $j \in \mathcal{B}(\alpha)$ if and only if,

$$
0<1-\frac{1}{\alpha}<\left\{\frac{j}{\alpha}\right\}
$$

Proof. First, we have

$$
\begin{align*}
j & =\left\lfloor\frac{j}{\alpha}\right\rfloor \alpha+\left\{\frac{j}{\alpha}\right\} \alpha \tag{2.1}\\
& =\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha-\left(1-\left\{\frac{j}{\alpha}\right\}\right) \alpha \tag{2.2}
\end{align*}
$$

Then, since

$$
\left\{\frac{j}{\alpha}\right\} \alpha>0 \quad \text { and } \quad\left(1-\left\{\frac{j}{\alpha}\right\}\right) \alpha>0,
$$

it follows from (2.1) and (2.2) that

$$
\left\lfloor\frac{j}{\alpha}\right\rfloor \alpha<j<\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha .
$$

Therefore, as $j \in \mathbb{N}$, it is the case that

$$
\begin{equation*}
\left\lfloor\left\lfloor\frac{j}{\alpha}\right\rfloor \alpha\right\rfloor<j \leq\left\lfloor\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha\right\rfloor . \tag{2.3}
\end{equation*}
$$

Suppose that $j \in \mathcal{B}(\alpha)$. Since

$$
\left\lfloor\left\lfloor\frac{j}{\alpha}\right\rfloor \alpha\right\rfloor \quad \text { and } \quad\left\lfloor\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha\right\rfloor
$$

are consecutive terms in $\mathcal{B}(\alpha)$, it follows from (2.3) that

$$
j=\left\lfloor\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha\right\rfloor .
$$

This in turn implies, from (2.2), that

$$
0<\left(1-\left\{\frac{j}{\alpha}\right\}\right) \alpha<1
$$

On the other hand, let us suppose that

$$
0<\left(1-\left\{\frac{j}{\alpha}\right\}\right) \alpha<1
$$

Then, from (2.2), it follows that

$$
\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha-1<j<\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha .
$$

Since

$$
\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha-1 \quad \text { and } \quad\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha
$$

THE FIBONACCI QUARTERLY

are a pair of irrational numbers whose difference is 1 , we have

$$
j=\left\lfloor\left(\left\lfloor\frac{j}{\alpha}\right\rfloor+1\right) \alpha\right\rfloor .
$$

This completes the proof of the lemma, on noting both that this is an element of $\mathcal{B}(\alpha)$ and that the inequality

$$
0<\left(1-\left\{\frac{j}{\alpha}\right\}\right) \alpha<1
$$

may be rearranged to give

$$
0<1-\frac{1}{\alpha}<\left\{\frac{j}{\alpha}\right\} .
$$

Lemma 2.2. We have $n \in \mathcal{B}(\phi)$ if and only if,

$$
\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+2,
$$

and $n \in \mathcal{B}\left(\phi^{2}\right)$ if and only if,

$$
\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+1 .
$$

Proof. If $n \in \mathcal{B}(\phi)$ then, from Lemma 2.1, we have

$$
\left\{\frac{n}{\phi}\right\}>1-\frac{1}{\phi}=\frac{1}{\phi^{2}} .
$$

Note then that

$$
\begin{aligned}
\left\{\frac{n}{\phi}\right\}>\frac{1}{\phi^{2}} & \Longleftrightarrow\{n(\phi-1)\}>\frac{1}{\phi^{2}} \\
& \Longleftrightarrow\{n \phi\}>\frac{1}{\phi^{2}} .
\end{aligned}
$$

Therefore, if $n \in \mathcal{B}(\phi)$, then

$$
1+\phi>\{n \phi\}+\phi>\frac{1}{\phi^{2}}+\phi,
$$

which implies

$$
1+\phi>\{n \phi\}+\phi>2,
$$

Hence,

$$
\begin{aligned}
\lfloor(n+1) \phi\rfloor & =\lfloor\lfloor n \phi\rfloor+\{n \phi\}+\phi\rfloor \\
& =\lfloor n \phi\rfloor+\lfloor\{n \phi\}+\phi\rfloor \\
& =\lfloor n \phi\rfloor+2 .
\end{aligned}
$$

Similarly, if $n \in \mathcal{B}\left(\phi^{2}\right)$ then, from Lemma 2.1, we obtain

$$
\left\{\frac{n}{\phi^{2}}\right\}>1-\frac{1}{\phi^{2}}=\frac{1}{\phi},
$$

and then

$$
\begin{aligned}
\left\{\frac{n}{\phi^{2}}\right\}>\frac{1}{\phi} & \Longleftrightarrow\{n(2-\phi)\}>\frac{1}{\phi} \\
& \Longleftrightarrow\{-n \phi\}>\frac{1}{\phi} \\
& \Longleftrightarrow 1-\{n \phi\}>\frac{1}{\phi} \\
& \Longleftrightarrow\{n \phi\}<1-\frac{1}{\phi}=2-\phi,
\end{aligned}
$$

from which we see that

$$
\phi<\{n \phi\}+\phi<2 .
$$

Therefore,

$$
\begin{aligned}
\lfloor(n+1) \phi\rfloor & =\lfloor\lfloor n \phi\rfloor+\{n \phi\}+\phi\rfloor \\
& =\lfloor n \phi\rfloor+\lfloor\{n \phi\}+\phi\rfloor \\
& =\lfloor n \phi\rfloor+1 .
\end{aligned}
$$

The statement of the lemma then follows because $\mathcal{B}(\phi) \cup \mathcal{B}\left(\phi^{2}\right)=\mathbb{N}$.
Lemma 2.3. For any $k \in \mathbb{N}$:

$$
2 k-\lfloor k \phi\rfloor=\left\lfloor\frac{k}{\phi^{2}}\right\rfloor+1 .
$$

Proof.

$$
\begin{aligned}
2 k-\lfloor k \phi\rfloor & =k-\lfloor k(\phi-1)\rfloor \\
& =k-\left\lfloor\frac{k}{\phi}\right\rfloor \\
& =k+\left\lfloor-\frac{k}{\phi}\right\rfloor+1 \\
& =\left\lfloor k\left(1-\frac{1}{\phi}\right)\right\rfloor+1 \\
& =\left\lfloor\frac{k}{\phi^{2}}\right\rfloor+1 .
\end{aligned}
$$

3. The Zeckendorf Representation

Theorem 3.1. The Zeckendorf representation of S_{n} is given by

$$
F_{\lfloor n \phi\rfloor+1}+\sum_{k=1}^{2 n-\lfloor n \phi\rfloor-1} F_{2\lfloor k \phi\rfloor+k-1} .
$$

Proof. We start by showing that S_{n} is equal to the above expression. We then show that this expression is in fact a Zeckendorf representation.

Note first that $2 n-\lfloor n \phi\rfloor-1=0$ when $n=1$ and $n=2$. In each of these cases the sum on the right is defined to be equal to 0 . We now proceed by induction on n. It is easily checked

THE FIBONACCI QUARTERLY

that the statement of the theorem is true for $n=1,2$ and 3 . Now assume that it is true for some $n \geq 3$. By way of the inductive hypothesis and the definition of S_{n+1}, we have

$$
\begin{equation*}
S_{n+1}=F_{\lfloor(n+1) \phi\rfloor}+F_{\lfloor n \phi\rfloor+1}+\sum_{k=1}^{2 n-\lfloor n \phi\rfloor-1} F_{2\lfloor k \phi\rfloor+k-1} . \tag{3.1}
\end{equation*}
$$

We deal separately with the cases $\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+1$ and $\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+2$, beginning with the latter. Indeed, when $\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+2$, we have

$$
\begin{align*}
F_{\lfloor(n+1) \phi\rfloor}+F_{\lfloor n \phi\rfloor+1} & =F_{\lfloor n \emptyset\rfloor+2}+F_{\lfloor n \phi\rfloor+1} \\
& =F_{\lfloor n \phi\rfloor+3} \\
& =F_{\lfloor(n+1) \phi\rfloor+1} \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
2(n+1)-\lfloor(n+1) \phi\rfloor-1 & =2 n+1-(\lfloor n \phi\rfloor+2) \\
& =2 n-\lfloor n \phi\rfloor-1 . \tag{3.3}
\end{align*}
$$

Using (3.2) and (3.3) in conjunction with (3.1) then gives

$$
S_{n+1}=F_{\lfloor(n+1) \phi\rfloor+1}+\sum_{k=1}^{2(n+1)-\lfloor(n+1) \phi\rfloor-1} F_{2\lfloor k \phi\rfloor+k-1},
$$

as required.
Next, consider n such that $\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+1$. In this case we obtain

$$
\begin{align*}
F_{\lfloor(n+1) \phi\rfloor}+F_{\lfloor n \phi\rfloor+1} & =2 F_{\lfloor n \phi\rfloor+1} \\
& =F_{\lfloor n \phi\rfloor+2}+F_{\lfloor n \phi\rfloor-1} \\
& =F_{\lfloor(n+1) \phi\rfloor+1}+F_{\lfloor n \phi\rfloor-1} \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
2(n+1)-\lfloor(n+1) \phi\rfloor-2 & =2 n-(\lfloor n \phi\rfloor+1) \\
& =2 n-\lfloor n \phi\rfloor-1 . \tag{3.5}
\end{align*}
$$

Then, using (3.1), (3.4), and (3.5), we have

$$
\begin{equation*}
S_{n+1}=F_{\lfloor(n+1) \phi\rfloor+1}+F_{\lfloor n \phi\rfloor-1}+\sum_{k=1}^{2(n+1)-\lfloor(n+1) \phi\rfloor-2} F_{2\lfloor k \phi\rfloor+k-1} . \tag{3.6}
\end{equation*}
$$

On considering the subscript of the 'extra' term on the right-hand side of (3.6), and that of the 'missing' term in the sum corresponding to $k=2(n+1)-\lfloor(n+1) \phi\rfloor-1$, it may be seen that the inductive step will be complete if we show that

$$
\begin{equation*}
\lfloor n \phi\rfloor-1=2\lfloor(2(n+1)-\lfloor(n+1) \phi\rfloor-1) \phi\rfloor+(2(n+1)-\lfloor(n+1) \phi\rfloor-1)-1 \tag{3.7}
\end{equation*}
$$

when $\lfloor(n+1) \phi\rfloor=\lfloor n \phi\rfloor+1$. In this case (3.7) simplifies readily to

$$
\begin{equation*}
\lfloor n \phi\rfloor=\lfloor(2 n-\lfloor n \phi\rfloor) \phi\rfloor+n . \tag{3.8}
\end{equation*}
$$

Using Lemma 2.2, therefore, it suffices to show that (3.8) is true whenever $n=\left\lfloor m \phi^{2}\right\rfloor$ for some $m \in \mathbb{N}$.

To this end, noting that

$$
\left\lfloor m \phi^{2}\right\rfloor=\lfloor m(1+\phi)\rfloor=m+\lfloor m \phi\rfloor,
$$

THE ZECKENDORF REPRESENTATION OF A BEATTY-RELATED FIBONACCI SUM
and using Lemma 2.3 with $k=m+\lfloor m \phi\rfloor$ in the second line below, we find an equation, (3.9), equivalent to (3.8) with $n=m+\lfloor m \phi\rfloor$, as follows:

$$
\begin{align*}
\lfloor(m+\lfloor m \phi\rfloor) \phi\rfloor & =\lfloor(2(m+\lfloor m \phi\rfloor)-\lfloor(m+\lfloor m \phi\rfloor) \phi\rfloor) \phi\rfloor+m+\lfloor m \phi\rfloor \\
& \Longleftrightarrow\lfloor(m+\lfloor m \phi\rfloor) \phi-(m+\lfloor m \phi\rfloor)\rfloor=\left\lfloor\left(\left\lfloor\frac{m+\lfloor m \phi\rfloor}{\phi^{2}}\right\rfloor+1\right) \phi\right\rfloor \\
& \Longleftrightarrow\lfloor(\phi-1)(m+\lfloor m \phi\rfloor)\rfloor=\left\lfloor\left\lfloor\frac{m+\lfloor m \phi\rfloor+\phi^{2}}{\phi^{2}}\right\rfloor \phi\right\rfloor \\
& \Longleftrightarrow\left\lfloor\frac{m+\lfloor m \phi\rfloor}{\phi}\right\rfloor=\left\lfloor\left\lfloor\frac{m+\lfloor m \phi\rfloor+\phi^{2}}{\phi^{2}}\right\rfloor \phi\right\rfloor . \tag{3.9}
\end{align*}
$$

Next,

$$
\begin{align*}
\frac{m+\lfloor m \phi\rfloor}{\phi}-\lfloor m \phi\rfloor & =\frac{m}{\phi}-\lfloor m \phi\rfloor\left(1-\frac{1}{\phi}\right) \\
& =\frac{m}{\phi}-\frac{\lfloor m \phi\rfloor}{\phi^{2}} \\
& =\frac{\{m \phi\}}{\phi^{2}} \\
& >0 \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
\frac{m+\lfloor m \phi\rfloor}{\phi}-\lfloor m \phi\rfloor-\frac{1}{\phi^{2}} & =\frac{\{m \phi\}-1}{\phi^{2}} \\
& <0 . \tag{3.11}
\end{align*}
$$

Results 3.10 and 3.11 show that

$$
\begin{equation*}
\left\lfloor\frac{m+\lfloor m \phi\rfloor}{\phi}\right\rfloor=\lfloor m \phi\rfloor . \tag{3.12}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\left\lfloor\frac{m+\lfloor m \phi\rfloor+\phi^{2}}{\phi^{2}}\right\rfloor & =\left\lfloor\frac{m+m \phi-\{m \phi\}+\phi^{2}}{\phi^{2}}\right\rfloor \\
& =\left\lfloor\frac{m(1+\phi)+\phi^{2}-\{m \phi\}}{\phi^{2}}\right\rfloor \\
& =\left\lfloor\frac{m \phi^{2}+\phi^{2}-\{m \phi\}}{\phi^{2}}\right\rfloor \\
& =m+\left\lfloor\frac{\phi^{2}-\{m \phi\}}{\phi^{2}}\right\rfloor \\
& =m .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left\lfloor\left\lfloor\frac{m+\lfloor m \phi\rfloor+\phi^{2}}{\phi^{2}}\right\rfloor \phi\right\rfloor=\lfloor m \phi\rfloor . \tag{3.13}
\end{equation*}
$$

Results (3.12) and (3.13) show that (3.9) is true, and hence that (3.8) is true whenever $n=$ $\left\lfloor m \phi^{2}\right\rfloor$ for some $m \in \mathbb{N}$.

THE FIBONACCI QUARTERLY

Finally, it remains to check that

$$
F_{\lfloor n \phi\rfloor+1}+\sum_{k=1}^{2 n-\lfloor n \phi\rfloor-1} F_{2\lfloor k \phi\rfloor+k-1}
$$

is in fact a Zeckendorf representation. Let us consider first the differences between the subscripts of successive terms in the sum. We have

$$
2\lfloor(k+1) \phi\rfloor+(k+1)-1-(2\lfloor k \phi\rfloor+k-1)=2(\lfloor(k+1) \phi\rfloor-\lfloor k \phi\rfloor)+1,
$$

which is equal either to 3 or 5 . It is now simply a matter of showing that $\lfloor n \phi\rfloor+1$ is at least 2 larger than the largest subscript arising from the terms in the sum. We have, on using Lemma 2.3 in the third line below,

$$
\begin{aligned}
\lfloor n \phi\rfloor+1- & (2\lfloor(2 n-\lfloor n \phi\rfloor-1) \phi\rfloor+(2 n-\lfloor n \phi\rfloor-1)-1) \\
& =2(\lfloor n \phi\rfloor-n-\lfloor(2 n-\lfloor n \phi\rfloor-1) \phi\rfloor)+3 \\
& =2\left(\left\lfloor\frac{n}{\phi}\right\rfloor-\left\lfloor\left\lfloor\frac{n}{\phi^{2}}\right\rfloor \phi\right\rfloor\right)+3 .
\end{aligned}
$$

This completes the proof of the theorem, on noting that

$$
\left\lfloor\frac{n}{\phi}\right\rfloor=\left\lfloor\frac{n \phi}{\phi^{2}}\right\rfloor \geq\left\lfloor\left\lfloor\frac{n}{\phi^{2}}\right\rfloor \phi\right\rfloor .
$$

4. Acknowledgement

The author would like to thank the referee for suggestions that have improved the clarity of this article.

References

[1] D. M. Burton, Elementary Number Theory, McGraw-Hill, Boston, MA, 1998.
[2] Wikipedia contributors, Beatty sequence, Wikipedia, The Free Encyclopedia, 2014, http://en.wikipedia.org/wiki/Beatty_sequence.
[3] Wikipedia contributors, Zeckendorf's theorem, Wikipedia, The Free Encyclopedia, 2014, http://en.wikipedia.org/wiki/Zeckendorf's_theorem.
[4] E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. R. Sci. Liège,‘ 41 (1972), 179-182.

MSC2010: 11B39, 11B83.
Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom

E-mail address: griffm@essex.ac.uk

