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Abstract. We investigate a new class of polynomial functions, called gibonomial coefficients,
and extract some of their properties. We then deduce the corresponding properties for Fi-
bonacci, Lucas, Pell, and Pell-Lucas polynomials and numbers.

1. INTRODUCTION

Gibonacci (generalized Fibonacci) polynomials gn(x) satisfy the recurrence gn(x) = xgn−1(x)
+gn−2(x), where a = a(x) = g1(x) and b = b(x) = g2(x) are arbitrary polynomials, and
n ≥ 3. Obviously, the definition can be extended to negative subscripts. When g1(x) = 1
and g2(x) = x, gn(x) = fn(x), the nth Fibonacci polynomial ; and when g1(x) = x and
g2(x) = x2 + 2, gn(x) = ln(x), the nth Lucas polynomial. In particular, gn(1) = Gn, the nth
gibonacci number ; fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number.

The Binet-like formula

gn(x) =
cαn − dβn

α− β

can be employed to extract a number of properties of gibonacci polynomials, where α = α(x) =
x+∆

2
, β = β(x) =

x−∆

2
, and ∆ = ∆(x) =

√
x2 + 4, c = c(x) = a + (a − b)β, and d =

d(x) = a + (a − b)α. For instance, we can establish the gibonacci addition formula gm+k =
gm+1fk + gmfk−1, where m,k ∈ N.

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given by
Pn = pn(1) and 2Qn = qn(1), respectively.

Vieta polynomials Vn(x) and Vieta-Lucas polynomials vn(x) are also related to fn(x) and
ln(x), respectively: Vn(ix) = in−1fn(x) and vn(x) = inln(x), where i =

√
−1. Likewise, the

Jacobsthal polynomial Jn(x) is related to fn(x) and the Chebyshev polynomial of the second

kind Un(x) to Vn+1(2x): Jn+1(x) = xn/2fn+1(1/
√
x) and Un(x) = Vn+1(2x) [9, 14].

In the interest of brevity and convenience, we will omit the argument in the functional
notation; so gn = gn(x).

2. FIBONOMIAL COEFFICIENTS

Generalized binomial coefficients were originally studied by G. Fontené in 1915, and then
independently by M. Ward in 1936 [5, 13], where the upper and lower numbers are arbitrary. In
1949, D. Jarden investigated the special case when the upper and lower numbers are Fibonacci
numbers [13].

Fibonomial coefficients (the equivalent of binomial coefficients for Fibonacci numbers) are
defined by

[

n
r

]

=
F ∗

n

F ∗

r F
∗

n−r

,
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where F ∗

k = FkFk−1 . . . F2F1, F
∗

0 = 1, and 0 ≤ r ≤ n [6, 10, 12, 15]. The bracketed bi-level
notation for Fibonomial coefficients was introduced by Torretto and Fuchs in 1964 [15]. In
1970, D. Lind established that every Fibonomial coefficient is an integer [12]. Since
[

n
r

]

=

[

n
n− r

]

, it follows that

[

n
0

]

= 1 =

[

n
n

]

and

[

n
1

]

= Fn =

[

n
n− 1

]

.

2.1. Brennan’s Equation. In 1964, T. A. Brennan established that

n+1
∑

r=0

(−1)r(r+1)/2

[

n+ 1
r

]

xn−r+1 = 0

is the characteristic equation of the product of n Fibonacci recurrences yn+2 = yn+1 + yn [2].
When n = 2, it yields x3 − 2x2 − 2x+ 1 = 0. Correspondingly, G2

n+3 = 2G2
n+2 + 2G2

n+1 −G2
n.

Likewise, x4 − 3x3 − 6x2 + 3x + 1 = 0. This implies G3
n+4 = 3G3

n+3 + 6G3
n+2 − 3G3

n+1 −G3
n.

In particular, F 3
n+4 = 3F 3

n+3 +6F 3
n+2 − 3F 3

n+1 −F 3
n ; D. Zeitlin discovered this identity in 1963

[16].
More generally,

g3n+4 = (x3 + 2x)g3n+3 + (x4 + 3x2 + 2)g3n+2 − (x3 + 2x)g3n+1 − g3n. (2.1)

Its proof involves some messy algebra; so we omit it. But we will revisit it shortly.
It follows from recurrence (2.1) that

f3
n+4 = (x3 + 2x)f3

n+3 + (x4 + 3x2 + 2)f3
n+2 − (x3 + 2x)f3

n+1 − f3
n

l3n+4 = (x3 + 2x)l3n+3 + (x4 + 3x2 + 2)l3n+2 − (x3 + 2x)l3n+1 − l3n

p3n+4 = 4(2x3 + x)p3n+3 + 2(8x4 + 6x2 + 1)p3n+2 − 4(2x3 + x)p3n+1 − p3n

q3n+4 = 4(2x3 + x)q3n+3 + 2(8x4 + 6x2 + 1)q3n+2 − 4(2x3 + x)q3n+1 − q3n

P 3
n+4 = 12P 3

n+3 + 30P 3
n+2 − 12P 3

n+1 − P 3
n

Q3
n+4 = 12Q3

n+3 + 30Q3
n+2 − 12Q3

n+1 −Q3
n.

3. Gibonomial Coefficients

The nth gibonomial coefficient

[[

n
r

]]

is defined by

[[

n
r

]]

=
f∗

n

f∗

r f
∗

n−r

, (3.1)

where f∗

k = fkfk−1 . . . f2f1, f
∗

0 = 1, and 0 ≤ r ≤ n. Clearly,

[[

n
r

]]

=

[[

n
n− r

]]

,

[[

n
0

]]

=
[[

n
n

]]

and

[[

n
1

]]

=

[[

n
n− 1

]]

. Also when x = 1,

[[

n
r

]]

=

[

n
r

]

.

3.1. Gibonomial Recurrences. Gibonomial coefficients satisfy two Pascal-like recurrences:
[[

n
r

]]

=

[[

n− 1
r

]]

fr+1 +

[[

n− 1
r − 1

]]

fn−r−1 (3.2)

=

[[

n− 1
r

]]

fr−1 +

[[

n− 1
r − 1

]]

fn−r+1. (3.3)

These recurrences can be established using the addition formula and definition (3.1).
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For example,
[[

n− 1
r

]]

fr+1 +

[[

n− 1
r − 1

]]

fn−r−1 =
f∗

n−1

f∗

r f
∗

n−r−1

fr+1 +
f∗

n−1

f∗

r−1f
∗

n−r

fn−r−1

=
f∗

n−1

f∗

r f
∗

n−r

(fr+1fn−r + fn−r−1fr)

=
f∗

n−1fn

f∗

r f
∗

n−r

=

[[

n
r

]]

.

It follows from recurrence (3.3) that

[[

n
1

]]

= fn =

[[

n
n− 1

]]

.

Recurrence (3.2) or (3.3), coupled with the initial conditions

[[

0
0

]]

= 1 =

[[

1
0

]]

, implies

that every gibonomial coefficient is an integer-valued polynomial.
The recurrences can be used to construct the gibonomial triangle in Figure 1.

1
1 1

1 x 1
1 x2 + 1 x2 + 1 1

1 x3 + 2x x4 + 3x2 + 2 x3 + 2x 1

Figure 1. Gibonomial Triangle

Since fk+1 + fk−1 = lk, it follows by recurrences (3.2) and (3.3) that

2

[[

n
r

]]

=

[[

n− 1
r

]]

lr +

[[

n− 1
r − 1

]]

ln−r. (3.4)

Consequently, 2fn = fn−rlr + frln−r and hence, 2Vn = Vn−rvr + Vrvn−r.
It also follows from equation (3.4) that

2

[

n
r

]

=

[

n− 1
r

]

Lr +

[

n− 1
r − 1

]

Ln−r.

Brennan discovered this formula in 1963 [1].

3.2. Central Gibonomial Coefficients. The central gibonomial coefficients

[[

2n
n

]]

satisfy

the following property:
[[

2n
n

]]

=

[[

2n− 1
n

]]

fn+1 +

[[

2n− 1
n− 1

]]

fn−1

=

[[

2n− 1
n

]]

(fn+1 + fn−1)

=

[[

2n− 1
n

]]

ln. (3.5)

It follows from identity (3.5) that f2n = fnln, and hence, V2n = Vnvn.
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3.3. Star of David Property. Gibonomial coefficients satisfy the Star of David property

[[

n− 1
r − 1

]] [[

n
r + 1

]] [[

n+ 1
r

]]

=

[[

n− 1
r

]] [[

n+ 1
r + 1

]] [[

n
r − 1

]]

;

see Figure 2.

[

n
r − 1

] [

n
r

]

[

n+ 1
r

] [

n+ 1
r + 1

]

[

n
r + 1

]

[

n− 1
r

][

n− 1
r − 1

]

Figure 2.

This property also can be established algebraically:

LHS =
f∗

n−1

f∗

r−1f
∗

n−r

·
f∗

n

f∗

r+1f
∗

n−r−1

·
f∗

n+1

f∗

r f
∗

n−r+1

=
f∗

n−1

f∗

r f
∗

n−r−1

·
f∗

n+1

f∗

r+1f
∗

n−r

·
f∗

n

f∗

r−1f
∗

n−r+1

=

[[

n− 1
r

]] [[

n+ 1
r + 1

]] [[

n
r − 1

]]

= RHS.

Hoggatt and Hansel discovered the binomial version of the Star of David property in 1971
[8, 10].

3.4. Applications of Gibonomial Coefficients. Following the spirit of Brennan’s equation,
the characteristic equation of the product of n polynomial recurrences yn+2 = xyn+1 + yn is
given by

n+1
∑

r=0

(−1)r(r+1)/2

[[

n+ 1
r

]]

zn−r+1 = 0.

When n = 2, 3, and 4, this yields

z3 − (x2 + 1)z2 − (x2 + 1)z + 1 = 0

z4 − (x3 + 2x)z3 − (x4 + 3x2 + 2)z2 + (x3 + 2x)z + 1 = 0

z5 − (x4 + 3x2 + 1)z4 − (x6 + 5x4 + 7x2 + 2)z3+

(x6 + 5x4 + 7x2 + 2)z2 + (x4 + 3x2 + 1)z − 1 = 0,
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respectively. These equations imply that

g2n+3 = (x2 + 1)g2n+2 + (x2 + 1)g2n+1 − g2n (3.6)

g3n+4 = (x3 + 2x)g3n+3 + (x4 + 3x2 + 2)g3n+2 − (x3 + 2x)g3n+1 − g3n (3.7)

g4n+5 = (x4 + 3x2 + 1)g4n+4 + (x6 + 5x4 + 7x2 + 2)g4n+3−

(x6 + 5x4 + 7x2 + 2)g4n+2 − (x4 + 3x2 + 1)g4n+1 + g4n. (3.8)

It follows from equation (3.8) that

f4
n+5 = (x4 + 3x2 + 1)f4

n+4 + (x6 + 5x4 + 7x2 + 2)f4
n+3−

(x6 + 5x4 + 7x2 + 2)f4
n+2 − (x4 + 3x2 + 1)f4

n+1 + f4
n

l4n+5 = (x4 + 3x2 + 1)l4n+4 + (x6 + 5x4 + 7x2 + 2)l4n+3−

(x6 + 5x4 + 7x2 + 2)l4n+2 − (x4 + 3x2 + 1)l4n+1 + l4n

p4n+5 = (16x4 + 12x2 + 1)p4n+4 + (64x6 + 80x4 + 28x2 + 2)p4n+3−

(64x6 + 80x4 + 28x2 + 2)p4n+2 − (16x4 + 12x2 + 1)p4n+1 + p4n

q4n+5 = (16x4 + 12x2 + 1)q4n+4 + (64x6 + 80x4 + 28x2 + 2)q4n+3−

(64x6 + 80x4 + 28x2 + 2)q4n+2 − (16x4 + 12x2 + 1)q4n+1 + q4n.

Consequently,

F 4
n+5 = 5F 4

n+4 + 15F 4
n+3 − 15F 4

n+2 − 5F 4
n+1 + F 4

n

L4
n+5 = 5L4

n+4 + 15L4
n+3 − 15L4

n+2 − 5L4
n+1 + L4

n

P 4
n+5 = 29P 4

n+4 + 174P 4
n+3 − 174P 4

n+2 − 29P 4
n+1 + P 4

n

Q4
n+5 = 29Q4

n+4 + 174Q4
n+3 − 174Q4

n+2 − 29Q4
n+1 +Q4

n.

Similar results follow from equations (3.6) and (3.7).

3.5. Generating Function for Gibonomial Coefficients. Using the Gaussian binomial

coefficients

{

m
r

}

=
(1− qm)(1 − qm−1) . . . (1− qm−r+1)

(1− q)(1 − q2) . . . (1− qr)
,

we have

m−1
∏

r=0

(1− qrz) =

m
∑

r=0

(−1)r
{

m
r

}

qr(r−1)/2zr (3.9)

m−1
∏

r=0

1

1− qrz
=

∞
∑

r=0

{

m+ r − 1
r

}

zr, (3.10)
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where q is a dummy variable [3, 4, 10]. Letting q = β/α,

{

m
r

}

=
(αm − βm)(αm−1 − βm−1) . . . (αm−r+1 − βm−r+1)

(α− β)(α2 − β2) . . . (αr − βr)
· α−r(m−r)

=
fmfm−1 . . . fm−r+1 ·∆r

f1f2 . . . fr ·∆r
· α−r(m−r)

=
f∗

m

f∗

r f
∗

m−r

α−r(m−r)

=

[[

m
r

]]

α−r(m−r). (3.11)

Likewise,
{

m+ r − 1
r

}

=

[[

m+ r − 1
r

]]

α−r(m−1). (3.12)

Since

(−1)r
(

β

α

)r(r−1)/2

= (−1)r(−α−2)r(r−1)/2

= (−1)r(r+1)/2α−r(r−1),

replacing z with αm−1z and letting q = β/α, identities (3.9) and (3.11) then yield

m−1
∏

r=0

(1− βrαm−r−1z) =

m
∑

r=0

(−1)r(r+1)/2α−r(r−1)

[[

m
r

]]

α−r(m−r) · (αm−1z)r

=

m
∑

r=0

(−1)r(r+1)/2

[[

m
r

]]

zr.

Identities (3.10) and (3.12) then imply that

1
m
∑

r=0
(−1)r(r+1)/2

[[

m
r

]]

zr
=

∞
∑

r=0

[[

m+ r − 1
r

]]

α−r(m−1) ·
[

αm−1z
]r

=

∞
∑

r=0

[[

m+ r − 1
r

]]

zr

=

∞
∑

r=0

[[

m+ r − 1
m− 1

]]

zr

zm−1

m
∑

r=0
(−1)r(r+1)/2

[[

m
r

]]

zr
=

∞
∑

n=0

[[

n
m− 1

]]

zn, (3.13)

where m ≥ 1. This is the desired generating function.
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When m = 2 and m = 3, equation (3.13) gives

z

1− xz − z2
=

∞
∑

n=0

fnz
n

=
∞
∑

n=0

[[

n
1

]]

zn;

z2

1− (x2 + 1)z − (x2 + 1)z2 + z3
= z2 + (x2 + 1)z3 + (x4 + 3x2 + 2)z4+

(x6 + 5x4 + 7x2 + 2)z5 + · · ·

=

∞
∑

n=0

[[

n
2

]]

zn,

respectively. In particular, equation (3.13) gives a generating function for Fibonomial coeffi-
cients [4, 6, 7]:

zm−1

m
∑

r=0
(−1)r(r+1)/2

[

m
r

]

zr
=

∞
∑

n=0

[

n
m− 1

]

zn,

where m ≥ 1.

3.6. Addition Formula. Torretto and Fuchs developed an addition formula involving the
sum of products ofm+1 terms of sequences satisfying the same general second-order recurrence
[15]. The identity

m
∑

r=0

(−1)r(r+3)/2

[

m
r

]

Fm+1
n+m−r = F ∗

mF(m+1)(n+m/2)

is a special case of their formula (5).
This identity has an analogous result for fk:

m
∑

r=0

(−1)r(r+3)/2

[[

m
r

]]

fm+1
n+m−r = f∗

mf(m+1)(n+m/2). (3.14)

When m = 1, this yields the familiar Lucas-like identity f2
n+1 + f2

n = f2n+1; and when m = 2,
it yields

[[

2
0

]]

f3
n+2 +

[[

2
1

]]

f3
n+1 −

[[

2
2

]]

f3
n = f1f2f3(n+1)

f3
n+2 + xf3

n+1 − f3
n = xf3(n+1).

This generalization of the Lucas identity F 3
n+1 + F 3

n − F 3
n−1 = F3n is established in [11].

Letting m = 3 and m = 4, we get

f4
n+3 + (x2 + 1)f4

n+2 − (x2 + 1)f4
n+1 − f4

n = x(x2 + 1)f4n+6 (3.15)

f5
n+4 + (x3 + 2x)f5

n+3 − (x4 + 3x2 + 2)f5
n+2

− (x3 + 2x)f5
n+1 + f5

n = x(x2 + 1)(x3 + 2x)f5n+10. (3.16)
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It follows from identities (3.15) and (3.16) that

F 4
n+3 + 2F 4

n+2 − 2F 4
n+1 − F 4

n = 2F4n+6 (3.17)

p4n+3 + (4x2 + 1)p4n+2 − (4x2 + 1)p4n+1 − p4n = 2x(4x2 + 1)p4n+6

P 4
n+3 + 5P 4

n+2 − 5P 4
n+1 − P 4

n = 10P4n+6

F 5
n+4 + 3F 5

n+3 − 6F 5
n+2 − 3F 5

n+1 + F 5
n = 6F5n+10 (3.18)

p5n+4 + 4x(2x2 + 1)p5n+3 − 2(8x4 + 6x2 + 1)p5n+2

− 4x(2x2 + 1)p5n+1 + p5n = 8x2(2x2 + 1)(4x2 + 1)p5n+10

P 5
n+4 + 12P 5

n+3 − 30P 5
n+2 − 12P 5

n+1 + P 5
n = 120P5n+10.

Identities (3.17) and (3.18) appear in [13].
Letting m = 5, identity (3.14) yields

5
∑

r=0

(−1)r(r+3)/2

[[

5
r

]]

f6
n+5−r = f1f2f3f4f5f6n+15

[[

5
0

]]

f6
n+5 +

[[

5
1

]]

f6
n+4 −

[[

5
2

]]

f6
n+3 −

[[

5
3

]]

f6
n+2 +

[[

5
4

]]

f6
n+1 −

[[

5
5

]]

f6
n

= f1f2f3f4f5f6n+15;

that is,

f6
n+5 + (x4 + 3x2 + 1)f6

n+4 − (x6 + 5x4 + 7x2 + 2)f6
n+3 − (x6 + 5x4 + 7x2 + 2)f6

n+2

+ (x4 + 3x2 + 1)f6
n+1 − f6

n = x(x2 + 1)(x3 + 2x)(x4 + 3x2 + 1)f6n+15.

In particular, we have

F 6
n+5 + 5F 6

n+4 − 15F 6
n+3 − 15F 6

n+2 + 5F 6
n+1 − F 6

n = 30F6n+15

p6n+5 + (16x4 + 12x2 + 1)p6n+4

− 2(32x6 + 40x4 + 14x2 + 1)p6n+3

− 2(32x6 + 40x4 + 14x2 + 1)p6n+2

+ (16x4 + 12x2 + 1)p6n+1 − p6n = x(x2 + 1)(x3 + 2x)(x4 + 3x2 + 1)p6n+15

P 6
n+5 + 29P 6

n+4 − 174P 6
n+3 − 174P 6

n+2

+ 29P 6
n+1 − P 6

n = 30P6n+15.

Finally, we add that the above Fibonacci identities have Vieta, Chebyshev, and Jacob-
sthal counterparts. For example, it follows from the identity f3

n+1 + xf3
n − f3

n−1 = xf3n that

V 3
n+1 − xV 3

n + V 3
n−1 = xV3n.
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