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Abstract. This article partially answers an open problem of Kimberling. Consider a se-
quence of polynomials satisfying an mth order recursive relation with polynomial coefficients.
Under what circumstances can we say anything exact about the coefficients of xi? The paper’s
main theorem asserts that under modest assumptions, there exists a computable constant, c,
such that, for each i, the coefficients of xi eventually satisfy a polynomial of degree i with the
ith difference operator applied to this polynomial equaling c

i.

1. Introduction

Kimberling [2] studies the polynomial sequence satisfying the polynomial recursion

Gn(x) = (ax+ b)Gn−1(x) + (cx2 + dx+ e)Gn−2(x) + (fx+ g), (1.1)

with

G0(x) = 1, G1(x) = 1 + x, a 6= 0, b = 0, e = 0. (1.2)

Kimberling shows two convergence results. Letting

Gn(x) =

n
∑

i=0

g(i)n xi, (1.3)

we have both pointwise convergence,

lim
x→∞

Gn(x) =
g + fx

1− (a+ d)x− cx2
,

as well as coefficient convergence

lim
n→∞

g(i)n = coefficient of xi in
g + fx

1− (a+ d)x− cx2
.

Kimberling poses two questions: (1) Can the assumptions on a, b, e in (1.2) be changed?
(2) The order of the recursion in (1.1) is 2; can it be raised?

In this paper we prove the following main theorem.

Theorem 1.1. Suppose the polynomial sequence {Gn(x)}n≥0 satisfies the recursion

Gn(x) =

m
∑

i=1

pi(x)Gn−i(x), m ≥ 2, (1.4)

with

pi(x) =
i

∑

j=0

c
(j)
i xj, 1 ≤ i ≤ m, (1.5)
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with initial conditions

Gi(x) =
i

∑

j=0

xj , 0 ≤ i ≤ m− 1, (1.6)

and with the following assumptions

c
(0)
1 = 1, c

(0)
i = 0, 1 < i ≤ m. (1.7)

Then, using (1.3) we have
(i)

g(0)n = 1, n ≥ 1. (1.8)

(ii) The array {g
(i)
n }n,i≥0 has triangular support, that is,

g(i)n 6= 0 implies 0 ≤ i ≤ n. (1.9)

Define the diagonal sequence by

Di = g
(i)
i . (1.10)

Then
(iii)

Dn =

m
∑

k=1

c
(k)
k Dn−k. (1.11)

(iv) For each fixed i, for sufficiently large n, we have

∆ig(i)n =





m
∑

j=1

c
(1)
j





i

, (1.12)

with ∆ the finite difference operator with respect to the variable n [1].

Equation (1.12) implies the main result of this paper.

Corollary 1.2. With assumptions (1.4)–(1.7), we have for each fixed i that the coefficient

sequence {g
(i)
n }n,i≥0 eventually, that is for all n ≥ n0, exactly satisfies a degree i polynomial in

the variable n.

It might be worthwhile to compare the assumptions and conclusions in this paper and in
[2]. A comparison of assumptions is presented in Table 1. A comparison of conclusions is
presented in Table 2. Notice that some of the results of [2] are lost in this paper. The basic
point of this paper is that interesting patterns do exist in the coefficients even if there is no
limiting generating function.

An outline of the rest of this paper is the following. In the next section, we illustrate the
main theorem with a particular example. We also discuss generating functions and pointwise
convergence. In the final section, we prove the main theorem.
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Table 1. A comparison of assumptions in [2] and this paper.

Assumption Kimberling This paper

p0(x) 6= 0 0

c
(0)
1 0 1

c
(1)
1 6= 0 Unrestricted

c
(0)
2 0 0

Table 2. A comparison of conclusions in [2] and this paper.

Conclusion Kimberling This paper

Coefficient convergence To a constant To a polynomial value
Pointwise convergence Yes No

Limiting coefficient values Recursive sequence Difference operator pattern

2. An Example

We illustrate the main theorem and associated concepts with the following example [3].

Example 2.1. Define a polynomial sequence, {Gn}n≥0, by

Gn(x) = p1(x)Gn−1(x) + p2(x)Gn−2(x), (2.1)

with

p1(x) = 1− 2x, p2(x) = x− x2, G0(x) = 1, G1(x) = 1 + x.

It is easy to derive that

Gn(x) = (1 + 2x)(1 − x)n − 2x(−x)n, n ≥ 0. (2.2)

This can be verified by first checking the initial conditions for n = 1, 2 and then substituting
(2.2) into (2.1) and simplifying.

Table 3 presents the first few rows. By expanding (2.2) we see that

g(i)n = (−1)i
1

i!
(n − (3i − 1))(n)(i−1), n ≥ i. (2.3)

So in this particular example the eventually in Corollary 1.2 means for n ≥ i. Note that the
word eventually is needed in Corollary 1.2, since for 1 ≤ n < i, (2.3) does not uniformly yield
0 as it should.

We can use this example to illustrate the main theorem.

(i) By (2.2), g
(0)
n = 1, n ≥ 0.

(ii) Again using (2.2), g
(i)
n 6= 0 implies 0 ≤ i ≤ n.

(iii) By (2.3) and (1.10), Di = −(−1)i(2i − 1). And indeed, these alternating odds satisfy

Di = −2Di−1 −Di−2

as required.
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(iv) Equation (1.12) is implied by the even stronger assertion that

∆g(i+1)
n = −g(i)n , i ≥ 0. (2.4)

Table 3. Gn(x), 0 ≤ n ≤ 4, with Gn(x) defined by (2.2). For example G2(x) =
1− 3x2.

Gn(x) Constant Coef. Coef. of x Coef. of x2 Coef. of x3 Coef. of x4

G0(x) 1
G1(x) 1 1
G2(x) 1 0 -3
G3(x) 1 -1 -3 5
G4(x) 1 -2 -2 8 -7

It is easy to see that (2.4) implies (1.12), since by applying ∆ to both sides of (2.4) i times
one arrives at (1.12) by (1.8).

Expanding (2.4) we obtain

g
(i+1)
n+1 − g(i+1)

n = −g(i)n . (2.5)

We now proceed to prove (2.5).

Proof. We first substitute (2.3) into (2.5). We can then make the following simplifications.

• The minus signs on both sides cancel.
• After canceling factorials in the denominators we are left with a factor of i+ 1 on the
right side.

• We can cancel a common factor of (n)i−1 from both sides.

We then see that to prove (2.5) we must equivalently prove

(n+ 1)(n + 1− (3i+ 2))− (n− (i− 1))(n − (3i+ 2)) = (i+ 1)(n − (3i − 1)). (2.6)

But for each fixed n, (2.6) is a degree 2 polynomial in i and hence for each fixed n to prove
(2.6), it suffices to show (2.6) is true at 3 points. Since for each fixed n, the resulting equation
is a degree 2 polynomial in i, it is simply a matter of verification. However, computations are
easiest at n = 3i + 1, n = 3i + 2, and n = 3i − 1, since one of the three terms vanish. For
example, if we substitute n = 3i + 1 then (2.6) reduces to verification that 2i + 2 = 2(i + 1).
This completes the proof. �

We use this example to lightly discuss why the obvious generating function approach used
in [2] is not useful to prove the main theorem. As can easily be seen from (2.3) or (2.2), as
n goes to infinity the coefficients blow up. So there is no limit function. The pointwise limit
of Gn(x) also shows this. For example, the sequence is diverging by oscillation at x = 1. The
pointwise limit (where it exists) has several discontinuities. Where the limit exists it is not
uniform. For example, while Gn(0) = 1 for all n, nevertheless, limn→∞Gn(

1
n
) = e−1. Because

of these considerations, we will employ a difference operator approach in the proof of the main
theorem in the next section.

It is natural to ask whether this example can be generalized. Are there other examples
where (2.4) holds? It turns out that (2.1) is a member of a one-parameter family of such
examples.
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Lemma 2.2. Suppose (1.4)–(1.7) hold with m = 2. Then necessary and sufficient conditions
for (2.4) to hold are the following:

c
(1)
1 = b, c

(2)
2 = 1 + b, c

(1)
2 = −1− b. (2.7)

Proof. Both necessity and sufficiency require the following identity which follows from (1.3),
(1.5), (1.4), and (1.7):

g(i)n = g
(i)
n−1 + c

(1)
1 g

(i−1)
n−1 + c

(1)
2 g

(i−1)
n−2 + c

(2)
2 g

(i−2)
n−2 . (2.8)

We now proceed to prove necessity and sufficiency.
Necessity. We assume (2.4) holds with m = 2 and proceed to derive (2.7).

Proof that c
(1)
2 = −1−b. Repeatedly applying the ∆ operator to (2.4), we obtain ∆2g

(i)
n =

(−1)2g
(i−2)
n , and similarly ∆3g

(i)
n = (−1)3g

(i−3)
n , so that by induction and (1.8), ∆ig

(i)
n =

(−1)ig
(0)
n = (−1)i. But (1.12) states that ∆ig

(i)
n = (c

(1)
1 + c

(1)
2 )i, implying c

(1)
1 + c

(1)
2 = −1, and

hence, c
(1)
2 = −1− b, as required.

Proof that c
(2)
2 = 1 + b. We equivalently prove that c

(2)
2 + c

(1)
2 = 0.

By (1.8), g
(0)
n = 1. By (1.6), g

(1)
1 = 1. Applying (2.4), we derive that g

(1)
2 = 0. By (1.10)

and (1.11), g
(2)
2 = c

(1)
1 + c

(2)
2 . Finally, by (2.4), g

(2)
3 = c

(1)
1 + c

(2)
2 .

Applying (2.8) to g
(2)
3 and using the above identities we derive that c

(1)
1 + c

(2)
2 = c

(1)
1 + c

(2)
2 +

c
(1)
2 + c

(2)
2 . The desired result immediately follows.

Sufficiency. We assume (2.7) with m = 2 and proceed to derive (2.4).
Using the notation of (2.7), (2.8) states

g(i)n − g
(i)
n−1 = b(g

(i−1)
n−1 − g

(i−1)
n−2 )− g

(i−1)
n−2 + g

(i−2)
n−2 + bg

(i−2)
n−2 . (2.9)

By an induction assumption on i, we may assume g
(i−1)
n−1 − g

(i−1)
n−2 = −g

(i−2)
n−2 . Plugging this

induction assumption into (2.9) and simplifying we have g
(i)
n − g

(i)
n−1 = −g

(i−1)
n−1 , proving (2.4).

�

.

3. Proof of the Main Theorem

First, by (1.3), (1.5), and (1.4) we have the following fundamental identity

g(i)n =

m
∑

j=1

j
∑

k=0

c
(k)
j g

(i−k)
n−j . (3.1)

Second, we prove (1.9) which equivalently means that the {Gn(x)}n≥0 are polynomials of
degree at most n with no finite poles. This is easy to see, since by (1.5) the degree of pi(x)
is exactly i, 1 ≤ i ≤ m, and by (1.6) the degree of Gi(x) is at most i for 0 ≤ i ≤ m − 1.
Therefore, a routine induction using (1.4) shows that the degree of Gn(x) is at most n.

We now prove Theorem 1.1(i), (iii), (iv) using (3.1).
Proof of (1.8). We apply (3.1) with i = 0.

By (1.9), for the g
(i−k)
n−j on the right-hand side of (3.1) to be non-zero, i − k must be non-

negative; hence, we infer that k = 0. By (1.7), c
(0)
j is only non-zero if j = 1 and in that case

we have c
(0)
j = 1.
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Hence, when i = 0, (3.1) reduces to g
(0)
n = c

(0)
n g

(0)
n−1 = g

(0)
n−1. The proof is completed by an

induction argument using (1.6) as a base step.
Proof of (1.11). We apply (3.1) with i = n.

By (1.9), for the g
(i−k)
n−j on the right-hand side of (3.1) to be non-zero, we require i − k ≤

n − j or equivalently k ≥ j. Since the limits in the second summation are from k = 0 to

k = j we conclude that k = j. But then we immediately have that (3.1) reduces to g
(n)
n =

∑m
k=1 c

(k)
k g

(n−k)
n−k proving, using (1.10), (1.11).

Proof of (1.12). The proof is by induction on i.
For a base case, we let i = 0 in (1.12). The resulting equation is true by (1.8).
For an induction assumption we assume, for some i ≥ 1.

∆i−1g(i−1)
n =

( m
∑

j=1

c
(1)
j

)i−1

. (3.2)

Note, that for p ≥ 0,

∆pg(p)n = constant, for all sufficiently large n implies ∆p+1g(p)n = 0, for all sufficiently large n.
(3.3)

We apply (3.1) with n replaced by n+ 1. By (1.7), we obtain

∆g(i)n = g
(i)
n+1 − g(i)n = c

(1)
1 g(i−1)

n +
m
∑

j=2

j
∑

k=0

c
(k)
j g

(i−k)
n+1−j . (3.4)

We now apply the operator ∆i−1 to both sides of (3.4). We obtain

∆ig(i)n = c
(1)
1 ∆i−1g(i−1)

n +
m
∑

j=2

j
∑

k=0

c
(k)
j ∆i−1g

(i−k)
n+1−j . (3.5)

In simplifying (3.5), we may, by (3.3) discard terms in the second summation with k > 1.
Similarly, by (1.7), we may discard the k = 0 term. In other words, in the second summation
we only have left the k = 1 term. Hence, (3.5) simplifies to

∆ig(i)n = c
(1)
1 ∆i−1g(i−1)

n +

m
∑

j=2

c
(1)
j ∆i−1g

(i−1)
n+1−j . (3.6)

The proof of (1.12) is now completed by substituting (3.2) into (3.6).
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