AN EXTENSION OF THE PERIODICITY OF AN EXTENDED FIBONACCI FAMILY

RUSSELL EULER AND JAWAD SADEK

Abstract

The Fibonacci congruence $F_{\phi(m)+n} \equiv F_{n}\left(\bmod \frac{m}{d}\right)$ has been extended to Pell numbers, Lucas numbers, and Pell-Lucas numbers, where ϕ is the Euler phi-function, $m=$ $a^{2}-a-1, d=(2 a-1, m), a \geq 2$ is an integer, and (x, y) denotes the greatest common divisor of the integers x and y. We prove that the generalization holds for a larger class of integers than the one containing the integers of the form $m=a^{2}-a-1$.

1. Introduction

Let a and λ be integers such that $a \geq 2$ and $\lambda>0$. Let $m(a ; \lambda)=a^{2}-\lambda a-1$. Unless it is needed for clarity, the dependence of $m(a ; \lambda)$ on a will be suppressed and the notation m_{λ} will be used instead. Also, if N is a positive integer, then a prime of the form $N k \pm 1$, where k is a positive integer, will be called ($N k \pm 1$)-prime.

In [3] and [6], the authors show that if $m_{1}=a^{2}-a-1$ and $d=\left(m_{1}, 2 a-1\right)$, the greatest common divisor of m_{1} and $2 a-1$, then

$$
\begin{equation*}
F_{\phi\left(m_{1}\right)+n} \equiv F_{n}\left(\bmod \frac{m_{1}}{d}\right), \tag{1.1}
\end{equation*}
$$

where F_{n} is the nth Fibonacci number and ϕ is the Euler phi-function [1]. In [4], the author extends this congruence to Pell numbers, Lucas numbers, and Pell-Lucas numbers, denoted by P_{n}, L_{n}, and Q_{n}, respectively. In this article we show that the results in [3] and [4] are special cases of a more general form, say m, of m_{λ}. Precisely, if $c=0$ or 1 , we show that

$$
\begin{equation*}
F_{\phi\left(m_{\lambda}\right)+n} \equiv F_{n}\left(\bmod \frac{m}{d}\right), \tag{1.2}
\end{equation*}
$$

where $d=\left(\lambda^{2}+4, m\right)$ and

$$
\begin{equation*}
m=5^{c} M_{1}, \tag{1.3}
\end{equation*}
$$

where M_{1} has only ($10 k \pm 1$)-primes in its factorization. Also,

$$
P_{\phi(m)+n} \equiv P_{n}\left(\bmod \frac{m}{d}\right) \quad \text { and } Q_{\phi\left(m_{\lambda}\right)+n} \equiv Q_{n}\left(\bmod \frac{m}{d}\right),
$$

and

$$
\begin{equation*}
m=2^{c} M_{2}, \tag{1.4}
\end{equation*}
$$

where M_{2} has only ($8 k \pm 1$)-primes in its factorization.
We show that $m_{1}=a^{2}-a-1$ is of the form (1.3), whereas $m=59$ or $m=61$, for instance, is not of the form m_{1} for any integer a. Similarly, $m_{2}=a^{2}-2 a-1$ is of the form (1.4), and although $m=41$ and $m=49$ are of the form (1.4), neither are of the form m_{2}. Thus, our results hold for a larger class of the positive integers. Unless it is stated otherwise, throughout this paper j, k, k_{i}, p, p_{i}, r, and r_{i} will be nonnegative integers, h will denote an integer such that $0 \leq h \leq 9$ but $h \neq 3$, and $c=0$ or 1 .

THE FIBONACCI QUARTERLY

2. Periodicity of Fibonacci and Pell Numbers

We note first that for nonnegative integers n, the recurrence relation defined by

$$
\begin{equation*}
g_{n+2}=\lambda g_{n+1}+g_{n} \tag{2.1}
\end{equation*}
$$

with initial conditions

$$
g_{0}=A \quad \text { and } \quad g_{1}=B
$$

can be used to study the Fibonacci, Lucas, Pell, and Pell-Lucas numbers in a unified way. In particular, if $\mathrm{A}=0, B=\lambda=1$, then $g_{n}=F_{n}$. If $A=2, B=\lambda=1$, then $g_{n}=L_{n}$. If $A=0$, $B=1$, and $\lambda=2$, then $g_{n}=P_{n}$. If $A=B=\lambda=2$, then $g_{n}=Q_{n}$.

Following the standard procedures for solving second-order homogeneous recurrence relations with constant coefficients [5], the Binet formula for the integer family $\left\{g_{n}\right\}$ defined by (2.1) is given by

$$
\begin{equation*}
g_{n}=\frac{1}{\sqrt{\lambda^{2}+4}}\left([B-A v] u^{n}-[B-A u] v^{n}\right), \tag{2.2}
\end{equation*}
$$

where $u=\frac{1}{2}\left(\lambda+\sqrt{\lambda^{2}+4}\right), v=\frac{1}{2}\left(\lambda-\sqrt{\lambda^{2}+4}\right)$, and A and B are nonnegative integers.
To show that the value m_{λ} need not be restricted to the form $m_{\lambda}=a^{2}-\lambda a-1$, we prove the following lemmas.

Lemma 2.1. The prime factorization of $m(a ; 1)$ has at most one factor of 5 . The prime factorization $m(a ; 2)$ has at most one factor of 2 .
Proof. Since $a^{2} \equiv 0,1,4(\bmod 5), m(a ; 1) \equiv 0,1,4(\bmod 5)$. We claim that 5 divides $m(a ; 1)$ if and only if $a=5 j+3$. This is so because the cases $a=5 j, 5 j+1,5 j+2,5 j+4$ are congruent to $4,4,1,1(\bmod 5)$, respectively. Furthermore, for $a=5 j+3, m(a ; 1)=5\left(5 j^{2}+5 j+1\right)$. Since the factor $\left(5 j^{2}+5 j+1\right)=5 j(j+1)+1$ is not a multiple of 5 , the desired result follows. Similarly, $m(a ; 2) \equiv 2,6,7(\bmod 8)$. In each case where $m(a ; 2)$ is even, it can be written as $4 M^{\prime}+2$, where M^{\prime} is a nonnegative integer. The second claim of the lemma follows.

In the following lemma, $10 k \pm 1$ and $8 k \pm 1$ are not necessarily primes.
Lemma 2.2. $m(a ; 1)=5^{c}(10 k \pm 1)$ and $m(a ; 2)=2^{c}(8 k \pm 1)$.
Proof. In Lemma 2.1, we showed that $5 \mid m(a ; 1)$ if and only if $a=5 k+3$ and in that case, $m(a ; 1)=5\left(5 j^{2}+5 j+1\right)=5(10 k+1)$. If $5 \nmid m(a ; 1), a^{2} \equiv 0,1,4,5,6,9(\bmod 10)$, $m(a ; 1) \equiv \pm 1(\bmod 10)$, and so the desired follows. For $m(a ; 2)$, we let $a=8 k \pm k_{i}$ where $0 \leq k_{i} \leq 7$ and argue similarly.

Lemma 2.3. Let b be a positive integer. If $b \mid m(a ; \lambda)$, then $b \mid m(a-b ; \lambda)$.
Proof.

$$
\begin{aligned}
m(a-b ; \lambda) & =(a-b)^{2}-\lambda(a-b)-1 \\
& =a^{2}-\lambda a-1+b(b-2 a+\lambda) .
\end{aligned}
$$

The lemma now follows.
Lemma 2.4. If $m(a ; \lambda)$ is not prime, then it has a factor smaller than a.
Proof. Since $m(a ; \lambda)=a^{2}-\lambda a-1<a^{2}$, the lemma follows.
Lemma 2.5. If $5 \nmid m(a ; 1)$, then $m(a ; 1)=(10 k \pm 1)^{r_{1}}$, where r_{1} is odd. Also, if $2 \nmid m(a ; 2)$ then $m(a ; 2)=\left(8 k_{2} \pm 1\right)^{r_{2}}$, where r_{2} is odd.

AN EXTENSION OF THE PERIODICITY OF AN EXTENDED FIBONACCI FAMILY

Proof. Since $(a-2)^{2}<m(a ; 2)<(a-1)^{2}<m(a ; 1)<a^{2}, m(a ; \lambda)$ cannot be the square of an integer for $\lambda=1$ or $\lambda=2$. Thus r_{1} and r_{2} must be odd. For $\lambda=1$, since $m(a ; 1)=$ $a^{2}-a-1=a(a-1)-1$ is odd, and $5 \nmid m(a ; 1)$, we need only to consider the factor $10 k \pm 3$. Now $(10 k \pm 3)^{r_{1}}=(10 k \pm 3)^{2 j+1}=\left((10 k \pm 3)^{2}\right)^{j}(10 k \pm 3)=\left(10 k^{\prime} \pm 1\right)(10 k \pm 3)=10 k^{\prime \prime} \pm 3$. This contradicts Lemma 2.2, so $p=10 k \pm 1$. A similar argument takes care of the case where $\lambda=2$.

Lemma 2.6. $m(a ; 1)$ is not of the form $\left(10 k_{1} \pm 3\right)\left(10 k_{2} \pm 3\right)$ and $m(a ; 2)$ is not of the form $\left(8 k_{1} \pm 3\right)\left(8 k_{2} \pm 3\right)$.

Proof. Multiplying out $\left(10 k_{1} \pm 3\right)\left(10 k_{2} \pm h\right)=m(a ; 1)$ does not yield an expression of the form $5^{c}(10 k \pm 1)$. This contradicts Lemma 2.2. Similarly, by simple multiplication, $m(a ; 2)$ is not of the form $\left(8 k_{1} \pm 3\right)\left(8 k_{2} \pm h\right)$. Now we argue the case where $\lambda=1$ and $h=3$. For $\lambda=1$, assume that a is the first positive integer such that $10 k \pm 3$ divides $m(a, 1)$ and that $m(a ; 1)=\left(10 k_{1} \pm 3\right)\left(10 k_{2} \pm 3\right)$. By Lemma 2.4 we may assume that $10 k_{1} \pm 3$ is smaller than a. But by Lemma 2.3, $b=a-(10 k \pm 3)$ would be a positive integer smaller than a that divides $m(a-b ; 1)$. However, a was assumed to be the smallest such number. Since by Lemma 2.5, the case $m(a ; 1)=(10 k \pm 3)^{r}$ cannot occur, we have a contradiction. The case where $\lambda=2$ and $h=3$ is similar.

Lemma 2.7. $m(a ; 1)$ is not of the form $\left(10 k_{1} \pm 3\right)^{2}\left(10 k_{2} \pm 1\right)$ and $m(a ; 2)$ is not of the form $\left.\left(8 k_{1} \pm 3\right)^{2}\left(8 k_{2} \pm 1\right)\right)$.

Proof. For $\lambda=1, m(a ; 1)=\left(10 k_{1} \pm 3\right)^{2}\left(10 k_{2} \pm 1\right)=\left(10 k_{1} \pm 3\right)\left(10 k^{\prime} \pm 3\right)$. The desired result follows now from Lemma 2.6. Similarly, the result holds for $\lambda=2$.

Now we state our first result.
Theorem 2.8. $m(a ; 1)=5^{c}\left(10 p_{1} \pm 1\right)^{c_{1}}\left(10 p_{2} \pm 1\right)^{c_{2}} \cdots\left(10 p_{r} \pm 1\right)^{c_{r}}$ and $m(a ; 2)=2^{c}\left(8 p_{1} \pm 1\right)^{r_{1}}\left(8 p_{2} \pm 1\right)^{r_{2}} \cdots\left(8 p_{s} \pm 1\right)^{r_{s}}$.

Proof. By Lemmas 2.2 and $2.5 m(a ; 1)=5^{c}(10 k \pm 1)$ and $m(a ; 1)$ are squares of some integers. Since $(10 p \pm 3)^{2 k+1}=10 p^{\prime} \pm 3$, and $(10 p \pm h)^{r}=10 p^{\prime} \pm 1$, we only need to check the cases $\left(10 k_{1} \pm 3\right)^{2}\left(10 k_{2} \pm 1\right)$ and $\left(10 k_{1} \pm 3\right)\left(10 k_{2} \pm 3\right)$. The theorem follows now by Lemmas 2.6 and 2.7. The proof of $m(a ; 2)$ is similar.

To prove that (1.1) holds for any m of the form (1.2), we need the following lemmas [2].
Lemma 2.9. If m is of the form (1.3), then $x^{2} \equiv 5(\bmod m)$ has a solution.
Lemma 2.10. If $(2, p)=1$, then $2 x \equiv 1(\bmod p)$ has a solution.
Lemma 2.11. If m is of the form (1.4), then $x^{2} \equiv 2(\bmod m)$ has a solution.
For the rest of the paper we use the following notations. We let t_{λ} be a least residue satisfying $x^{2} \equiv \lambda^{2}+4\left(\bmod \frac{m}{d}\right)$, if it exists, ν the multiplicative inverse of $\frac{1}{2}\left(\bmod \frac{m}{d}\right)$, and w_{λ} be the multiplicative inverse $\frac{1}{t_{\lambda}}$, when it exists, of $t_{\lambda}\left(\bmod \frac{m}{d}\right)$ [1]. Now we prove our generalization of the results in [4].
Theorem 2.12. Let $\frac{m}{d}$ be an odd integer with prime factorization $\frac{m}{d}=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{s}^{r_{s}}$. Assume $\left(\lambda^{2}+4, \frac{m}{d}\right)=1$ and $\left(d, \frac{m}{d}\right)=1$. If $x^{2} \equiv \lambda^{2}+4\left(\bmod \frac{m}{d}\right)$ has a solution and $\frac{1}{t_{\lambda}}\left(\bmod \frac{m}{d}\right)$ exists, then $g_{\phi(m)+n} \equiv g_{n}\left(\bmod \frac{m}{d}\right)$.

THE FIBONACCI QUARTERLY

Proof. If the integer t_{λ} satisfies $\left(t_{\lambda}, \frac{m}{d}\right)=D>1$, then $\left(t_{\lambda}^{2}, \frac{m}{d}\right)=\left(\lambda^{2}+4, \frac{m}{d}\right) \geq D>1$. This contradicts the assumption of the theorem. Also, if $\left(\lambda \pm \sqrt{\lambda^{2}+4}, \frac{m}{d}\right)>1$, then $\lambda \pm \sqrt{\lambda^{2}+4}=$ $k p_{i}$, for some integers i and k. Squaring and factoring yield $2 \lambda\left(\lambda \pm \sqrt{\lambda^{2}+4}\right)+4=k^{2} p_{i}^{2}$. Thus, $2 \lambda\left(k p_{i}\right)+4=k^{2} p_{i}^{2}$ and so $p_{i} \mid 4$. Since $\frac{m}{d}$ is odd, we have a contradiction. Now we proceed using (2.2), the fact that $\phi(m)=\phi\left(\frac{m}{d}\right) \phi(d)$, and Euler's Theorem.

$$
\begin{aligned}
g_{\phi(m)+n}= & \frac{1}{\sqrt{\lambda^{2}+4}}\left([B-A v]\left\{\frac{\lambda+\sqrt{\lambda^{2}+4}}{2}\right\}^{\phi(m)+n}-[B-A u]\left\{\frac{\lambda-\sqrt{\lambda^{2}+4}}{2}\right\}^{\phi(m)+n}\right) \\
\equiv & \nu^{\phi(m)+n} w_{\lambda}\left([B-A v]\left\{\left(\lambda+t_{\lambda}\right)^{\phi\left(\frac{m}{d}\right)}\right\}^{\phi(d)}\left[\lambda+t_{\lambda}\right]^{n}\right. \\
& \left.-[B-A u]\left\{\left(\lambda-t_{\lambda}\right)^{\phi\left(\frac{m}{d}\right)}\right\}^{\phi(d)}\left[\lambda-t_{\lambda}\right]^{n}\right)\left(\bmod \frac{m}{d}\right) \\
\equiv & \nu^{n} w_{\lambda}\left([B-A v]\left\{\lambda+t_{\lambda}\right\}^{n}-[B-A u]\left\{\lambda-t_{\lambda}\right\}^{n}\right)\left(\bmod \frac{m}{d}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
g_{n} & =\frac{1}{\sqrt{\lambda^{2}+4}}\left([B-A v]\left\{\frac{\lambda+\sqrt{\lambda^{2}+4}}{2}\right\}^{n}-[B-A u]\left\{\frac{\lambda-\sqrt{\lambda^{2}+4}}{2}\right\}^{n}\right) \\
& \equiv \nu^{n} w_{\lambda}\left([B-A v]\left\{\lambda+t_{\lambda}\right\}^{n}-[B-A u]\left\{\lambda-t_{\lambda}\right\}^{n}\right)\left(\bmod \frac{m}{d}\right) .
\end{aligned}
$$

The theorem follows.
Corollary 2.13. If m is of the form (1.3), then $F_{\phi(m)+n} \equiv F_{n}\left(\bmod \frac{m}{d}\right)$.
Proof. We take $\lambda=1, g_{0}=0$, and $g_{1}=1$. By Lemmas 2.7 and 2.9 , the congruences $x^{2} \equiv 5\left(\bmod \frac{m}{d}\right)$ and $2 x \equiv 1\left(\bmod \frac{m}{d}\right)$ have integral solutions t_{1} and ν, respectively. Since $\left(5, \frac{m}{5}\right)=1,\left(1+t_{1}, \frac{m}{d}\right)=1$. It follows from Lemma 2.2 and Theorem 2.12 that

$$
\begin{equation*}
F_{\phi(m)+n} \equiv F_{n}\left(\bmod \frac{m}{d}\right) . \tag{2.3}
\end{equation*}
$$

Similarly, using Lemmas 2.2, 2.10, and 2.11, and Corollary 2.12 we get

$$
\begin{equation*}
P_{\phi(m)+n} \equiv P_{n}\left(\bmod \frac{m}{d}\right) \tag{2.4}
\end{equation*}
$$

when m is of the form (1.4).

3. Periodicity of Lucas and Pell-Lucas Numbers

The following addition formulas are well-known [4]:

$$
\begin{equation*}
L_{m+n}=F_{m} L_{n-1}+F_{m+1} L_{n}, \quad Q_{m+n}=P_{m} Q_{n-1}+P_{m+1} Q_{n} . \tag{3.1}
\end{equation*}
$$

Theorem 3.1. If m is of the form (1.4) and $d=(5, m)$, then $L_{\phi(m)+n} \equiv L_{n}\left(\bmod \frac{m}{d}\right)$.
Proof. By (2.3), $F_{\phi(m)} \equiv F_{0} \equiv 0\left(\bmod \frac{m}{d}\right)$ and $F_{\phi(m)+1} \equiv F_{1} \equiv 1\left(\bmod \frac{m}{d}\right)$.

AN EXTENSION OF THE PERIODICITY OF AN EXTENDED FIBONACCI FAMILY

Thus, from (3.1),

$$
\begin{aligned}
L_{\phi(m)+n} & =F_{\phi(m)} L_{n-1}+F_{\phi(m)+1} L_{n} \\
& \equiv\left(0+L_{n}\right)\left(\bmod \frac{m}{d}\right) \\
& \equiv L_{n}\left(\bmod \frac{m}{d}\right) .
\end{aligned}
$$

A similar theorem holds for the Pell-Lucas numbers Q_{n}. Precisely, $Q_{\phi(m)+n} \equiv Q_{n}\left(\bmod \frac{m}{d}\right)$, where m and d are as used in Theorem 3.1. In fact, by $(2.4), P_{\phi(m)} \equiv P_{0} \equiv 0\left(\bmod \frac{m}{d}\right)$ and $P_{\phi(m)+1} \equiv P_{1} \equiv 1\left(\bmod \frac{m}{d}\right)$. The result now follows from (3.1).

ACKNOWLEDGMENT

The authors thank the anonymous referee for detailed comments that improved the clarity and presentation of this paper.

References

[1] J. P. Dence and T. P. Dence, Elements of the Theory of Numbers, 1st Edition, Academic Press, New York, 1999.
[2] R. Euler and J. Sadek, Congruence relations from Binet forms, The Fibonacci Quarterly, 50.3 (2012), 246-251.
[3] A. R. Gugheri, Periodicity of the Fibonacci sequence, Mathematical Spectrum, 45 (2012/2013), 37-38.
[4] T. Koshy, Abbas Rouholamini Gugheri's congruence for an extended Fibonacci family, Mathematical Spectrum, 47 (2014/2015), 76-80.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[6] H. Kwong, Problem B-1122, The Fibonacci Quarterly, 52.1 (2014), 82-83.
MSC2010: 11B39, 11B99
Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO, 64468

E-mail address: reuler@nwmissouri.edu
Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO, 64468

E-mail address: jawads@nwmissouri.edu

