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Abstract. We obtain here the Zeckendorf representation of a sum of Fibonacci numbers
indexed by a particular Beatty sequence known as the lower Wythoff sequence.

1. Introduction

Let bxc be the floor function, denoting the largest integer not exceeding x, and let α > 1 be
an irrational number. The strictly increasing sequence of positive integers B(α) = (bnαc)n≥1
is known as a Beatty sequence. We are interested here in a particular Beatty sequence known
as the lower Wythoff sequence. It is given by B(φ), where

φ =
1 +

√
5

2

is the golden ratio. In this paper we obtain the Zeckendorf representation for

Sn =

n
∑

k=1

Fbkφc, (1.1)

the sum of the Fibonacci numbers indexed by the first n terms of B(φ). Some preliminary
results are given in Section 2, and the main theorem is proved in Section 3.

2. Some Initial Results

Zeckendorf’s Theorem [1, 3, 4] states that every n ∈ N has a unique representation as the
sum of distinct Fibonacci numbers that does not include any consecutive Fibonacci numbers.
Somewhat more formally, for any n ∈ N there exists an increasing sequence of positive integers
of length k ∈ N, (c1, c2, . . . , ck) say, such that c1 ≥ 2, ci ≥ ci−1 + 2 for i = 2, 3, . . . , k, and

n =

k
∑

i=1

Fci .

Relatively straightforward proofs of this result are given in [1, 3]. Note that the representation
of Sn as a sum of Fibonacci numbers as given in (1.1) is not, in general, its Zeckendorf
representation. Indeed, there exist values of k for which bkφc and b(k + 1)φc are consecutive
integers.

As we shall see, the complementary sequence to B(φ) is also of relevance here. It is given by
B
(

φ2
)

=
(

bnφ2c
)

n≥1
, and termed the upper Wythoff sequence. We will make use of the fact

that, as a pair of complementary sequences, B(φ) and B(φ2) satisfy both B(φ) ∩ B(φ2) = ∅
and B(φ) ∪ B(φ2) = N.

The notation {x} will be adopted to represent x − bxc, the fractional part of x. It is the
case that 0 ≤ {x} < 1 for any x ∈ R, but, for each n ∈ N, the irrationality of φ implies that
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0 < {nφ} < 1. We will also make use of the equality φ2 = φ+1 and its many rearrangements
throughout.

We now give a lemma concerning Beatty sequences, a sketch proof of which is given in
[2]. For the sake of both clarity and completeness, however, we provide a detailed proof here.
There then follow two further lemmas.

Lemma 2.1. Let α > 1 be an irrational number and j a positive integer. Then j ∈ B(α) if

and only if,

0 < 1− 1

α
<

{

j

α

}

.

Proof. First, we have

j =

⌊

j

α

⌋

α+

{

j

α

}

α (2.1)

=

(⌊

j

α

⌋

+ 1

)

α−
(

1−
{

j

α

})

α. (2.2)

Then, since
{

j

α

}

α > 0 and

(

1−
{

j

α

})

α > 0,

it follows from (2.1) and (2.2) that
⌊

j

α

⌋

α < j <

(⌊

j

α

⌋

+ 1

)

α.

Therefore, as j ∈ N, it is the case that
⌊⌊

j

α

⌋

α

⌋

< j ≤
⌊(⌊

j

α

⌋

+ 1

)

α

⌋

. (2.3)

Suppose that j ∈ B(α). Since
⌊⌊

j

α

⌋

α

⌋

and

⌊(⌊

j

α

⌋

+ 1

)

α

⌋

are consecutive terms in B(α), it follows from (2.3) that

j =

⌊(⌊

j

α

⌋

+ 1

)

α

⌋

.

This in turn implies, from (2.2), that

0 <

(

1−
{

j

α

})

α < 1.

On the other hand, let us suppose that

0 <

(

1−
{

j

α

})

α < 1.

Then, from (2.2), it follows that
(⌊

j

α

⌋

+ 1

)

α− 1 < j <

(⌊

j

α

⌋

+ 1

)

α.

Since
(⌊

j

α

⌋

+ 1

)

α− 1 and

(⌊

j

α

⌋

+ 1

)

α
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are a pair of irrational numbers whose difference is 1, we have

j =

⌊(⌊

j

α

⌋

+ 1

)

α

⌋

.

This completes the proof of the lemma, on noting both that this is an element of B(α) and
that the inequality

0 <

(

1−
{

j

α

})

α < 1

may be rearranged to give

0 < 1− 1

α
<

{

j

α

}

.

�

Lemma 2.2. We have n ∈ B(φ) if and only if,

b(n + 1)φc = bnφc+ 2,

and n ∈ B(φ2) if and only if,

b(n + 1)φc = bnφc+ 1.

Proof. If n ∈ B(φ) then, from Lemma 2.1, we have
{

n

φ

}

> 1− 1

φ
=

1

φ2
.

Note then that
{

n

φ

}

>
1

φ2
⇐⇒ {n(φ− 1)} >

1

φ2

⇐⇒ {nφ} >
1

φ2
.

Therefore, if n ∈ B(φ), then

1 + φ > {nφ}+ φ >
1

φ2
+ φ,

which implies

1 + φ > {nφ}+ φ > 2,

Hence,

b(n+ 1)φc = bbnφc+ {nφ}+ φc
= bnφc+ b{nφ} + φc
= bnφc+ 2.

Similarly, if n ∈ B
(

φ2
)

then, from Lemma 2.1, we obtain

{

n

φ2

}

> 1− 1

φ2
=

1

φ
,
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and then
{

n

φ2

}

>
1

φ
⇐⇒ {n(2− φ)} >

1

φ

⇐⇒ {−nφ} >
1

φ

⇐⇒ 1− {nφ} >
1

φ

⇐⇒ {nφ} < 1− 1

φ
= 2− φ,

from which we see that

φ < {nφ}+ φ < 2.

Therefore,

b(n+ 1)φc = bbnφc+ {nφ}+ φc
= bnφc+ b{nφ} + φc
= bnφc+ 1.

The statement of the lemma then follows because B(φ) ∪ B(φ2) = N. �

Lemma 2.3. For any k ∈ N:

2k − bkφc =
⌊

k

φ2

⌋

+ 1.

Proof.

2k − bkφc = k − bk(φ− 1)c

= k −
⌊

k

φ

⌋

= k +

⌊

−k

φ

⌋

+ 1

=

⌊

k

(

1− 1

φ

)⌋

+ 1

=

⌊

k

φ2

⌋

+ 1.

�

3. The Zeckendorf Representation

Theorem 3.1. The Zeckendorf representation of Sn is given by

Fbnφc+1 +

2n−bnφc−1
∑

k=1

F2bkφc+k−1.

Proof. We start by showing that Sn is equal to the above expression. We then show that this
expression is in fact a Zeckendorf representation.

Note first that 2n− bnφc − 1 = 0 when n = 1 and n = 2. In each of these cases the sum on
the right is defined to be equal to 0. We now proceed by induction on n. It is easily checked
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that the statement of the theorem is true for n = 1, 2 and 3. Now assume that it is true for
some n ≥ 3. By way of the inductive hypothesis and the definition of Sn+1, we have

Sn+1 = Fb(n+1)φc + Fbnφc+1 +

2n−bnφc−1
∑

k=1

F2bkφc+k−1. (3.1)

We deal separately with the cases b(n+1)φc = bnφc+1 and b(n+1)φc = bnφc+2, beginning
with the latter. Indeed, when b(n + 1)φc = bnφc+ 2, we have

Fb(n+1)φc + Fbnφc+1 = Fbnφc+2 + Fbnφc+1

= Fbnφc+3

= Fb(n+1)φc+1 (3.2)

and

2(n + 1)− b(n+ 1)φc − 1 = 2n+ 1− (bnφc+ 2)

= 2n− bnφc − 1. (3.3)

Using (3.2) and (3.3) in conjunction with (3.1) then gives

Sn+1 = Fb(n+1)φc+1 +

2(n+1)−b(n+1)φc−1
∑

k=1

F2bkφc+k−1,

as required.
Next, consider n such that b(n+ 1)φc = bnφc+ 1. In this case we obtain

Fb(n+1)φc + Fbnφc+1 = 2Fbnφc+1

= Fbnφc+2 + Fbnφc−1

= Fb(n+1)φc+1 + Fbnφc−1 (3.4)

and

2(n+ 1)− b(n+ 1)φc − 2 = 2n− (bnφc+ 1)

= 2n− bnφc − 1. (3.5)

Then, using (3.1), (3.4), and (3.5), we have

Sn+1 = Fb(n+1)φc+1 + Fbnφc−1 +

2(n+1)−b(n+1)φc−2
∑

k=1

F2bkφc+k−1. (3.6)

On considering the subscript of the ‘extra’ term on the right-hand side of (3.6), and that of
the ‘missing’ term in the sum corresponding to k = 2(n+ 1)− b(n+ 1)φc − 1, it may be seen
that the inductive step will be complete if we show that

bnφc − 1 = 2b(2(n + 1)− b(n + 1)φc − 1)φc + (2(n + 1)− b(n + 1)φc − 1)− 1 (3.7)

when b(n+ 1)φc = bnφc+ 1. In this case (3.7) simplifies readily to

bnφc = b(2n− bnφc)φc+ n. (3.8)

Using Lemma 2.2, therefore, it suffices to show that (3.8) is true whenever n = bmφ2c for
some m ∈ N.

To this end, noting that

bmφ2c = bm(1 + φ)c = m+ bmφc,
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and using Lemma 2.3 with k = m+ bmφc in the second line below, we find an equation, (3.9),
equivalent to (3.8) with n = m+ bmφc, as follows:

b(m+ bmφc)φc = b(2(m+ bmφc)− b(m+ bmφc)φc) φc+m+ bmφc

⇐⇒ b(m+ bmφc)φ − (m+ bmφc)c =
⌊(⌊

m+ bmφc
φ2

⌋

+ 1

)

φ

⌋

⇐⇒ b(φ − 1)(m+ bmφc)c =
⌊⌊

m+ bmφc+ φ2

φ2

⌋

φ

⌋

⇐⇒
⌊

m+ bmφc
φ

⌋

=

⌊⌊

m+ bmφc+ φ2

φ2

⌋

φ

⌋

. (3.9)

Next,

m+ bmφc
φ

− bmφc = m

φ
− bmφc

(

1− 1

φ

)

=
m

φ
− bmφc

φ2

=
{mφ}
φ2

> 0 (3.10)

and

m+ bmφc
φ

− bmφc − 1

φ2
=

{mφ} − 1

φ2

< 0. (3.11)

Results 3.10 and 3.11 show that
⌊

m+ bmφc
φ

⌋

= bmφc. (3.12)

Also,
⌊

m+ bmφc+ φ2

φ2

⌋

=

⌊

m+mφ− {mφ}+ φ2

φ2

⌋

=

⌊

m(1 + φ) + φ2 − {mφ}
φ2

⌋

=

⌊

mφ2 + φ2 − {mφ}
φ2

⌋

= m+

⌊

φ2 − {mφ}
φ2

⌋

= m.

Consequently,
⌊⌊

m+ bmφc+ φ2

φ2

⌋

φ

⌋

= bmφc. (3.13)

Results (3.12) and (3.13) show that (3.9) is true, and hence that (3.8) is true whenever n =
bmφ2c for some m ∈ N.
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Finally, it remains to check that

Fbnφc+1 +

2n−bnφc−1
∑

k=1

F2bkφc+k−1

is in fact a Zeckendorf representation. Let us consider first the differences between the sub-
scripts of successive terms in the sum. We have

2b(k + 1)φc + (k + 1)− 1− (2bkφc + k − 1) = 2 (b(k + 1)φc − bkφc) + 1,

which is equal either to 3 or 5. It is now simply a matter of showing that bnφc+1 is at least 2
larger than the largest subscript arising from the terms in the sum. We have, on using Lemma
2.3 in the third line below,

bnφc+ 1− (2b(2n − bnφc − 1)φc + (2n − bnφc − 1)− 1)

= 2 (bnφc − n− b(2n − bnφc − 1)φc) + 3

= 2

(⌊

n

φ

⌋

−
⌊⌊

n

φ2

⌋

φ

⌋)

+ 3.

This completes the proof of the theorem, on noting that
⌊

n

φ

⌋

=

⌊

nφ

φ2

⌋

≥
⌊⌊

n

φ2

⌋

φ

⌋

.

�
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