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Abstract. The Fibonacci congruence Fφ(m)+n ≡ Fn (mod m

d
) has been extended to Pell

numbers, Lucas numbers, and Pell-Lucas numbers, where φ is the Euler phi-function, m =
a2

−a−1, d = (2a−1,m), a ≥ 2 is an integer, and (x, y) denotes the greatest common divisor
of the integers x and y. We prove that the generalization holds for a larger class of integers
than the one containing the integers of the form m = a2

− a− 1.

1. Introduction

Let a and λ be integers such that a ≥ 2 and λ > 0. Let m(a;λ) = a2 − λa − 1. Unless it
is needed for clarity, the dependence of m(a;λ) on a will be suppressed and the notation mλ

will be used instead. Also, if N is a positive integer, then a prime of the form Nk ± 1, where
k is a positive integer, will be called (Nk ± 1)-prime.

In [3] and [6], the authors show that if m1 = a2 − a− 1 and d = (m1, 2a− 1), the greatest
common divisor of m1 and 2a− 1, then

Fφ(m1)+n ≡ Fn

(

mod
m1

d

)

, (1.1)

where Fn is the nth Fibonacci number and φ is the Euler phi-function [1]. In [4], the author
extends this congruence to Pell numbers, Lucas numbers, and Pell-Lucas numbers, denoted by
Pn, Ln, and Qn, respectively. In this article we show that the results in [3] and [4] are special
cases of a more general form, say m, of mλ. Precisely, if c = 0 or 1, we show that

Fφ(mλ)+n ≡ Fn

(

mod
m

d

)

, (1.2)

where d = (λ2 + 4,m) and

m = 5cM1, (1.3)

where M1 has only (10k ± 1)-primes in its factorization. Also,

Pφ(m)+n ≡ Pn

(

mod
m

d

)

and Qφ(mλ)+n ≡ Qn

(

mod
m

d

)

,

and

m = 2cM2, (1.4)

where M2 has only (8k ± 1)-primes in its factorization.
We show that m1 = a2−a− 1 is of the form (1.3), whereas m = 59 or m = 61, for instance,

is not of the form m1 for any integer a. Similarly, m2 = a2 − 2a− 1 is of the form (1.4), and
although m = 41 and m = 49 are of the form (1.4), neither are of the form m2. Thus, our
results hold for a larger class of the positive integers. Unless it is stated otherwise, throughout
this paper j, k, ki, p, pi, r, and ri will be nonnegative integers, h will denote an integer such
that 0 ≤ h ≤ 9 but h 6= 3, and c = 0 or 1.
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2. Periodicity of Fibonacci and Pell Numbers

We note first that for nonnegative integers n, the recurrence relation defined by

gn+2 = λgn+1 + gn (2.1)

with initial conditions

g0 = A and g1 = B

can be used to study the Fibonacci, Lucas, Pell, and Pell-Lucas numbers in a unified way. In
particular, if A = 0, B = λ = 1, then gn = Fn. If A = 2, B = λ = 1, then gn = Ln. If A = 0,
B = 1, and λ = 2, then gn = Pn. If A = B = λ = 2, then gn = Qn.

Following the standard procedures for solving second-order homogeneous recurrence rela-
tions with constant coefficients [5], the Binet formula for the integer family {gn} defined by
(2.1) is given by

gn =
1√

λ2 + 4
([B −Av]un − [B −Au]vn) , (2.2)

where u = 1
2

(

λ+
√
λ2 + 4

)

, v = 1
2

(

λ−
√
λ2 + 4

)

, and A and B are nonnegative integers.

To show that the value mλ need not be restricted to the form mλ = a2 − λa− 1, we prove
the following lemmas.

Lemma 2.1. The prime factorization of m(a; 1) has at most one factor of 5. The prime
factorization m(a; 2) has at most one factor of 2.

Proof. Since a2 ≡ 0, 1, 4 (mod 5), m(a; 1) ≡ 0, 1, 4 (mod 5). We claim that 5 divides m(a; 1) if
and only if a = 5j+3. This is so because the cases a = 5j, 5j+1, 5j+2, 5j+4 are congruent
to 4, 4, 1, 1 (mod 5), respectively. Furthermore, for a = 5j + 3, m(a; 1) = 5(5j2 + 5j + 1).
Since the factor (5j2 +5j+1) = 5j(j +1)+1 is not a multiple of 5, the desired result follows.
Similarly, m(a; 2) ≡ 2, 6, 7 (mod 8). In each case where m(a; 2) is even, it can be written as
4M ′ + 2, where M ′ is a nonnegative integer. The second claim of the lemma follows. �

In the following lemma, 10k ± 1 and 8k ± 1 are not necessarily primes.

Lemma 2.2. m(a; 1) = 5c(10k ± 1) and m(a; 2) = 2c(8k ± 1).

Proof. In Lemma 2.1, we showed that 5 | m(a; 1) if and only if a = 5k + 3 and in that
case, m(a; 1) = 5(5j2 + 5j + 1) = 5(10k + 1). If 5 - m(a; 1), a2 ≡ 0, 1, 4, 5, 6, 9 (mod 10),
m(a; 1) ≡ ±1 (mod 10), and so the desired follows. For m(a; 2), we let a = 8k ± ki where
0 ≤ ki ≤ 7 and argue similarly. �

Lemma 2.3. Let b be a positive integer. If b | m(a;λ), then b | m(a− b;λ).

Proof.

m(a− b;λ) = (a− b)2 − λ(a− b)− 1

= a2 − λa− 1 + b(b− 2a+ λ).

The lemma now follows. �

Lemma 2.4. If m(a;λ) is not prime, then it has a factor smaller than a.

Proof. Since m(a;λ) = a2 − λa− 1 < a2, the lemma follows. �

Lemma 2.5. If 5 - m(a; 1), then m(a; 1) = (10k ± 1)r1 , where r1 is odd. Also, if 2 - m(a; 2)
then m(a; 2) = (8k2 ± 1)r2 , where r2 is odd.
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Proof. Since (a − 2)2 < m(a; 2) < (a − 1)2 < m(a; 1) < a2, m(a;λ) cannot be the square of
an integer for λ = 1 or λ = 2. Thus r1 and r2 must be odd. For λ = 1, since m(a; 1) =
a2 − a− 1 = a(a− 1)− 1 is odd, and 5 - m(a; 1), we need only to consider the factor 10k ± 3.
Now (10k ± 3)r1 = (10k ± 3)2j+1 = ((10k ± 3)2)j(10k ± 3) = (10k′ ± 1)(10k ± 3) = 10k′′ ± 3.
This contradicts Lemma 2.2, so p = 10k ± 1. A similar argument takes care of the case where
λ = 2. �

Lemma 2.6. m(a; 1) is not of the form (10k1 ± 3)(10k2 ± 3) and m(a; 2) is not of the form
(8k1 ± 3)(8k2 ± 3).

Proof. Multiplying out (10k1 ± 3)(10k2 ± h) = m(a; 1) does not yield an expression of the
form 5c(10k ± 1). This contradicts Lemma 2.2. Similarly, by simple multiplication, m(a; 2)
is not of the form (8k1 ± 3)(8k2 ± h). Now we argue the case where λ = 1 and h = 3. For
λ = 1, assume that a is the first positive integer such that 10k ± 3 divides m(a, 1) and that
m(a; 1) = (10k1±3)(10k2±3). By Lemma 2.4 we may assume that 10k1±3 is smaller than a.
But by Lemma 2.3, b = a− (10k ± 3) would be a positive integer smaller than a that divides
m(a − b; 1). However, a was assumed to be the smallest such number. Since by Lemma 2.5,
the case m(a; 1) = (10k ± 3)r cannot occur, we have a contradiction. The case where λ = 2
and h = 3 is similar. �

Lemma 2.7. m(a; 1) is not of the form (10k1 ± 3)2(10k2 ± 1) and m(a; 2) is not of the form
(8k1 ± 3)2(8k2 ± 1)).

Proof. For λ = 1, m(a; 1) = (10k1 ± 3)2(10k2 ± 1) = (10k1 ± 3)(10k′ ± 3). The desired result
follows now from Lemma 2.6. Similarly, the result holds for λ = 2. �

Now we state our first result.

Theorem 2.8. m(a; 1) = 5c(10p1 ± 1)c1(10p2 ± 1)c2 · · · (10pr ± 1)cr and
m(a; 2) = 2c(8p1 ± 1)r1(8p2 ± 1)r2 · · · (8ps ± 1)rs .

Proof. By Lemmas 2.2 and 2.5 m(a; 1) = 5c(10k±1) and m(a; 1) are squares of some integers.
Since (10p ± 3)2k+1 = 10p′ ± 3, and (10p ± h)r = 10p′ ± 1, we only need to check the cases
(10k1 ± 3)2(10k2 ± 1) and (10k1 ± 3)(10k2 ± 3). The theorem follows now by Lemmas 2.6 and
2.7. The proof of m(a; 2) is similar. �

To prove that (1.1) holds for any m of the form (1.2), we need the following lemmas [2].

Lemma 2.9. If m is of the form (1.3), then x2 ≡ 5 (mod m) has a solution.

Lemma 2.10. If (2, p) = 1, then 2x ≡ 1 (mod p) has a solution.

Lemma 2.11. If m is of the form (1.4), then x2 ≡ 2 (mod m) has a solution.

For the rest of the paper we use the following notations. We let tλ be a least residue
satisfying x2 ≡ λ2 + 4 (mod m

d
), if it exists, ν the multiplicative inverse of 1

2 (mod m
d
), and

wλ be the multiplicative inverse 1
tλ
, when it exists, of tλ (mod m

d
) [1]. Now we prove our

generalization of the results in [4].

Theorem 2.12. Let m
d
be an odd integer with prime factorization m

d
= pr11 pr22 · · · prss . Assume

(λ2 + 4, m
d
) = 1 and (d, m

d
) = 1. If x2 ≡ λ2 + 4 (mod m

d
) has a solution and 1

tλ
(mod m

d
)

exists, then gφ(m)+n ≡ gn (mod m
d
).
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Proof. If the integer tλ satisfies (tλ,
m
d
) = D > 1, then (t2λ,

m
d
) = (λ2 + 4, m

d
) ≥ D > 1. This

contradicts the assumption of the theorem. Also, if (λ±
√
λ2 + 4, m

d
) > 1, then λ±

√
λ2 + 4 =

kpi, for some integers i and k. Squaring and factoring yield 2λ
(

λ±
√
λ2 + 4

)

+ 4 = k2p2i .

Thus, 2λ(kpi) + 4 = k2p2i and so pi | 4. Since m
d

is odd, we have a contradiction. Now we
proceed using (2.2), the fact that φ(m) = φ(m

d
)φ(d), and Euler’s Theorem.

gφ(m)+n =
1√

λ2 + 4



[B −Av]

{

λ+
√
λ2 + 4

2

}φ(m)+n

− [B −Au]

{

λ−
√
λ2 + 4

2

}φ(m)+n




≡ νφ(m)+nwλ

(

[B −Av]
{

(λ+ tλ)
φ(m

d
)
}φ(d)

[λ+ tλ]
n

− [B −Au]
{

(λ− tλ)
φ(m

d
)
}φ(d)

[λ− tλ]
n

)

(

mod
m

d

)

≡ νnwλ ([B −Av] {λ+ tλ}n − [B −Au] {λ− tλ}n)
(

mod
m

d

)

.

Similarly,

gn =
1√

λ2 + 4

(

[B −Av]

{

λ+
√
λ2 + 4

2

}n

− [B −Au]

{

λ−
√
λ2 + 4

2

}n)

≡ νnwλ ([B −Av] {λ+ tλ}n − [B −Au] {λ− tλ}n) (mod
m

d
).

The theorem follows. �

Corollary 2.13. If m is of the form (1.3), then Fφ(m)+n ≡ Fn(mod m
d
).

Proof. We take λ = 1, g0 = 0, and g1 = 1. By Lemmas 2.7 and 2.9, the congruences
x2 ≡ 5 (mod m

d
) and 2x ≡ 1(mod m

d
) have integral solutions t1 and ν, respectively. Since

(5, m5 ) = 1, (1 + t1,
m
d
) = 1. It follows from Lemma 2.2 and Theorem 2.12 that

Fφ(m)+n ≡ Fn

(

mod
m

d

)

. (2.3)

�

Similarly, using Lemmas 2.2, 2.10, and 2.11, and Corollary 2.12 we get

Pφ(m)+n ≡ Pn

(

mod
m

d

)

(2.4)

when m is of the form (1.4).

3. Periodicity of Lucas and Pell-Lucas Numbers

The following addition formulas are well-known [4]:

Lm+n = FmLn−1 + Fm+1Ln, Qm+n = PmQn−1 + Pm+1Qn. (3.1)

Theorem 3.1. If m is of the form (1.4) and d = (5,m), then Lφ(m)+n ≡ Ln (mod m
d
).

Proof. By (2.3), Fφ(m) ≡ F0 ≡ 0
(

mod m
d

)

and Fφ(m)+1 ≡ F1 ≡ 1
(

mod m
d

)

.
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Thus, from (3.1),

Lφ(m)+n = Fφ(m)Ln−1 + Fφ(m)+1Ln

≡ (0 + Ln) (mod
m

d
)

≡ Ln (mod
m

d
).

�

A similar theorem holds for the Pell-Lucas numbersQn. Precisely, Qφ(m)+n ≡ Qn (mod m
d
),

where m and d are as used in Theorem 3.1. In fact, by (2.4), Pφ(m) ≡ P0 ≡ 0
(

mod m
d

)

and

Pφ(m)+1 ≡ P1 ≡ 1
(

mod m
d

)

. The result now follows from (3.1).
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