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Abstract. We investigate differences of the form
∏

i≥1

g
ai

n+ri
−

∏

i≥1

g
bi
n+si

, where gj = gj(x)

denotes the jth gibonacci (Fibonacci, Lucas, Pell, or Pell-Lucas) polynomial; n, ri, and si are
integers; ai, bi ≥ 0;

∑
ai =

∑
bi denotes the order m of each product, and m = 2 or 3. This

investigation yields interesting byproducts.

1. Introduction

Gibonacci polynomials gn(x) are defined by the recurrence gn(x) = xgn−1(x) + gn−2(x),
where g1(x) = a = a(x) and g2(x) = b = b(x) are arbitrary polynomials, and n ≥ 3. Clearly,
g0(x) = b−ax. When a = 1 and b = x, gn(x) = fn(x), the nth Fibonacci polynomial ; and when
a = x and b = x2 +2, gn(x) = ln(x), the nth Lucas polynomial. In particular, gn(1) = Gn, the
nth gibonacci number; fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number.

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given by
Pn = pn(1) and 2Qn = qn(1), respectively.

In the interest of brevity and convenience, we will omit the argument in the functional
notation; so gn will mean gn(x), although it is technically incorrect. Also we will confine our
discussion to Fibonacci, Lucas, Pell, and Pell-Lucas polynomials.

It can be confirmed by induction that gn = afn−2 + bfn−1, where n ≥ 0. Consequently,
g
−n = (−1)n+1(afn+2 − bfn+1); so gn is well-defined for all integers n.

1.1. Binet-like formula. Gibonacci polynomials gn can also be defined by the Binet-like
formula

gn =
cαn − dβn

α− β
,

where α = α(x) and β = β(x) are solutions of the characteristic equation t2 − xt− 1 = 0, c =
c(x) = a+ (ax− b)β, d = d(x) = a+ (ax − b)α, and n ≥ 0. Then cd = a2 + abx− b2; we will
denote this by µ = µ(x). When gn = fn, µ = 1; and when gn = ln, µ = −(x2 + 4).

It is well-known that

fn+kfn−k − f2
n = (−1)n−k+1f2

k (1.1)

ln+kln−k − l2n = (−1)n−k(x2 + 4)f2
k (1.2)

fm+kfn−k − fmfn = (−1)n−k+1fkfm−n+k (1.3)

lm+kln−k − lmln = (−1)n−k(x2 + 4)fkfm−n+k. (1.4)

Identity (1.1) generalizes the Catalan identity Fn+kFn−k−F 2
n = (−1)n−k+1F 2

k
, discovered by

Eugene C. Catalan. This, in turn, is a generalization of the Cassini formula Fn+1Fn−1−F 2
n =
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(−1)n, named after Giovanni D. Cassini. Identity (1.2) is the Lucas counterpart of identity
(1.1).

Identity (1.3) generalizes the d’Ocagne identity Fm+kFn−k−FmFn = (−1)n−k+1FkFm−n+k,
found by Philbert Maurice d’Ocagne. Identity (1.4) is its Lucas counterpart. d’Ocagne’s
identity is a slight variation of the identity Fn+hFn+k − FnFn+h+k = (−1)nFhFk, discovered
by A. Tagiuri in 1901 [1, 2].

As can be predicted, identities (1.1) and (1.2) have a gibonacci version

gn+kgn−k − g2n = (−1)n−k+1µ f2
k ; (1.5)

so do identities (1.3) and (1.4), and Tagiuri’s identity:

gm+kgn−k − gmgn = (−1)n−k+1µ fkfm−n+k (1.6)

gn+hgn+k − gngn+h+k = (−1)nµ fhfk. (1.7)

These gibonacci identities can be established using the Binet-like formula.
An interesting observation: The left-hand side of each identity in (1.5), (1.6), and (1.7) is

the difference of two gibonacci products of order two.

2. Differences of Cubic Gibonacci Products

Recently, R. S. Melham discovered a charming formula for the difference of two Fibonacci
products of order three [3]:

Fn+1Fn+2Fn+6 − F 3
n+3 = (−1)nFn. (2.1)

Two years later, using extensive computer research, S. Fairgrieve and H. W. Gould found
an equally beautiful formula [2]:

FnFn+4Fn+5 − F 3
n+3 = (−1)n+1Fn+6. (2.2)

They also found two additional cubic identities:

FnF
2
n+3 − F 3

n+2 = (−1)n+1Fn+1 (2.3)

F 2
nFn+3 − F 3

n+1 = (−1)n+1Fn+2. (2.4)

The left-hand sides of identities (2.2)–(2.4) are also differences of Fibonacci products of
order three.

We will now extend the cubic identities (2.1)–(2.4) to the gibonacci family.
We will begin our pursuit with the gibonacci version of Melham’s identity.

Theorem 2.1. Let n ≥ 0. Then

gn+1gn+2gn+6 − g3n+3 = (−1)nµ(x3gn+2 − gn+1). (2.5)

Proof. By the gibonacci recurrence, we have

gn+6 = (x4 + 3x2 + 1)gn+2 + (x3 + 2x)gn+1

gn+1gn+2gn+6 = (x4 + 3x2 + 1)g2n+2gn+1 + (x3 + 2x)gn+2g
2
n+1

g3n+3 = x3g3n+2 + 3x2g2n+2gn+1 + 3xgn+2g
2
n+1 + g3n+1.
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Then, by identity (1.5) and some basic algebra, we have

gn+1gn+2gn+6 − g3n+3 = (x4 + 1)g2n+2gn+1 + (x3 − x)gn+2g
2
n+1 − x3g3n+2 − g3n+1

= x3g2n+2(xgn+1 − gn+2) + gn+2gn+1(gn+2 − xgn+1) + x3gn+2g
2
n+1 − g3n+1

= −x3g2n+2gn + gn+2gn+1gn + x3g2n+1gn+2 − g3n+1

= (g2n+1 − gn+2gn)(x
3gn+2 − gn+1)

= (−1)nµ(x3gn+2 − gn+1),

as desired. �

It follows by Theorem 2.1 that

fn+1fn+2fn+6 − f3
n+3 = (−1)n(x3fn+2 − fn+1) (2.6)

ln+1ln+2ln+6 − l3n+3 = (−1)n+1(x2 + 4)(x3ln+2 − ln+1)

pn+1pn+2pn+6 − p3n+3 = (−1)n(8x3pn+2 − pn+1)

qn+1qn+2qn+6 − q3n+3 = (−1)n+14(x2 + 1)(8x3qn+2 − qn+1).

Clearly, identity (2.6) yields Melham’s identity.
Similarly, we have

Ln+1Ln+2Ln+6 − L3
n+3 = (−1)n+15Ln

Pn+1Pn+2Pn+6 − P 3
n+3 = (−1)n(8Pn+2 − Pn+1)

Qn+1Qn+2Qn+6 −Q3
n+3 = (−1)n+12(8Qn+2 −Qn+1).

Theorem 2.1 has an additional byproduct. It follows from identity (2.5) thatGn+1Gn+2Gn+6−

G3
n+3 = (−1)nµ(1)Gn, so (Gn+1Gn+2Gn+6 −G3

n+3)
2 = µ2(1)G2

n. This implies

4Gn+1Gn+2G
3
n+3Gn+6 + µ2(1)G2

n = (Gn+1Gn+2Gn+6 +G3
n+3)

2.

In particular,

4Fn+1Fn+2F
3
n+3Fn+6 + F 2

n = (Fn+1Fn+2Fn+6 + F 3
n+3)

2

4Ln+1Ln+2L
3
n+3Ln+6 + 25L2

n = (Ln+1Ln+2Ln+6 + L3
n+3)

2.

The next theorem gives a companion formula for the difference of three gibonacci products.

Theorem 2.2. Let n ≥ 0. Then

gngn+4gn+5 − g3n+3 = (−1)n+1µ(x3gn+4 + gn+5). (2.7)

Proof. By the gibonacci recurrence, gn = (x2 + 1)gn+4 − (x3 + 2x)gn+3. Then

gngn+4gn+5 = (x2 + 1)g2n+4gn+5 − (x3 + 2x)gn+3gn+4gn+5.

We also have

g3n+3 = (gn+5 − xgn+4)
3

= g3n+5 − 3xgn+4g
2
n+5 + 3x2g2n+4gn+5 − x3g3n+4

= (gn+5 − xgn+4)(gn+5 − 2xgn+4)gn+5 + x2g2n+4gn+5 − x3g3n+4

= gn+3(gn+5 − 2xgn+4)gn+5 + x2g2n+4gn+5 − x3g3n+4.
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Therefore,

gngn+4gn+5 − g3n+3 = g2n+4gn+5 − x3gn+3gn+4gn+5 − gn+3g
2
n+5 + x3g3n+4

= (g2n+4 − gn+3gn+5)(x
3gn+4 + gn+5)

= (−1)n+1µ(x3gn+4 + gn+5),

as claimed. �

It follows by Theorem 2.2 that

fnfn+4fn+5 − f3
n+3 = (−1)n+1(x3fn+4 + fn+5)

lnfn+4ln+5 − l3n+3 = (−1)n(x2 + 4)(x3ln+4 + ln+5)

pnpn+4pn+5 − p3n+3 = (−1)n+1(8x3pn+4 + pn+5)

qnqn+4qn+5 − q3n+3 = (−1)n4(x2 + 1)(8x3qn+4 + qn+5).

The above identities imply that

FnFn+4Fn+5 − F 3
n+3 = (−1)n+1Fn+6

LnLn+4Ln+5 − L3
n+3 = (−1)n5Ln+6

PnPn+4Pn+5 − P 3
n+3 = (−1)n+1(8Pn+4 + Pn+5)

QnQn+4Qn+5 −Q3
n+3 = (−1)n2(8Qn+4 +Qn+5).

Theorem 2.2 also has an additional consequence. It follows from identity (2.7) thatGnGn+4Gn+5−

G3
n+3 = (−1)n+1µ(1)Gn+6; so (GnGn+4Gn+5 −G3

n+3)
2 = µ2(1)G2

n+6. Consequently,

4GnG
3
n+3Gn+4Gn+5 + µ2(1)G2

n+6 = (GnGn+4Gn+5 +G3
n+3)

2.

In particular, this implies

4FnF
3
n+3Fn+4Fn+5 + F 2

n+6 = (FnFn+4Fn+5 + F 3
n+3)

2

4LnL
3
n+3Ln+4Ln+5 + 25L2

n+6 = (LnLn+4Ln+5 + L3
n+3)

2.

The next theorem generalizes identity (2.3).

Theorem 2.3. Let n ≥ 0. Then

gng
2
n+3 − g3n+2 = (−1)n+1µ(x2gn+2 − gn). (2.8)

Proof. By the gibonacci recurrence, we have

gng
2
n+3 = gn(xgn+2 + gn+1)

2

= x2gng
2
n+2 + 2xgngn+1gn+2 + gng

2
n+1.

But

2xgngn+1gn+2 = (gn+2 − xgn+1)(gn+2 − gn)gn+2 + gn(gn+2 − gn)gn+2

= g3n+2 − xgn+1gn+2(gn+2 − gn)− g2ngn+2

= g3n+2 − x2g2n+1gn+2 − g2ngn+2.

Therefore,

gng
2
n+3 − g3n+2 = x2gng

2
n+2 − x2g2n+1gn+2 − g2ngn+2 + gng

2
n+1

= (gngn+2 − g2n+1)(x
2gn+2 − gn)

= (−1)n+1µ(x2gn+2 − gn),
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as desired. �

As can be predicted, this theorem also has interesting ramifications:

fnf
2
n+3 − f3

n+2 = (−1)n+1(x2fn+2 − fn) (2.9)

lnl
2
n+3 − l3n+2 = (−1)n(x2 + 4)(x2ln+2 − ln)

pnp
2
n+3 − p3n+2 = (−1)n+1(4x2pn+2 − pn)

qnq
2
n+3 − q3n+2 = (−1)n4(x2 + 1)(4x2qn+2 − qn).

The above polynomial identities have additional Fibonacci, Lucas, Pell, and Pell-Lucas
consequences. For example, identity (2.3) follows from (2.9).

It also follows from identity from (2.8) that GnG
2
n+3−G3

n+2 = (−1)n+1µ(1)Gn+1. As before,
this yields

4GnG
3
n+2G

2
n+3 + µ2(1)G2

n+1 = (GnG
2
n+3 +G3

n+2)
2.

This implies

4FnF
3
n+2F

2
n+3 + F 2

n+1 = (FnF
2
n+3 + F 3

n+2)
2

4LnL
3
n+2L

2
n+3 + 25L2

n+1 = (LnL
2
n+3 + L3

n+2)
2.

The following theorem generalizes identity (2.4). Its proof is also short and neat.

Theorem 2.4. Let n ≥ 0. Then

g2ngn+3 − g3n+1 = (−1)n+1µ(gn+3 − x2gn+1). (2.10)
Proof. By the gibonacci recurrence, we have

g2ngn+3 − g3n+1 = (gn+2 − xgn+1)
2gn+3 − gn+1(gn+3 − xgn+2)

2

= g2n+2gn+3 + x2g2n+1gn+3 − gn+1g
2
n+3 − x2gn+1g

2
n+2

= (gn+1gn+3 − g2n+2)(x
2gn+1 − gn+3)

= (−1)n+1µ(gn+3 − x2gn+1). �

It follows from identity (2.10) that

f2
nfn+3 − f3

n+1 = (−1)n+1(fn+3 − x2fn+1)

l2nln+3 − l3n+1 = (−1)n(x2 + 4)(ln+3 − x2ln+1)

p2npn+3 − p3n+1 = (−1)n+1(pn+3 − 4x2pn+1)

q2nqn+3 − q3n+1 = (−1)n4(x2 + 1)(qn+3 − 4x2qn+1).

Theorem 2.4 has another interesting consequence. It also follows from identity (2.10) that
G2

nGn+3 −G3
n+1 = (−1)n+1µ(1)Gn+2. Again, as before, this yields

4G2
nG

3
n+1Gn+3 + µ2(1)G2

n+2 = (G2
nGn+3 +G3

n+1)
2.

Consequently,

4F 2
nF

3
n+1Fn+3 + F 2

n+2 = (F 2
nFn+3 + F 3

n+1)
2

4L2
nL

3
n+1Ln+3 + 25L2

n+2 = (L2
nLn+3 + L3

n+1)
2.
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