DIFFERENCES OF GIBONACCI PRODUCTS WITH THE SAME ORDER

THOMAS KOSHY

AbStract. We investigate differences of the form $\prod_{i \geq 1} g_{n+r_{i}}^{a_{i}}-\prod_{i \geq 1} g_{n+s_{i}}^{b_{i}}$, where $g_{j}=g_{j}(x)$ denotes the j th gibonacci (Fibonacci, Lucas, Pell, or Pell-Lucas) polynomial; n, r_{i}, and s_{i} are integers; $a_{i}, b_{i} \geq 0 ; \sum a_{i}=\sum b_{i}$ denotes the order m of each product, and $m=2$ or 3 . This investigation yields interesting byproducts.

1. Introduction

Gibonacci polynomials $g_{n}(x)$ are defined by the recurrence $g_{n}(x)=x g_{n-1}(x)+g_{n-2}(x)$, where $g_{1}(x)=a=a(x)$ and $g_{2}(x)=b=b(x)$ are arbitrary polynomials, and $n \geq 3$. Clearly, $g_{0}(x)=b-a x$. When $a=1$ and $b=x, g_{n}(x)=f_{n}(x)$, the nth Fibonacci polynomial; and when $a=x$ and $b=x^{2}+2, g_{n}(x)=l_{n}(x)$, the nth Lucas polynomial. In particular, $g_{n}(1)=G_{n}$, the nth gibonacci number; $f_{n}(1)=F_{n}$, the nth Fibonacci number; and $l_{n}(1)=L_{n}$, the nth Lucas number.

Pell polynomials $p_{n}(x)$ and Pell-Lucas polynomials $q_{n}(x)$ are defined by $p_{n}(x)=f_{n}(2 x)$ and $q_{n}(x)=l_{n}(2 x)$, respectively. The Pell numbers P_{n} and Pell-Lucas numbers Q_{n} are given by $P_{n}=p_{n}(1)$ and $2 Q_{n}=q_{n}(1)$, respectively.

In the interest of brevity and convenience, we will omit the argument in the functional notation; so g_{n} will mean $g_{n}(x)$, although it is technically incorrect. Also we will confine our discussion to Fibonacci, Lucas, Pell, and Pell-Lucas polynomials.

It can be confirmed by induction that $g_{n}=a f_{n-2}+b f_{n-1}$, where $n \geq 0$. Consequently, $g_{-n}=(-1)^{n+1}\left(a f_{n+2}-b f_{n+1}\right)$; so g_{n} is well-defined for all integers n.
1.1. Binet-like formula. Gibonacci polynomials g_{n} can also be defined by the Binet-like formula

$$
g_{n}=\frac{c \alpha^{n}-d \beta^{n}}{\alpha-\beta}
$$

where $\alpha=\alpha(x)$ and $\beta=\beta(x)$ are solutions of the characteristic equation $t^{2}-x t-1=0, c=$ $c(x)=a+(a x-b) \beta, d=d(x)=a+(a x-b) \alpha$, and $n \geq 0$. Then $c d=a^{2}+a b x-b^{2}$; we will denote this by $\mu=\mu(x)$. When $g_{n}=f_{n}, \mu=1$; and when $g_{n}=l_{n}, \mu=-\left(x^{2}+4\right)$.

It is well-known that

$$
\begin{align*}
f_{n+k} f_{n-k}-f_{n}^{2} & =(-1)^{n-k+1} f_{k}^{2} \tag{1.1}\\
l_{n+k} l_{n-k}-l_{n}^{2} & =(-1)^{n-k}\left(x^{2}+4\right) f_{k}^{2} \tag{1.2}\\
f_{m+k} f_{n-k}-f_{m} f_{n} & =(-1)^{n-k+1} f_{k} f_{m-n+k} \tag{1.3}\\
l_{m+k} l_{n-k}-l_{m} l_{n} & =(-1)^{n-k}\left(x^{2}+4\right) f_{k} f_{m-n+k} . \tag{1.4}
\end{align*}
$$

Identity (1.1) generalizes the Catalan identity $F_{n+k} F_{n-k}-F_{n}^{2}=(-1)^{n-k+1} F_{k}^{2}$, discovered by Eugene C. Catalan. This, in turn, is a generalization of the Cassini formula $F_{n+1} F_{n-1}-F_{n}^{2}=$

THE FIBONACCI QUARTERLY

$(-1)^{n}$, named after Giovanni D. Cassini. Identity (1.2) is the Lucas counterpart of identity (1.1).

Identity (1.3) generalizes the d'Ocagne identity $F_{m+k} F_{n-k}-F_{m} F_{n}=(-1)^{n-k+1} F_{k} F_{m-n+k}$, found by Philbert Maurice d'Ocagne. Identity (1.4) is its Lucas counterpart. d'Ocagne's identity is a slight variation of the identity $F_{n+h} F_{n+k}-F_{n} F_{n+h+k}=(-1)^{n} F_{h} F_{k}$, discovered by A. Tagiuri in 1901 [1, 2].

As can be predicted, identities (1.1) and (1.2) have a gibonacci version

$$
\begin{equation*}
g_{n+k} g_{n-k}-g_{n}^{2}=(-1)^{n-k+1} \mu f_{k}^{2} \tag{1.5}
\end{equation*}
$$

so do identities (1.3) and (1.4), and Tagiuri's identity:

$$
\begin{align*}
g_{m+k} g_{n-k}-g_{m} g_{n} & =(-1)^{n-k+1} \mu f_{k} f_{m-n+k} \tag{1.6}\\
g_{n+h} g_{n+k}-g_{n} g_{n+h+k} & =(-1)^{n} \mu f_{h} f_{k} . \tag{1.7}
\end{align*}
$$

These gibonacci identities can be established using the Binet-like formula.
An interesting observation: The left-hand side of each identity in (1.5), (1.6), and (1.7) is the difference of two gibonacci products of order two.

2. Differences of Cubic Gibonacci Products

Recently, R. S. Melham discovered a charming formula for the difference of two Fibonacci products of order three [3]:

$$
\begin{equation*}
F_{n+1} F_{n+2} F_{n+6}-F_{n+3}^{3}=(-1)^{n} F_{n} . \tag{2.1}
\end{equation*}
$$

Two years later, using extensive computer research, S. Fairgrieve and H. W. Gould found an equally beautiful formula [2]:

$$
\begin{equation*}
F_{n} F_{n+4} F_{n+5}-F_{n+3}^{3}=(-1)^{n+1} F_{n+6} . \tag{2.2}
\end{equation*}
$$

They also found two additional cubic identities:

$$
\begin{align*}
& F_{n} F_{n+3}^{2}-F_{n+2}^{3}=(-1)^{n+1} F_{n+1} \tag{2.3}\\
& F_{n}^{2} F_{n+3}-F_{n+1}^{3}=(-1)^{n+1} F_{n+2} . \tag{2.4}
\end{align*}
$$

The left-hand sides of identities (2.2)-(2.4) are also differences of Fibonacci products of order three.

We will now extend the cubic identities $(2.1)-(2.4)$ to the gibonacci family.
We will begin our pursuit with the gibonacci version of Melham's identity.
Theorem 2.1. Let $n \geq 0$. Then

$$
\begin{equation*}
g_{n+1} g_{n+2} g_{n+6}-g_{n+3}^{3}=(-1)^{n} \mu\left(x^{3} g_{n+2}-g_{n+1}\right) \tag{2.5}
\end{equation*}
$$

Proof. By the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n+6} & =\left(x^{4}+3 x^{2}+1\right) g_{n+2}+\left(x^{3}+2 x\right) g_{n+1} \\
g_{n+1} g_{n+2} g_{n+6} & =\left(x^{4}+3 x^{2}+1\right) g_{n+2}^{2} g_{n+1}+\left(x^{3}+2 x\right) g_{n+2} g_{n+1}^{2} \\
g_{n+3}^{3} & =x^{3} g_{n+2}^{3}+3 x^{2} g_{n+2}^{2} g_{n+1}+3 x g_{n+2} g_{n+1}^{2}+g_{n+1}^{3} .
\end{aligned}
$$

DIFFERENCES OF GIBONACCI PRODUCTS WITH THE SAME ORDER

Then, by identity (1.5) and some basic algebra, we have

$$
\begin{aligned}
g_{n+1} g_{n+2} g_{n+6}-g_{n+3}^{3} & =\left(x^{4}+1\right) g_{n+2}^{2} g_{n+1}+\left(x^{3}-x\right) g_{n+2} g_{n+1}^{2}-x^{3} g_{n+2}^{3}-g_{n+1}^{3} \\
& =x^{3} g_{n+2}^{2}\left(x g_{n+1}-g_{n+2}\right)+g_{n+2} g_{n+1}\left(g_{n+2}-x g_{n+1}\right)+x^{3} g_{n+2} g_{n+1}^{2}-g_{n+1}^{3} \\
& =-x^{3} g_{n+2}^{2} g_{n}+g_{n+2} g_{n+1} g_{n}+x^{3} g_{n+1}^{2} g_{n+2}-g_{n+1}^{3} \\
& =\left(g_{n+1}^{2}-g_{n+2} g_{n}\right)\left(x^{3} g_{n+2}-g_{n+1}\right) \\
& =(-1)^{n} \mu\left(x^{3} g_{n+2}-g_{n+1}\right),
\end{aligned}
$$

as desired.
It follows by Theorem 2.1 that

$$
\begin{align*}
f_{n+1} f_{n+2} f_{n+6}-f_{n+3}^{3} & =(-1)^{n}\left(x^{3} f_{n+2}-f_{n+1}\right) \tag{2.6}\\
l_{n+1} l_{n+2} l_{n+6}-l_{n+3}^{3} & =(-1)^{n+1}\left(x^{2}+4\right)\left(x^{3} l_{n+2}-l_{n+1}\right) \\
p_{n+1} p_{n+2} p_{n+6}-p_{n+3}^{3} & =(-1)^{n}\left(8 x^{3} p_{n+2}-p_{n+1}\right) \\
q_{n+1} q_{n+2} q_{n+6}-q_{n+3}^{3} & =(-1)^{n+1} 4\left(x^{2}+1\right)\left(8 x^{3} q_{n+2}-q_{n+1}\right) .
\end{align*}
$$

Clearly, identity (2.6) yields Melham's identity.
Similarly, we have

$$
\begin{aligned}
L_{n+1} L_{n+2} L_{n+6}-L_{n+3}^{3} & =(-1)^{n+1} 5 L_{n} \\
P_{n+1} P_{n+2} P_{n+6}-P_{n+3}^{3} & =(-1)^{n}\left(8 P_{n+2}-P_{n+1}\right) \\
Q_{n+1} Q_{n+2} Q_{n+6}-Q_{n+3}^{3} & =(-1)^{n+1} 2\left(8 Q_{n+2}-Q_{n+1}\right) .
\end{aligned}
$$

Theorem 2.1 has an additional byproduct. It follows from identity (2.5) that $G_{n+1} G_{n+2} G_{n+6}-$ $G_{n+3}^{3}=(-1)^{n} \mu(1) G_{n}$, so $\left(G_{n+1} G_{n+2} G_{n+6}-G_{n+3}^{3}\right)^{2}=\mu^{2}(1) G_{n}^{2}$. This implies

$$
4 G_{n+1} G_{n+2} G_{n+3}^{3} G_{n+6}+\mu^{2}(1) G_{n}^{2}=\left(G_{n+1} G_{n+2} G_{n+6}+G_{n+3}^{3}\right)^{2}
$$

In particular,

$$
\begin{aligned}
4 F_{n+1} F_{n+2} F_{n+3}^{3} F_{n+6}+F_{n}^{2} & =\left(F_{n+1} F_{n+2} F_{n+6}+F_{n+3}^{3}\right)^{2} \\
4 L_{n+1} L_{n+2} L_{n+3}^{3} L_{n+6}+25 L_{n}^{2} & =\left(L_{n+1} L_{n+2} L_{n+6}+L_{n+3}^{3}\right)^{2} .
\end{aligned}
$$

The next theorem gives a companion formula for the difference of three gibonacci products.
Theorem 2.2. Let $n \geq 0$. Then

$$
\begin{equation*}
g_{n} g_{n+4} g_{n+5}-g_{n+3}^{3}=(-1)^{n+1} \mu\left(x^{3} g_{n+4}+g_{n+5}\right) \tag{2.7}
\end{equation*}
$$

Proof. By the gibonacci recurrence, $g_{n}=\left(x^{2}+1\right) g_{n+4}-\left(x^{3}+2 x\right) g_{n+3}$. Then

$$
g_{n} g_{n+4} g_{n+5}=\left(x^{2}+1\right) g_{n+4}^{2} g_{n+5}-\left(x^{3}+2 x\right) g_{n+3} g_{n+4} g_{n+5} .
$$

We also have

$$
\begin{aligned}
g_{n+3}^{3} & =\left(g_{n+5}-x g_{n+4}\right)^{3} \\
& =g_{n+5}^{3}-3 x g_{n+4} g_{n+5}^{2}+3 x^{2} g_{n+4}^{2} g_{n+5}-x^{3} g_{n+4}^{3} \\
& =\left(g_{n+5}-x g_{n+4}\right)\left(g_{n+5}-2 x g_{n+4}\right) g_{n+5}+x^{2} g_{n+4}^{2} g_{n+5}-x^{3} g_{n+4}^{3} \\
& =g_{n+3}\left(g_{n+5}-2 x g_{n+4}\right) g_{n+5}+x^{2} g_{n+4}^{2} g_{n+5}-x^{3} g_{n+4}^{3} .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

Therefore,

$$
\begin{aligned}
g_{n} g_{n+4} g_{n+5}-g_{n+3}^{3} & =g_{n+4}^{2} g_{n+5}-x^{3} g_{n+3} g_{n+4} g_{n+5}-g_{n+3} g_{n+5}^{2}+x^{3} g_{n+4}^{3} \\
& =\left(g_{n+4}^{2}-g_{n+3} g_{n+5}\right)\left(x^{3} g_{n+4}+g_{n+5}\right) \\
& =(-1)^{n+1} \mu\left(x^{3} g_{n+4}+g_{n+5}\right)
\end{aligned}
$$

as claimed.
It follows by Theorem 2.2 that

$$
\begin{aligned}
f_{n} f_{n+4} f_{n+5}-f_{n+3}^{3} & =(-1)^{n+1}\left(x^{3} f_{n+4}+f_{n+5}\right) \\
l_{n} f_{n+4} l_{n+5}-l_{n+3}^{3} & =(-1)^{n}\left(x^{2}+4\right)\left(x^{3} l_{n+4}+l_{n+5}\right) \\
p_{n} p_{n+4} p_{n+5}-p_{n+3}^{3} & =(-1)^{n+1}\left(8 x^{3} p_{n+4}+p_{n+5}\right) \\
q_{n} q_{n+4} q_{n+5}-q_{n+3}^{3} & =(-1)^{n} 4\left(x^{2}+1\right)\left(8 x^{3} q_{n+4}+q_{n+5}\right)
\end{aligned}
$$

The above identities imply that

$$
\begin{aligned}
F_{n} F_{n+4} F_{n+5}-F_{n+3}^{3} & =(-1)^{n+1} F_{n+6} \\
L_{n} L_{n+4} L_{n+5}-L_{n+3}^{3} & =(-1)^{n} 5 L_{n+6} \\
P_{n} P_{n+4} P_{n+5}-P_{n+3}^{3} & =(-1)^{n+1}\left(8 P_{n+4}+P_{n+5}\right) \\
Q_{n} Q_{n+4} Q_{n+5}-Q_{n+3}^{3} & =(-1)^{n} 2\left(8 Q_{n+4}+Q_{n+5}\right)
\end{aligned}
$$

Theorem 2.2 also has an additional consequence. It follows from identity (2.7) that $G_{n} G_{n+4} G_{n+5}-$ $G_{n+3}^{3}=(-1)^{n+1} \mu(1) G_{n+6}$; so $\left(G_{n} G_{n+4} G_{n+5}-G_{n+3}^{3}\right)^{2}=\mu^{2}(1) G_{n+6}^{2}$. Consequently,

$$
4 G_{n} G_{n+3}^{3} G_{n+4} G_{n+5}+\mu^{2}(1) G_{n+6}^{2}=\left(G_{n} G_{n+4} G_{n+5}+G_{n+3}^{3}\right)^{2}
$$

In particular, this implies

$$
\begin{aligned}
4 F_{n} F_{n+3}^{3} F_{n+4} F_{n+5}+F_{n+6}^{2} & =\left(F_{n} F_{n+4} F_{n+5}+F_{n+3}^{3}\right)^{2} \\
4 L_{n} L_{n+3}^{3} L_{n+4} L_{n+5}+25 L_{n+6}^{2} & =\left(L_{n} L_{n+4} L_{n+5}+L_{n+3}^{3}\right)^{2} .
\end{aligned}
$$

The next theorem generalizes identity (2.3).
Theorem 2.3. Let $n \geq 0$. Then

$$
\begin{equation*}
g_{n} g_{n+3}^{2}-g_{n+2}^{3}=(-1)^{n+1} \mu\left(x^{2} g_{n+2}-g_{n}\right) . \tag{2.8}
\end{equation*}
$$

Proof. By the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n} g_{n+3}^{2} & =g_{n}\left(x g_{n+2}+g_{n+1}\right)^{2} \\
& =x^{2} g_{n} g_{n+2}^{2}+2 x g_{n} g_{n+1} g_{n+2}+g_{n} g_{n+1}^{2} .
\end{aligned}
$$

But

$$
\begin{aligned}
2 x g_{n} g_{n+1} g_{n+2} & =\left(g_{n+2}-x g_{n+1}\right)\left(g_{n+2}-g_{n}\right) g_{n+2}+g_{n}\left(g_{n+2}-g_{n}\right) g_{n+2} \\
& =g_{n+2}^{3}-x g_{n+1} g_{n+2}\left(g_{n+2}-g_{n}\right)-g_{n}^{2} g_{n+2} \\
& =g_{n+2}^{3}-x^{2} g_{n+1}^{2} g_{n+2}-g_{n}^{2} g_{n+2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g_{n} g_{n+3}^{2}-g_{n+2}^{3} & =x^{2} g_{n} g_{n+2}^{2}-x^{2} g_{n+1}^{2} g_{n+2}-g_{n}^{2} g_{n+2}+g_{n} g_{n+1}^{2} \\
& =\left(g_{n} g_{n+2}-g_{n+1}^{2}\right)\left(x^{2} g_{n+2}-g_{n}\right) \\
& =(-1)^{n+1} \mu\left(x^{2} g_{n+2}-g_{n}\right),
\end{aligned}
$$

DIFFERENCES OF GIBONACCI PRODUCTS WITH THE SAME ORDER

 as desired.As can be predicted, this theorem also has interesting ramifications:

$$
\begin{align*}
f_{n} f_{n+3}^{2}-f_{n+2}^{3} & =(-1)^{n+1}\left(x^{2} f_{n+2}-f_{n}\right) \tag{2.9}\\
l_{n} l_{n+3}^{2}-l_{n+2}^{3} & =(-1)^{n}\left(x^{2}+4\right)\left(x^{2} l_{n+2}-l_{n}\right) \\
p_{n} p_{n+3}^{2}-p_{n+2}^{3} & =(-1)^{n+1}\left(4 x^{2} p_{n+2}-p_{n}\right) \\
q_{n} q_{n+3}^{2}-q_{n+2}^{3} & =(-1)^{n} 4\left(x^{2}+1\right)\left(4 x^{2} q_{n+2}-q_{n}\right)
\end{align*}
$$

The above polynomial identities have additional Fibonacci, Lucas, Pell, and Pell-Lucas consequences. For example, identity (2.3) follows from (2.9).

It also follows from identity from (2.8) that $G_{n} G_{n+3}^{2}-G_{n+2}^{3}=(-1)^{n+1} \mu(1) G_{n+1}$. As before, this yields

$$
4 G_{n} G_{n+2}^{3} G_{n+3}^{2}+\mu^{2}(1) G_{n+1}^{2}=\left(G_{n} G_{n+3}^{2}+G_{n+2}^{3}\right)^{2}
$$

This implies

$$
\begin{aligned}
4 F_{n} F_{n+2}^{3} F_{n+3}^{2}+F_{n+1}^{2} & =\left(F_{n} F_{n+3}^{2}+F_{n+2}^{3}\right)^{2} \\
4 L_{n} L_{n+2}^{3} L_{n+3}^{2}+25 L_{n+1}^{2} & =\left(L_{n} L_{n+3}^{2}+L_{n+2}^{3}\right)^{2} .
\end{aligned}
$$

The following theorem generalizes identity (2.4). Its proof is also short and neat.
Theorem 2.4. Let $n \geq 0$. Then

$$
\begin{equation*}
g_{n}^{2} g_{n+3}-g_{n+1}^{3}=(-1)^{n+1} \mu\left(g_{n+3}-x^{2} g_{n+1}\right) . \tag{2.10}
\end{equation*}
$$

Proof. By the gibonacci recurrence, we have

$$
\begin{aligned}
g_{n}^{2} g_{n+3}-g_{n+1}^{3} & =\left(g_{n+2}-x g_{n+1}\right)^{2} g_{n+3}-g_{n+1}\left(g_{n+3}-x g_{n+2}\right)^{2} \\
& =g_{n+2}^{2} g_{n+3}+x^{2} g_{n+1}^{2} g_{n+3}-g_{n+1} g_{n+3}^{2}-x^{2} g_{n+1} g_{n+2}^{2} \\
& =\left(g_{n+1} g_{n+3}-g_{n+2}^{2}\right)\left(x^{2} g_{n+1}-g_{n+3}\right) \\
& =(-1)^{n+1} \mu\left(g_{n+3}-x^{2} g_{n+1}\right) .
\end{aligned}
$$

It follows from identity (2.10) that

$$
\begin{aligned}
f_{n}^{2} f_{n+3}-f_{n+1}^{3} & =(-1)^{n+1}\left(f_{n+3}-x^{2} f_{n+1}\right) \\
l_{n}^{2} l_{n+3}-l_{n+1}^{3} & =(-1)^{n}\left(x^{2}+4\right)\left(l_{n+3}-x^{2} l_{n+1}\right) \\
p_{n}^{2} p_{n+3}-p_{n+1}^{3} & =(-1)^{n+1}\left(p_{n+3}-4 x^{2} p_{n+1}\right) \\
q_{n}^{2} q_{n+3}-q_{n+1}^{3} & =(-1)^{n} 4\left(x^{2}+1\right)\left(q_{n+3}-4 x^{2} q_{n+1}\right) .
\end{aligned}
$$

Theorem 2.4 has another interesting consequence. It also follows from identity (2.10) that $G_{n}^{2} G_{n+3}-G_{n+1}^{3}=(-1)^{n+1} \mu(1) G_{n+2}$. Again, as before, this yields

$$
4 G_{n}^{2} G_{n+1}^{3} G_{n+3}+\mu^{2}(1) G_{n+2}^{2}=\left(G_{n}^{2} G_{n+3}+G_{n+1}^{3}\right)^{2}
$$

Consequently,

$$
\begin{aligned}
4 F_{n}^{2} F_{n+1}^{3} F_{n+3}+F_{n+2}^{2} & =\left(F_{n}^{2} F_{n+3}+F_{n+1}^{3}\right)^{2} \\
4 L_{n}^{2} L_{n+1}^{3} L_{n+3}+25 L_{n+2}^{2} & =\left(L_{n}^{2} L_{n+3}+L_{n+1}^{3}\right)^{2} .
\end{aligned}
$$

3. Acknowledgement

The author would like to thank the referee for his/her thoughtful and constructive comments and suggestions for improving the quality of the exposition of the original version.

THE FIBONACCI QUARTERLY

References

[1] L. E. Dickson, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1966.
[2] S. Fairgrieve and H. W. Gould, Product difference Fibonacci identities of Simson, Gelin-Cesàro, Tagiuri, and generalizations, The Fibonacci Quarterly, 43.2 (2005), 137-141.
[3] R. S. Melham, A Fibonacci identity in the spirit of Simson and Gelin-Cesàro, The Fibonacci Quarterly, 41.2 (2003), 142-143.

MSC2010: 11B39
Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701
E-mail address: tkoshy@emeriti.framingham.edu

