ASYMPTOTIC BEHAVIOR OF GAPS BETWEEN ROOTS OF WEIGHTED FACTORIALS

COREY MARTINSEN AND PANTELIMON STĂNICĂ

Abstract

Here we find a general method for computing the limit of differences of consecutive terms of nth roots of weighted factorials by a sequence x_{n} (under some technical condition). As a consequence, we show that $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!x_{n+1}}-\sqrt[n]{n!x_{n}}\right)=\alpha e^{-1}$, where $\alpha \geq 1$ is the dominant root of the characteristic equation of an increasing linear sequence x_{n}, and e is Euler's constant.

1. Motivation

In [1], Bătineţu-Giurgiu and Stanciu ask for the limits $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)$, where $a_{n}=$ $\sqrt[n]{n!F_{n}}, a_{n}=\sqrt[n]{n!L_{n}}, a_{n}=\sqrt[n]{n!!F_{n}}$, and $a_{n}=\sqrt[n]{n!!L_{n}}$, where F_{n} and L_{n} are the Fibonacci and Lucas sequences, respectively. In this note, we introduce a general method that will find the limits of many such differences, in particular, our method is applicable to sequences of the form $a_{n}=\sqrt[n]{n!x_{n}}$, where x_{n} is any sequence under some technical assumptions (in particular, the conditions are easily satisfied by any increasing linear recurrence sequence).

2. The Results

We start with the next lemma which will be used throughout.
Lemma 2.1. We have $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}, \lim _{n \rightarrow \infty}\left(1 \pm \frac{1}{x_{n}}\right)^{x_{n}}=e^{ \pm 1}$, if $0<x_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Proof. The second limit can be found in the reader's preferred calculus book, and the second follows easily by applying Stirling's formula $n!=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n} e^{-\frac{u_{n}}{12 n}}$ (where $0<u_{n}<1$), or Stolz-Cesàro Theorem [6], which states that if $\left\{b_{n}\right\}_{n}$ is a divergent strictly monotone real sequence and $\left\{a_{n}\right\}_{n}$ is an arbitrary real sequence, such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L$, then the following limit exists and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$; or even as a particular case of Theorem 3.37 in [5].

Our approach to deal with $\left(a_{n+1}-a_{n}\right)$ is to transform this additive problem into a multiplicative one to be in sync with the flavor of the factorial. (The problem at hand resembles the celebrated Lalescu's sequence limit: $\lim _{n \rightarrow \infty}(\sqrt[n+1]{(n+1)!}-\sqrt[n]{n!})=e^{-1}$.)
Lemma 2.2. Let $a_{n} \geq 1$ be an increasing sequence of real numbers and set $b_{n}:=\frac{a_{n+1}}{a_{n}}>1$. If the following conditions hold:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\alpha, \lim _{n \rightarrow \infty} b_{n}=1, \lim _{n \rightarrow \infty} \ln \left(b_{n}^{n}\right)=\beta,
$$

for some real numbers α, β, then $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\alpha \beta$.

[^0]
THE FIBONACCI QUARTERLY

Proof. We write

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\lim _{n \rightarrow \infty} a_{n}\left(b_{n}-1\right)=\lim _{n \rightarrow \infty} \frac{a_{n}}{n} \cdot \frac{b_{n}-1}{\ln \left(b_{n}\right)} \cdot \ln \left(b_{n}^{n}\right) .
$$

Then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{b_{n}-1}{\ln \left(b_{n}\right)} & =\lim _{n \rightarrow \infty} \frac{1}{\ln \left(b_{n}\right)^{\frac{1}{b_{n}-1}}}=\frac{1}{\lim _{n \rightarrow \infty} \ln \left(b_{n}\right)^{\frac{1}{b_{n}-1}}} \\
& =\frac{1}{\lim _{n \rightarrow \infty} \ln \left(1+\left(b_{n}-1\right)\right)^{\frac{1}{b_{n}-1}}} \\
& \left.=\frac{1}{\ln \left(\lim _{n \rightarrow \infty}\left(1+\left(b_{n}-1\right)\right)^{\frac{1}{b_{n}-1}}\right.}\right)=\frac{1}{\ln e}=1 .
\end{aligned}
$$

The claim is shown.
Theorem 2.3. Let x_{n} be an increasing second-order recurrent sequence of real numbers satisfying $x_{n+1}=a x_{n}+b x_{n-1}, a \geq 0$, under some initial conditions $x_{0} \geq 0, x_{1}>0, \Delta=a^{2}+4 b \geq 0$. Assume that $\alpha=\frac{a+\sqrt{a^{2}+4 b}}{2} \geq 1$ is the dominant root of the associated characteristic equation for x_{n}. We have the following limits:
(i) If $a_{n}=\sqrt[n]{n!x_{n}}$, then $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\frac{\alpha}{e}$.
(ii) If $a_{n}=\sqrt[n]{(2 n)!!x_{n}}$, or $a_{n}=\sqrt[n]{(2 n-1)!!x_{n}}$, then $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\frac{2 \alpha}{e}$.

Proof. We show (i) first. We first assume that the sequence is nondegenerate, that is, $\Delta=$ $a^{2}+4 b \neq 0$. Let $\alpha=\frac{a+\sqrt{a^{2}+4 b}}{2}, \bar{\alpha}=\frac{a-\sqrt{a^{2}+4 b}}{2}$ be the roots of the associated characteristic equation $x^{2}-a x-b=0$, and so

$$
x_{n}=A \alpha^{n}+B \bar{\alpha}^{n}, \text { where } A=\frac{x_{1}-x_{0} \bar{\alpha}}{\Delta}>0, B=\frac{x_{0} \alpha-x_{1}}{\Delta}<0, \Delta=\sqrt{a^{2}+4 b} .
$$

Given our assumptions, we see that $A \geq|B|=-B$ and $\alpha>|\bar{\alpha}|$.
We will check the conditions of Lemma 2.2. We will use the inequalities (for $n \geq 1$)

$$
\begin{equation*}
\min \left\{x_{2}, \frac{A}{\alpha^{2}}\right\} \alpha^{n-2} \leq x_{n} \leq(A-B) \alpha^{n} . \tag{2.1}
\end{equation*}
$$

The upper bound follows easily since $\alpha>|\bar{\alpha}|$ and so $x_{n}=A \alpha^{n}+B \bar{\alpha}^{n} \leq A \alpha^{n}+|B||\bar{\alpha}|^{n} \leq$ $(A+|B|) \alpha^{n}$. We now show the lower bound. If n is odd, then $x_{n}=A \alpha^{n}+B \bar{\alpha}^{n}>A \alpha^{n}$ (since $B<0, \bar{\alpha}<0$). We next assume that n is even. The lower bound will be shown in this case if we can prove that $x_{n}=A \alpha^{n}+B \bar{\alpha}^{n}=\alpha^{n}\left(A-|B|\left(\frac{\bar{\alpha}}{\alpha}\right)^{n}\right) \geq \alpha^{n} \frac{x_{2}}{\alpha^{2}}$. Since the sequence $A-|B|\left(\frac{\bar{\alpha}}{\alpha}\right)^{n}$ is increasing with respect to even n, then $A-|B|\left(\frac{\bar{\alpha}}{\alpha}\right)^{n} \geq A-|B|\left(\frac{\bar{\alpha}}{\alpha}\right)^{2}=\frac{x_{2}}{\alpha^{2}}$.

From (2.1), we see that $\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\alpha$. We infer,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!x_{n}}}{n}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\frac{\alpha}{e} \tag{2.2}
\end{equation*}
$$

from Lemma 2.1 and the previous analysis. Next, for $b_{n}=\frac{a_{n+1}}{a_{n}}$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!x_{n+1}}}{\sqrt[n]{n!x_{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}} \cdot \frac{\sqrt[n+1]{x_{n+1}}}{\sqrt[n]{x_{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(n+1)!} /(n+1)}{\sqrt[n]{n!} / n} \cdot \frac{n}{n+1} \cdot \frac{\sqrt[n+1]{x_{n+1}}}{\sqrt[n]{x_{n}}} \\
& =1
\end{aligned}
$$

Further, $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\lim _{n \rightarrow \infty} \frac{A \alpha^{n+1}+B \bar{\alpha}^{n+1}}{A \alpha^{n}+B \bar{\alpha}^{n}}=\lim _{n \rightarrow \infty} \frac{\alpha^{n+1}\left(A+B \frac{\bar{\alpha}^{n+1}}{\alpha^{n+1}}\right)}{\alpha^{n}\left(A+B \frac{\bar{\alpha}^{n}}{\alpha^{n}}\right)}=\alpha$, and so,

$$
\begin{aligned}
\ln \lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{(n+1)!x_{n+1}}}{\sqrt[n]{n!x_{n}}}\right)^{n} & =\ln \lim _{n \rightarrow \infty} \frac{((n+1)!)^{n /(n+1)} x_{n+1}^{n /(n+1)}}{n!x_{n}} \\
& =\ln \lim _{n \rightarrow \infty} \frac{(n+1)!((n+1)!)^{-1 /(n+1)} x_{n+1} x_{n+1}^{-1 /(n+1)}}{n!x_{n}} \\
& =\ln \lim _{n \rightarrow \infty} \frac{n+1}{\sqrt[n+1]{(n+1)!}} \cdot \lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} \cdot \lim _{n \rightarrow \infty} x_{n+1}^{-1 /(n+1)} \\
& =\ln \left(e \cdot \alpha \cdot \alpha^{-1}\right)=1 .
\end{aligned}
$$

Thus, by Lemma 2.2, $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!x_{n+1}}-\sqrt[n]{n!x_{n}}\right)=\frac{\alpha}{e}$.
We next assume that the sequence x_{n} is degenerate, and so, $\Delta=0$. Therefore, $x_{n}=$ $(A+B n) \alpha^{n}$, where $\alpha=\frac{a}{2}, A=x_{0}, B=\frac{x_{1}}{\alpha}-x_{0}$ (it is obvious that if $\Delta=0$, then $a \alpha \neq 0$). As before, for $b_{n}=\frac{a_{n+1}}{a_{n}}$,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\frac{\alpha}{e}, \quad \lim _{n \rightarrow \infty} b_{n}=1, \quad \lim _{n \rightarrow \infty} \ln \left(b_{n}^{n}\right)=1,
$$

and consequently, $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!x_{n+1}}-\sqrt[n]{n!x_{n}}\right)=\frac{\alpha}{e}$.
We now show (ii). Recall that

$$
\begin{aligned}
(2 n-1)!! & =\frac{(2 n)!}{2^{n} n!} \\
(2 n)!! & =2^{n} n!
\end{aligned}
$$

Thus, if $a_{n}=\sqrt[n]{(2 n)!!x_{n}}$, then

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=2 \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!x_{n+1}}-\sqrt[n]{n!x_{n}}\right)=\frac{2 \alpha}{e}
$$

by the previous work. We now assume that $a_{n}=\sqrt[n]{(2 n-1)!!x_{n}}=\frac{1}{2} \sqrt[n]{\frac{(2 n)!}{n!} x_{n}}$. As before, we will check the conditions of Lemma 2.2.

THE FIBONACCI QUARTERLY

First, since $\lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n)!}}{(2 n)^{2}}=\frac{1}{e^{2}}$ (by a simple application of Lemma 2.1), then (regardless of whether x_{n} is degenerate or not)

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\frac{1}{2} \lim _{n \rightarrow \infty} \frac{\sqrt[n]{\frac{(2 n)!}{n!} x_{n}}}{n}=2 \lim _{n \rightarrow \infty} \frac{\sqrt[n]{(2 n)!}}{(2 n)^{2}} \cdot \lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}} \cdot \lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=2 \cdot \frac{1}{e^{2}} \cdot e \cdot \alpha=\frac{2 \alpha}{e}
$$

Similarly,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{\frac{(2 n+2)!}{(n+1)!} x_{n+1}}}{\sqrt[n]{\frac{(2 n)!}{n!} x_{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+2)!} \sqrt[n]{n!}}{\sqrt[n]{(2 n)!}} \cdot \frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{x_{n+1}}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{\sqrt[n]{x_{n}}}{\frac{\sqrt[n]{(2 n+2)!}}{(n+2)^{2}}} \cdot \frac{\sqrt[n]{n!}}{n}}{\frac{(2 n)!}{(2 n)^{2}} \cdot \frac{\sqrt[n]{(n+1)!}}{n+1}} \cdot \frac{n(2 n+2)^{2}}{(n+1)(2 n)^{2}} \cdot \frac{\sqrt[n+1]{x_{n+1}}}{\sqrt[n]{x_{n}}} \\
& =1 .
\end{aligned}
$$

Lastly, observe that

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+2)!}}{\sqrt[n]{(2 n)!}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n+1]{(2 n+2)!} /(2 n+2)^{2}}{\sqrt[n]{(2 n)!} /(2 n)^{2}} \cdot \frac{(2 n+2)^{2}}{(2 n)^{2}}=1
$$

which implies that $\lim _{n \rightarrow \infty} \ln \left(b_{n}^{n}\right)=1$, and consequently, $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=\frac{2 \alpha}{e}$.
The next corollary solves immediately the posed Problem B-1151 along with B-1160: (2) and (4).

Corollary 2.4. Let $\phi=\frac{1+\sqrt{5}}{2}$ be the golden ratio, and e be Euler's constant. Then
(i) $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!F_{n+1}}-\sqrt[n]{n!F_{n}}\right)=\frac{\phi}{e}$,
(ii) $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!L_{n+1}}-\sqrt[n]{n!L_{n}}\right)=\frac{\phi}{e}$,
(iii) $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(2 n+1)!!F_{n+1}}-\sqrt[n]{(2 n-1)!!F_{n}}\right)=\frac{2 \phi}{e}$,
(iv) $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(2 n+1)!!L_{n+1}}-\sqrt[n]{(2 n-1)!!L_{n}}\right)=\frac{2 \phi}{e}$,
(v) $\lim _{n \rightarrow \infty}\left(e_{n+1} \cdot \sqrt[n+1]{(n+1)!F_{n+1}}-e_{n} \sqrt[n]{n!F_{n}}\right)=\phi$,
(vi) $\lim _{n \rightarrow \infty}\left(e_{n+1} \cdot \sqrt[n+1]{(n+1)!L_{n+1}}-e_{n} \sqrt[n]{n!L_{n}}\right)=\phi$.

One would wonder if the method is extendable to other sequences x_{n}. The same proof we have used for the second-order linear sequence will work for any sequence $\left\{x_{n}\right\}$ under some technical conditions (see the theorem below).

Consequently, the following generalization of Theorem 2.3 will hold.

Theorem 2.5. Let x_{n} be any increasing sequence of positive real numbers with exponential growth, precisely, $\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\alpha$ (or, equivalently, $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\alpha$). We have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)!x_{n+1}}-\sqrt[n]{n!x_{n}}\right)=\frac{\alpha}{e} \\
& \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(2 n+1)!!x_{n+1}}-\sqrt[n]{(2 n-1)!!x_{n}}\right)=\frac{2 \alpha}{e}, \\
& \lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(2 n+2)!!x_{n+1}}-\sqrt[n]{(2 n)!!x_{n}}\right)=\frac{2 \alpha}{e}
\end{aligned}
$$

Proof. The proof is indeed similar, by using Lemma 2.2 and equations (2.2) and (??), however we need to motivate our claim that $\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\alpha$ is equivalent to $\lim _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}=\alpha$. That follows easily from the inequalities (true for any sequence of real numbers $x_{n}>0$; see [5 , Theorem 3.37])

$$
\liminf _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{x_{n}} \leq \limsup _{n \rightarrow \infty} \frac{x_{n+1}}{x_{n}}
$$

The proof is done.
In particular, the theorem above will be true for any increasing r-order linear recurrence sequence x_{n} (of initial conditions $x_{i}, 0 \leq i \leq r-1$) [4], under some natural conditions. Assuming the characteristic equation of x_{n} has real roots $\alpha_{i}, 1 \leq i \leq s$, of multiplicity m_{i}, then

$$
x_{n}=p_{1}(n) \alpha_{1}^{n}+p_{2}(n) \alpha_{2}^{n}+\cdots+p_{s}(n) \alpha_{s}^{n},
$$

where p_{i} 's are polynomials of degree $m_{i}-1$. Next, we assume that $\alpha:=\alpha_{1} \geq 1$ is the dominant root and so there exist two nonzero polynomials G, H such that

$$
G(n) \alpha^{n} \leq x_{n} \leq H(n) \alpha^{n},
$$

which is needed to infer that $\lim _{n \rightarrow \infty} \sqrt[n]{x_{n}}=\alpha$.
Having achieved this level of generalization, we inquire whether we can weigh the involved sequences differently. We are able to prove the following theorem (which has as a consequence a solution to [2]).

Theorem 2.6. Let $\left\{u_{n}\right\}_{n},\left\{v_{n}\right\}_{n}$ be two sequences such that $\lim _{n \rightarrow \infty} u_{n}=\beta$ and $\lim _{n \rightarrow \infty} n\left(u_{n}-v_{n}\right)=$ γ (consequently, $\lim _{n \rightarrow \infty}\left(u_{n}-v_{n}\right)=0$ and so, $\lim _{n \rightarrow \infty} v_{n}=\beta$). Further, let $\left\{x_{n}\right\}$ be a sequence as in the previous theorem with $\sqrt[n]{x_{n}}=\alpha$, and $a_{n}=\sqrt[n]{n!x_{n}}$. Then,

$$
\lim _{n \rightarrow \infty}\left(u_{n} a_{n+1}-v_{n} a_{n}\right)=\frac{\alpha(\beta+\gamma)}{e} .
$$

Proof. We first write

$$
\begin{aligned}
u_{n} a_{n+1}-v_{n} a_{n} & =u_{n} a_{n+1}-u_{n} a_{n}+u_{n} a_{n}-v_{n} a_{n} \\
& =u_{n}\left(a_{n+1}-a_{n}\right)+\left(u_{n}-v_{n}\right) a_{n} \\
& =u_{n}\left(a_{n+1}-a_{n}\right)+n\left(u_{n}-v_{n}\right) \frac{a_{n}}{n} .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

By our assumptions, Theorem 2.5 along with (2.2) (for the general sequence x_{n}), we infer that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} u_{n}\left(a_{n+1}-a_{n}\right)=\frac{\beta \alpha}{e}, \\
& \lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\frac{\alpha}{e}, \\
& \lim _{n \rightarrow \infty} n\left(u_{n}-v_{n}\right)=\gamma,
\end{aligned}
$$

from which the claim follows.
We omit the (easy) details, but as an application, if we let $e_{n}=\left(1+\frac{1}{n}\right)^{n}$, and apply our theorem with $u_{n}:=e, v_{n}:=e_{n}$, or $u_{n}:=e_{n+1}, v_{n}=e_{n}$ (along with $x_{n}=F_{n}$, respectively, $x_{n}=$ L_{n}), we get the remaining Problem B-1160: (1) and (3) (we use the fact that $\lim _{n \rightarrow \infty} n\left(e-e_{n}\right)=\frac{e}{2}$, an easy consequence of the convergence error of e_{n} to e)

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(e \sqrt[n+1]{(n+1)!F_{n+1}}-e_{n} \sqrt[n]{n!F_{n}}\right)=\frac{\phi(e+e / 2)}{e}=\frac{3 \phi}{2} \\
& \lim _{n \rightarrow \infty}\left(e \sqrt[n+1]{(n+1)!L_{n+1}}-e_{n} \sqrt[n]{n!L_{n}}\right)=\frac{3 \phi}{2}
\end{aligned}
$$

3. Acknowledgement

The authors would like to thank the referee for useful comments and for pointing out reference [3].

References

[1] D. M. Bătineţu-Giurgiu, N. Stanciu, Problem B-1151, The Fibonacci Quarterly, 3.3, August 2014, 274.
[2] D. M. Bătineţu-Giurgiu, N. Stanciu, Problem B-1160, The Fibonacci Quarterly, 4.4, November 2014, 368.
[3] D. M. Bătineţu-Giurgiu, N. Stanciu, and A. Kotronis, Calculating the limits of some real sequences, Math Problems J., 4.1 (2014), 252-257.
[4] K. H. Rosen, Discrete Mathematics and its Applications, McGraw-Hill Science, New York, 2011.
[5] W. Rudin, Principles of Mathematical Analysis, (3rd Ed.), McGraw-Hill, 1976.
[6] O. Stolz, Vorlesungen über allgemeine Arithmetik: nach den Neueren Ansichten, Leipzig: Teubners, (1885), 173-175.

MSC2010: 05A10, 26A03, 40A05, 97I30
School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife KY16 9SS, UK

E-mail address: cem23@st-andrews.ac.uk
Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943-5216
E-mail address: pstanica@nps.edu

[^0]: This paper is part of an undergraduate student summer project of the first author at the Naval Postgraduate School under the supervision of the second author.

