GIBONOMIAL COEFFICIENTS WITH INTERESTING BYPRODUCTS

THOMAS KOSHY

Abstract

We investigate a new class of polynomial functions, called gibonomial coefficients, and extract some of their properties. We then deduce the corresponding properties for Fibonacci, Lucas, Pell, and Pell-Lucas polynomials and numbers.

1. INTRODUCTION

Gibonacci (generalized Fibonacci) polynomials $g_{n}(x)$ satisfy the recurrence $g_{n}(x)=x g_{n-1}(x)$ $+g_{n-2}(x)$, where $a=a(x)=g_{1}(x)$ and $b=b(x)=g_{2}(x)$ are arbitrary polynomials, and $n \geq 3$. Obviously, the definition can be extended to negative subscripts. When $g_{1}(x)=1$ and $g_{2}(x)=x, g_{n}(x)=f_{n}(x)$, the nth Fibonacci polynomial; and when $g_{1}(x)=x$ and $g_{2}(x)=x^{2}+2, g_{n}(x)=l_{n}(x)$, the nth Lucas polynomial. In particular, $g_{n}(1)=G_{n}$, the nth gibonacci number; $f_{n}(1)=F_{n}$, the nth Fibonacci number; and $l_{n}(1)=L_{n}$, the nth Lucas number.

The Binet-like formula

$$
g_{n}(x)=\frac{c \alpha^{n}-d \beta^{n}}{\alpha-\beta}
$$

can be employed to extract a number of properties of gibonacci polynomials, where $\alpha=\alpha(x)=$ $\frac{x+\Delta}{2}, \beta=\beta(x)=\frac{x-\Delta}{2}$, and $\Delta=\Delta(x)=\sqrt{x^{2}+4}, c=c(x)=a+(a-b) \beta$, and $d=$ $d(x)=a+(a-b) \alpha$. For instance, we can establish the gibonacci addition formula $g_{m+k}=$ $g_{m+1} f_{k}+g_{m} f_{k-1}$, where $m, k \in \mathbb{N}$.

Pell polynomials $p_{n}(x)$ and Pell-Lucas polynomials $q_{n}(x)$ are defined by $p_{n}(x)=f_{n}(2 x)$ and $q_{n}(x)=l_{n}(2 x)$, respectively. The Pell numbers P_{n} and Pell-Lucas numbers Q_{n} are given by $P_{n}=p_{n}(1)$ and $2 Q_{n}=q_{n}(1)$, respectively.

Vieta polynomials $V_{n}(x)$ and Vieta-Lucas polynomials $v_{n}(x)$ are also related to $f_{n}(x)$ and $l_{n}(x)$, respectively: $V_{n}(i x)=i^{n-1} f_{n}(x)$ and $v_{n}(x)=i^{n} l_{n}(x)$, where $i=\sqrt{-1}$. Likewise, the Jacobsthal polynomial $J_{n}(x)$ is related to $f_{n}(x)$ and the Chebyshev polynomial of the second kind $U_{n}(x)$ to $V_{n+1}(2 x)$: $J_{n+1}(x)=x^{n / 2} f_{n+1}(1 / \sqrt{x})$ and $U_{n}(x)=V_{n+1}(2 x)[9,14]$.

In the interest of brevity and convenience, we will omit the argument in the functional notation; so $g_{n}=g_{n}(x)$.

2. FIBONOMIAL COEFFICIENTS

Generalized binomial coefficients were originally studied by G. Fontené in 1915, and then independently by M. Ward in 1936 [5, 13], where the upper and lower numbers are arbitrary. In 1949, D. Jarden investigated the special case when the upper and lower numbers are Fibonacci numbers [13].

Fibonomial coefficients (the equivalent of binomial coefficients for Fibonacci numbers) are defined by

$$
\left[\begin{array}{l}
n \\
r
\end{array}\right]=\frac{F_{n}^{*}}{F_{r}^{*} F_{n-r}^{*}},
$$

GIBONOMIAL COEFFICIENTS WITH INTERESTING BYPRODUCTS

where $F_{k}^{*}=F_{k} F_{k-1} \ldots F_{2} F_{1}, F_{0}^{*}=1$, and $0 \leq r \leq n[6,10,12,15]$. The bracketed bi-level notation for Fibonomial coefficients was introduced by Torretto and Fuchs in 1964 [15]. In 1970, D. Lind established that every Fibonomial coefficient is an integer [12]. Since $\left[\begin{array}{l}n \\ r\end{array}\right]=\left[\begin{array}{c}n \\ n-r\end{array}\right]$, it follows that $\left[\begin{array}{l}n \\ 0\end{array}\right]=1=\left[\begin{array}{l}n \\ n\end{array}\right]$ and $\left[\begin{array}{l}n \\ 1\end{array}\right]=F_{n}=\left[\begin{array}{c}n \\ n-1\end{array}\right]$.
2.1. Brennan's Equation. In 1964, T. A. Brennan established that

$$
\sum_{r=0}^{n+1}(-1)^{r(r+1) / 2}\left[\begin{array}{c}
n+1 \\
r
\end{array}\right] x^{n-r+1}=0
$$

is the characteristic equation of the product of n Fibonacci recurrences $y_{n+2}=y_{n+1}+y_{n}[2]$. When $n=2$, it yields $x^{3}-2 x^{2}-2 x+1=0$. Correspondingly, $G_{n+3}^{2}=2 G_{n+2}^{2}+2 G_{n+1}^{2}-G_{n}^{2}$. Likewise, $x^{4}-3 x^{3}-6 x^{2}+3 x+1=0$. This implies $G_{n+4}^{3}=3 G_{n+3}^{3}+6 G_{n+2}^{3}-3 G_{n+1}^{3}-G_{n}^{3}$. In particular, $F_{n+4}^{3}=3 F_{n+3}^{3}+6 F_{n+2}^{3}-3 F_{n+1}^{3}-F_{n}^{3}$; D. Zeitlin discovered this identity in 1963 [16].

More generally,

$$
\begin{equation*}
g_{n+4}^{3}=\left(x^{3}+2 x\right) g_{n+3}^{3}+\left(x^{4}+3 x^{2}+2\right) g_{n+2}^{3}-\left(x^{3}+2 x\right) g_{n+1}^{3}-g_{n}^{3} . \tag{2.1}
\end{equation*}
$$

Its proof involves some messy algebra; so we omit it. But we will revisit it shortly.
It follows from recurrence (2.1) that

$$
\begin{aligned}
f_{n+4}^{3} & =\left(x^{3}+2 x\right) f_{n+3}^{3}+\left(x^{4}+3 x^{2}+2\right) f_{n+2}^{3}-\left(x^{3}+2 x\right) f_{n+1}^{3}-f_{n}^{3} \\
l_{n+4}^{3} & =\left(x^{3}+2 x\right) l_{n+3}^{3}+\left(x^{4}+3 x^{2}+2\right) l_{n+2}^{3}-\left(x^{3}+2 x\right) l_{n+1}^{3}-l_{n}^{3} \\
p_{n+4}^{3} & =4\left(2 x^{3}+x\right) p_{n+3}^{3}+2\left(8 x^{4}+6 x^{2}+1\right) p_{n+2}^{3}-4\left(2 x^{3}+x\right) p_{n+1}^{3}-p_{n}^{3} \\
q_{n+4}^{3} & =4\left(2 x^{3}+x\right) q_{n+3}^{3}+2\left(8 x^{4}+6 x^{2}+1\right) q_{n+2}^{3}-4\left(2 x^{3}+x\right) q_{n+1}^{3}-q_{n}^{3} \\
P_{n+4}^{3} & =12 P_{n+3}^{3}+30 P_{n+2}^{3}-12 P_{n+1}^{3}-P_{n}^{3} \\
Q_{n+4}^{3} & =12 Q_{n+3}^{3}+30 Q_{n+2}^{3}-12 Q_{n+1}^{3}-Q_{n}^{3} .
\end{aligned}
$$

3. Gibonomial Coefficients

The nth gibonomial coefficient $\left[\left[\begin{array}{l}n \\ r\end{array}\right]\right]$ is defined by

$$
\left[\left[\begin{array}{c}
n \tag{3.1}\\
r
\end{array}\right]\right]=\frac{f_{n}^{*}}{f_{r}^{*} f_{n-r}^{*}},
$$

where $f_{k}^{*}=f_{k} f_{k-1} \ldots f_{2} f_{1}, f_{0}^{*}=1$, and $0 \leq r \leq n$. Clearly, $\left[\left[\begin{array}{l}n \\ r\end{array}\right]\right]=\left[\left[\begin{array}{c}n \\ n-r\end{array}\right]\right],\left[\left[\begin{array}{l}n \\ 0\end{array}\right]\right]=$ $\left[\left[\begin{array}{l}n \\ n\end{array}\right]\right]$ and $\left[\left[\begin{array}{l}n \\ 1\end{array}\right]\right]=\left[\left[\begin{array}{c}n \\ n-1\end{array}\right]\right]$. Also when $\left.x=1,\left[\begin{array}{l}n \\ r\end{array}\right]\right]=\left[\begin{array}{l}n \\ r\end{array}\right]$.
3.1. Gibonomial Recurrences. Gibonomial coefficients satisfy two Pascal-like recurrences:

$$
\begin{align*}
{\left.\left[\begin{array}{c}
n \\
r
\end{array}\right]\right] } & =\left[\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]\right] f_{r+1}+\left[\left[\begin{array}{c}
n-1 \\
r-1
\end{array}\right]\right] f_{n-r-1} \tag{3.2}\\
& \left.\left.=\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]\right] f_{r-1}+\left[\begin{array}{c}
n-1 \\
r-1
\end{array}\right]\right] f_{n-r+1} . \tag{3.3}
\end{align*}
$$

These recurrences can be established using the addition formula and definition (3.1).

THE FIBONACCI QUARTERLY

For example,

$$
\begin{aligned}
{\left.\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]\right] f_{r+1}+\left[\left[\begin{array}{c}
n-1 \\
r-1
\end{array}\right]\right] f_{n-r-1} } & =\frac{f_{n-1}^{*}}{f_{r}^{*} f_{n-r-1}^{*}} f_{r+1}+\frac{f_{n-1}^{*}}{f_{r-1}^{*} f_{n-r}^{*}} f_{n-r-1} \\
& =\frac{f_{n-1}^{*}}{f_{r}^{*} f_{n-r}^{*}}\left(f_{r+1} f_{n-r}+f_{n-r-1} f_{r}\right) \\
& =\frac{f_{n-1}^{*} f_{n}}{f_{r}^{*} f_{n-r}^{*}} \\
& \left.=\left[\begin{array}{c}
n \\
r
\end{array}\right]\right] .
\end{aligned}
$$

It follows from recurrence (3.3) that $\left[\left[\begin{array}{l}n \\ 1\end{array}\right]\right]=f_{n}=\left[\left[\begin{array}{c}n \\ n-1\end{array}\right]\right]$.
Recurrence (3.2) or (3.3), coupled with the initial conditions $\left[\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]=1=\left[\left[\begin{array}{l}1 \\ 0\end{array}\right]\right]$, implies that every gibonomial coefficient is an integer-valued polynomial.

The recurrences can be used to construct the gibonomial triangle in Figure 1.

$$
\begin{array}{cccccccc}
& & & 1 & 1 & 1 & & \\
& & 1 & 1 & & 1 & \\
& 1 & 1 & x & x^{2}+1 & x & x^{2}+1 & 1 \\
1 & & x^{3}+2 x & & x^{4}+3 x^{2}+2 & & x^{3}+2 x & \\
1
\end{array}
$$

Figure 1. Gibonomial Triangle
Since $f_{k+1}+f_{k-1}=l_{k}$, it follows by recurrences (3.2) and (3.3) that

$$
2\left[\left[\begin{array}{c}
n \tag{3.4}\\
r
\end{array}\right]\right]=\left[\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]\right] l_{r}+\left[\left[\begin{array}{c}
n-1 \\
r-1
\end{array}\right]\right] l_{n-r} .
$$

Consequently, $2 f_{n}=f_{n-r} l_{r}+f_{r} l_{n-r}$ and hence, $2 V_{n}=V_{n-r} v_{r}+V_{r} v_{n-r}$.
It also follows from equation (3.4) that

$$
2\left[\begin{array}{l}
n \\
r
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
r
\end{array}\right] L_{r}+\left[\begin{array}{l}
n-1 \\
r-1
\end{array}\right] L_{n-r} .
$$

Brennan discovered this formula in 1963 [1].
3.2. Central Gibonomial Coefficients. The central gibonomial coefficients $\left[\left[\begin{array}{c}2 n \\ n\end{array}\right]\right]$ satisfy the following property:

$$
\begin{align*}
{\left[\left[\begin{array}{c}
2 n \\
n
\end{array}\right]\right.} & =\left[\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]\right] f_{n+1}+\left[\left[\begin{array}{c}
2 n-1 \\
n-1
\end{array}\right]\right] f_{n-1} \\
& =\left[\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]\right]\left(f_{n+1}+f_{n-1}\right) \\
& =\left[\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]\right] l_{n} . \tag{3.5}
\end{align*}
$$

It follows from identity (3.5) that $f_{2 n}=f_{n} l_{n}$, and hence, $V_{2 n}=V_{n} v_{n}$.
3.3. Star of David Property. Gibonomial coefficients satisfy the Star of David property

$$
\left[\left[\begin{array}{c}
n-1 \\
r-1
\end{array}\right]\right]\left[\left[\begin{array}{c}
n \\
r+1
\end{array}\right]\right]\left[\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]\right]=\left[\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]\right]\left[\left[\begin{array}{c}
n+1 \\
r+1
\end{array}\right]\right]\left[\left[\begin{array}{c}
n \\
r-1
\end{array}\right]\right] ;
$$

see Figure 2.

Figure 2.
This property also can be established algebraically:

$$
\begin{aligned}
\text { LHS } & =\frac{f_{n-1}^{*}}{f_{r-1}^{*} f_{n-r}^{*}} \cdot \frac{f_{n}^{*}}{f_{r+1}^{*} f_{n-r-1}^{*}} \cdot \frac{f_{n+1}^{*}}{f_{r}^{*} f_{n-r+1}^{*}} \\
& =\frac{f_{n-1}^{*}}{f_{r}^{*} f_{n-r-1}^{*}} \cdot \frac{f_{n+1}^{*}}{f_{r+1}^{*} f_{n-r}^{*}} \cdot \frac{f_{n}^{*}}{f_{r-1}^{*} f_{n-r+1}^{*}} \\
& =\left[\left[\begin{array}{c}
n-1 \\
r
\end{array}\right]\right]\left[\left[\begin{array}{c}
n+1 \\
r+1
\end{array}\right]\right]\left[\left[\begin{array}{c}
n \\
r-1
\end{array}\right]\right] \\
& =\text { RHS. }
\end{aligned}
$$

Hoggatt and Hansel discovered the binomial version of the Star of David property in 1971 [8,10$]$.
3.4. Applications of Gibonomial Coefficients. Following the spirit of Brennan's equation, the characteristic equation of the product of n polynomial recurrences $y_{n+2}=x y_{n+1}+y_{n}$ is given by

$$
\sum_{r=0}^{n+1}(-1)^{r(r+1) / 2}\left[\left[\begin{array}{c}
n+1 \\
r
\end{array}\right]\right] z^{n-r+1}=0
$$

When $n=2,3$, and 4 , this yields

$$
\begin{aligned}
& z^{3}-\left(x^{2}+1\right) z^{2}-\left(x^{2}+1\right) z+1=0 \\
& z^{4}-\left(x^{3}+2 x\right) z^{3}-\left(x^{4}+3 x^{2}+2\right) z^{2}+\left(x^{3}+2 x\right) z+1=0 \\
& z^{5}-\left(x^{4}+3 x^{2}+1\right) z^{4}-\left(x^{6}+5 x^{4}+7 x^{2}+2\right) z^{3}+ \\
&\left(x^{6}+5 x^{4}+7 x^{2}+2\right) z^{2}+\left(x^{4}+3 x^{2}+1\right) z-1=0,
\end{aligned}
$$

THE FIBONACCI QUARTERLY

respectively. These equations imply that

$$
\begin{align*}
g_{n+3}^{2}= & \left(x^{2}+1\right) g_{n+2}^{2}+\left(x^{2}+1\right) g_{n+1}^{2}-g_{n}^{2} \tag{3.6}\\
g_{n+4}^{3}= & \left(x^{3}+2 x\right) g_{n+3}^{3}+\left(x^{4}+3 x^{2}+2\right) g_{n+2}^{3}-\left(x^{3}+2 x\right) g_{n+1}^{3}-g_{n}^{3} \tag{3.7}\\
g_{n+5}^{4}= & \left(x^{4}+3 x^{2}+1\right) g_{n+4}^{4}+\left(x^{6}+5 x^{4}+7 x^{2}+2\right) g_{n+3}^{4}- \\
& \left(x^{6}+5 x^{4}+7 x^{2}+2\right) g_{n+2}^{4}-\left(x^{4}+3 x^{2}+1\right) g_{n+1}^{4}+g_{n}^{4} . \tag{3.8}
\end{align*}
$$

It follows from equation (3.8) that

$$
\begin{aligned}
f_{n+5}^{4}= & \left(x^{4}+3 x^{2}+1\right) f_{n+4}^{4}+\left(x^{6}+5 x^{4}+7 x^{2}+2\right) f_{n+3}^{4}- \\
& \left(x^{6}+5 x^{4}+7 x^{2}+2\right) f_{n+2}^{4}-\left(x^{4}+3 x^{2}+1\right) f_{n+1}^{4}+f_{n}^{4} \\
l_{n+5}^{4}= & \left(x^{4}+3 x^{2}+1\right) l_{n+4}^{4}+\left(x^{6}+5 x^{4}+7 x^{2}+2\right) l_{n+3}^{4}- \\
& \left(x^{6}+5 x^{4}+7 x^{2}+2\right) l_{n+2}^{4}-\left(x^{4}+3 x^{2}+1\right) l_{n+1}^{4}+l_{n}^{4} \\
p_{n+5}^{4}= & \left(16 x^{4}+12 x^{2}+1\right) p_{n+4}^{4}+\left(64 x^{6}+80 x^{4}+28 x^{2}+2\right) p_{n+3}^{4}- \\
& \left(64 x^{6}+80 x^{4}+28 x^{2}+2\right) p_{n+2}^{4}-\left(16 x^{4}+12 x^{2}+1\right) p_{n+1}^{4}+p_{n}^{4} \\
q_{n+5}^{4}= & \left(16 x^{4}+12 x^{2}+1\right) q_{n+4}^{4}+\left(64 x^{6}+80 x^{4}+28 x^{2}+2\right) q_{n+3}^{4}- \\
& \left(64 x^{6}+80 x^{4}+28 x^{2}+2\right) q_{n+2}^{4}-\left(16 x^{4}+12 x^{2}+1\right) q_{n+1}^{4}+q_{n}^{4} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& F_{n+5}^{4}=5 F_{n+4}^{4}+15 F_{n+3}^{4}-15 F_{n+2}^{4}-5 F_{n+1}^{4}+F_{n}^{4} \\
& L_{n+5}^{4}=5 L_{n+4}^{4}+15 L_{n+3}^{4}-15 L_{n+2}^{4}-5 L_{n+1}^{4}+L_{n}^{4} \\
& P_{n+5}^{4}=29 P_{n+4}^{4}+174 P_{n+3}^{4}-174 P_{n+2}^{4}-29 P_{n+1}^{4}+P_{n}^{4} \\
& Q_{n+5}^{4}=29 Q_{n+4}^{4}+174 Q_{n+3}^{4}-174 Q_{n+2}^{4}-29 Q_{n+1}^{4}+Q_{n}^{4} .
\end{aligned}
$$

Similar results follow from equations (3.6) and (3.7).
3.5. Generating Function for Gibonomial Coefficients. Using the Gaussian binomial coefficients

$$
\left\{\begin{array}{c}
m \\
r
\end{array}\right\}=\frac{\left(1-q^{m}\right)\left(1-q^{m-1}\right) \ldots\left(1-q^{m-r+1}\right)}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{r}\right)}
$$

we have

$$
\begin{gather*}
\prod_{r=0}^{m-1}\left(1-q^{r} z\right)=\sum_{r=0}^{m}(-1)^{r}\left\{\begin{array}{c}
m \\
r
\end{array}\right\} q^{r(r-1) / 2} z^{r} \tag{3.9}\\
\prod_{r=0}^{m-1} \frac{1}{1-q^{r} z}=\sum_{r=0}^{\infty}\left\{\begin{array}{c}
m+r-1 \\
r
\end{array}\right\} z^{r}, \tag{3.10}
\end{gather*}
$$

where q is a dummy variable $[3,4,10]$. Letting $q=\beta / \alpha$,

$$
\begin{align*}
\left\{\begin{array}{c}
m \\
r
\end{array}\right\} & =\frac{\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{m-1}-\beta^{m-1}\right) \ldots\left(\alpha^{m-r+1}-\beta^{m-r+1}\right)}{(\alpha-\beta)\left(\alpha^{2}-\beta^{2}\right) \ldots\left(\alpha^{r}-\beta^{r}\right)} \cdot \alpha^{-r(m-r)} \\
& =\frac{f_{m} f_{m-1} \ldots f_{m-r+1} \cdot \Delta^{r}}{f_{1} f_{2} \ldots f_{r} \cdot \Delta^{r}} \cdot \alpha^{-r(m-r)} \\
& =\frac{f_{m}^{*}}{f_{r}^{*} f_{m-r}^{*}} \alpha^{-r(m-r)} \\
& \left.=\left[\begin{array}{c}
m \\
r
\end{array}\right]\right] \alpha^{-r(m-r)} \tag{3.11}
\end{align*}
$$

Likewise,

$$
\left\{\begin{array}{c}
m+r-1 \tag{3.12}\\
r
\end{array}\right\}=\left[\left[\begin{array}{c}
m+r-1 \\
r
\end{array}\right]\right] \alpha^{-r(m-1)} .
$$

Since

$$
\begin{aligned}
(-1)^{r}\left(\frac{\beta}{\alpha}\right)^{r(r-1) / 2} & =(-1)^{r}\left(-\alpha^{-2}\right)^{r(r-1) / 2} \\
& =(-1)^{r(r+1) / 2} \alpha^{-r(r-1)}
\end{aligned}
$$

replacing z with $\alpha^{m-1} z$ and letting $q=\beta / \alpha$, identities (3.9) and (3.11) then yield

$$
\begin{aligned}
\prod_{r=0}^{m-1}\left(1-\beta^{r} \alpha^{m-r-1} z\right) & =\sum_{r=0}^{m}(-1)^{r(r+1) / 2} \alpha^{-r(r-1)}\left[\left[\begin{array}{c}
m \\
r
\end{array}\right]\right] \alpha^{-r(m-r)} \cdot\left(\alpha^{m-1} z\right)^{r} \\
& =\sum_{r=0}^{m}(-1)^{r(r+1) / 2}\left[\left[\begin{array}{c}
m \\
r
\end{array}\right]\right] z^{r}
\end{aligned}
$$

Identities (3.10) and (3.12) then imply that

$$
\begin{align*}
\frac{1}{\sum_{r=0}^{m}(-1)^{r(r+1) / 2}\left[\left[\begin{array}{c}
m \\
r
\end{array}\right]\right] z^{r}} & =\sum_{r=0}^{\infty}\left[\left[\begin{array}{c}
m+r-1 \\
r
\end{array}\right]\right] \alpha^{-r(m-1)} \cdot\left[\alpha^{m-1} z\right]^{r} \\
& =\sum_{r=0}^{\infty}\left[\left[\begin{array}{c}
m+r-1 \\
r
\end{array}\right]\right] z^{r} \\
& =\sum_{r=0}^{\infty}\left[\left[\begin{array}{c}
m+r-1 \\
m-1
\end{array}\right]\right] z^{r} \\
\frac{z^{m-1}}{\sum_{r=0}^{m}(-1)^{r(r+1) / 2}\left[\left[\begin{array}{c}
m \\
r
\end{array}\right]\right] z^{r}} & =\sum_{n=0}^{\infty}\left[\left[\begin{array}{c}
n \\
m-1
\end{array}\right]\right] z^{n} \tag{3.13}
\end{align*}
$$

where $m \geq 1$. This is the desired generating function.

THE FIBONACCI QUARTERLY

When $m=2$ and $m=3$, equation (3.13) gives

$$
\begin{aligned}
\frac{z}{1-x z-z^{2}}= & \sum_{n=0}^{\infty} f_{n} z^{n} \\
= & \sum_{n=0}^{\infty}\left[\left[\begin{array}{l}
n \\
1
\end{array}\right]\right] z^{n} ; \\
\frac{z^{2}}{1-\left(x^{2}+1\right) z-\left(x^{2}+1\right) z^{2}+z^{3}}= & z^{2}+\left(x^{2}+1\right) z^{3}+\left(x^{4}+3 x^{2}+2\right) z^{4}+ \\
& \left(x^{6}+5 x^{4}+7 x^{2}+2\right) z^{5}+\cdots \\
= & \sum_{n=0}^{\infty}\left[\left[\begin{array}{c}
n \\
2
\end{array}\right]\right] z^{n},
\end{aligned}
$$

respectively. In particular, equation (3.13) gives a generating function for Fibonomial coefficients $[4,6,7]$:

$$
\frac{z^{m-1}}{\sum_{r=0}^{m}(-1)^{r(r+1) / 2}\left[\begin{array}{c}
m \\
r
\end{array}\right] z^{r}}=\sum_{n=0}^{\infty}\left[\begin{array}{c}
n \\
m-1
\end{array}\right] z^{n}
$$

where $m \geq 1$.
3.6. Addition Formula. Torretto and Fuchs developed an addition formula involving the sum of products of $m+1$ terms of sequences satisfying the same general second-order recurrence [15]. The identity

$$
\sum_{r=0}^{m}(-1)^{r(r+3) / 2}\left[\begin{array}{c}
m \\
r
\end{array}\right] F_{n+m-r}^{m+1}=F_{m}^{*} F_{(m+1)(n+m / 2)}
$$

is a special case of their formula (5).
This identity has an analogous result for f_{k} :

$$
\sum_{r=0}^{m}(-1)^{r(r+3) / 2}\left[\left[\begin{array}{c}
m \tag{3.14}\\
r
\end{array}\right]\right] f_{n+m-r}^{m+1}=f_{m}^{*} f_{(m+1)(n+m / 2)}
$$

When $m=1$, this yields the familiar Lucas-like identity $f_{n+1}^{2}+f_{n}^{2}=f_{2 n+1}$; and when $m=2$, it yields

$$
\begin{gathered}
{\left[\left[\begin{array}{l}
2 \\
0
\end{array}\right]\right] f_{n+2}^{3}+\left[\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right] f_{n+1}^{3}-\left[\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right] f_{n}^{3}=f_{1} f_{2} f_{3(n+1)}} \\
f_{n+2}^{3}+x f_{n+1}^{3}-f_{n}^{3}=x f_{3(n+1)}
\end{gathered}
$$

This generalization of the Lucas identity $F_{n+1}^{3}+F_{n}^{3}-F_{n-1}^{3}=F_{3 n}$ is established in [11].
Letting $m=3$ and $m=4$, we get

$$
\begin{align*}
f_{n+3}^{4}+\left(x^{2}+1\right) f_{n+2}^{4}-\left(x^{2}+1\right) f_{n+1}^{4}-f_{n}^{4} & =x\left(x^{2}+1\right) f_{4 n+6} \tag{3.15}\\
f_{n+4}^{5}+\left(x^{3}+2 x\right) f_{n+3}^{5} & -\left(x^{4}+3 x^{2}+2\right) f_{n+2}^{5} \\
& \quad-\left(x^{3}+2 x\right) f_{n+1}^{5}+f_{n}^{5}=x\left(x^{2}+1\right)\left(x^{3}+2 x\right) f_{5 n+10} . \tag{3.16}
\end{align*}
$$

GIBONOMIAL COEFFICIENTS WITH INTERESTING BYPRODUCTS

It follows from identities (3.15) and (3.16) that

$$
\begin{align*}
F_{n+3}^{4}+2 F_{n+2}^{4}-2 F_{n+1}^{4}-F_{n}^{4} & =2 F_{4 n+6} \tag{3.17}\\
p_{n+3}^{4}+\left(4 x^{2}+1\right) p_{n+2}^{4}-\left(4 x^{2}+1\right) p_{n+1}^{4}-p_{n}^{4} & =2 x\left(4 x^{2}+1\right) p_{4 n+6} \\
P_{n+3}^{4}+5 P_{n+2}^{4}-5 P_{n+1}^{4}-P_{n}^{4} & =10 P_{4 n+6} \\
F_{n+4}^{5}+3 F_{n+3}^{5}-6 F_{n+2}^{5}-3 F_{n+1}^{5}+F_{n}^{5} & =6 F_{5 n+10} \tag{3.18}\\
p_{n+4}^{5}+4 x\left(2 x^{2}+1\right) p_{n+3}^{5}-2\left(8 x^{4}+6 x^{2}+1\right) p_{n+2}^{5} & \\
-4 x\left(2 x^{2}+1\right) p_{n+1}^{5}+p_{n}^{5} & =8 x^{2}\left(2 x^{2}+1\right)\left(4 x^{2}+1\right) p_{5 n+10} \\
P_{n+4}^{5}+12 P_{n+3}^{5}-30 P_{n+2}^{5}-12 P_{n+1}^{5}+P_{n}^{5} & =120 P_{5 n+10} .
\end{align*}
$$

Identities (3.17) and (3.18) appear in [13].
Letting $m=5$, identity (3.14) yields

$$
\begin{aligned}
& \sum_{r=0}^{5}(-1)^{r(r+3) / 2}\left[\left[\begin{array}{l}
5 \\
r
\end{array}\right]\right] f_{n+5-r}^{6}=f_{1} f_{2} f_{3} f_{4} f_{5} f_{6 n+15} \\
& \left.\left[\begin{array}{l}
5 \\
0
\end{array}\right]\right] f_{n+5}^{6}+\left[\left[\begin{array}{l}
5 \\
1
\end{array}\right]\right] f_{n+4}^{6}-\left[\left[\begin{array}{c}
5 \\
2
\end{array}\right]\right] f_{n+3}^{6}-\left[\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right] f_{n+2}^{6}+\left[\left[\begin{array}{l}
5 \\
4
\end{array}\right]\right] f_{n+1}^{6}-\left[\left[\begin{array}{c}
5 \\
5
\end{array}\right]\right] f_{n}^{6} \\
& \quad=f_{1} f_{2} f_{3} f_{4} f_{5} f_{6 n+15}
\end{aligned}
$$

that is,

$$
\begin{aligned}
& f_{n+5}^{6}+\left(x^{4}+3 x^{2}+1\right) f_{n+4}^{6}-\left(x^{6}+5 x^{4}+7 x^{2}+2\right) f_{n+3}^{6}-\left(x^{6}+5 x^{4}+7 x^{2}+2\right) f_{n+2}^{6} \\
& \quad+\left(x^{4}+3 x^{2}+1\right) f_{n+1}^{6}-f_{n}^{6}=x\left(x^{2}+1\right)\left(x^{3}+2 x\right)\left(x^{4}+3 x^{2}+1\right) f_{6 n+15} .
\end{aligned}
$$

In particular, we have

$$
\begin{gathered}
F_{n+5}^{6}+5 F_{n+4}^{6}-15 F_{n+3}^{6}-15 F_{n+2}^{6}+5 F_{n+1}^{6}-F_{n}^{6}=30 F_{6 n+15} \\
p_{n+5}^{6}+\left(16 x^{4}+12 x^{2}+1\right) p_{n+4}^{6} \\
-2\left(32 x^{6}+40 x^{4}+14 x^{2}+1\right) p_{n+3}^{6} \\
-2\left(32 x^{6}+40 x^{4}+14 x^{2}+1\right) p_{n+2}^{6} \\
\quad+\left(16 x^{4}+12 x^{2}+1\right) p_{n+1}^{6}-p_{n}^{6}=x\left(x^{2}+1\right)\left(x^{3}+2 x\right)\left(x^{4}+3 x^{2}+1\right) p_{6 n+15} \\
P_{n+5}^{6}+29 P_{n+4}^{6}-174 P_{n+3}^{6}-174 P_{n+2}^{6} \\
+29 P_{n+1}^{6}-P_{n}^{6}=30 P_{6 n+15} .
\end{gathered}
$$

Finally, we add that the above Fibonacci identities have Vieta, Chebyshev, and Jacobsthal counterparts. For example, it follows from the identity $f_{n+1}^{3}+x f_{n}^{3}-f_{n-1}^{3}=x f_{3 n}$ that $V_{n+1}^{3}-x V_{n}^{3}+V_{n-1}^{3}=x V_{3 n}$.

Acknowledgment

The author would like to thank the referee for his/her thoughtful comments and suggestions for improving the quality of the exposition of the article.

THE FIBONACCI QUARTERLY

References

[1] T. A. Brennan, Problem H-5, The Fibonacci Quarterly, 1.1 (1963), 47.
[2] T. A. Brennan, Fibonacci powers and Pascal's triangle in a matrix-part I, The Fibonacci Quarterly, 2.2 (1964), 93-103.
[3] P. J. Cameron, Combinatorics: Topics, Techniques and Algorithms, Cambridge University Press, New York, 1994.
[4] L. Carlitz, Solution to Problem H-78, The Fibonacci Quarterly, 5.5 (1967), 438-440.
[5] H. W. Gould, The bracket function and the Fontené-Ward generalized binomial coefficients with application to fibonomial coefficients, The Fibonacci Quarterly, 7.1 (1969), 23-40.
[6] V. E. Hoggatt, Jr., Problem H-72, The Fibonacci Quarterly, 3.4 (1965), 299-300.
[7] V. E. Hoggatt, Jr., Problem H-78, The Fibonacci Quarterly, 4.1 (1966), 56-57.
[8] V. E. Hoggatt, Jr. and W. Hansel, The hidden hexagon squares, The Fibonacci Quarterly, 9.2 (1971), 120, 133.
[9] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223-232.
[10] T. Koshy, Triangular Arrays with Applications, Oxford, New York, 2011.
[11] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities, The Fibonacci Quarterly, 52.2 (2014), 141-147.
[12] D. Lind, Problem H-140, The Fibonacci Quarterly, 8.1 (1970), 81.
[13] R. S. Melham, Some analogs of the identity $F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}$, The Fibonacci Quarterly, 37.4 (1999), 305-311.
[14] N. Robbins, Vieta's triangular array and a related family of polynomials, International Journal of Mathematics and Mathematical Sciences, 14 (1991), 239-244.
[15] R. F. Torretto and J. A. Fuchs, Generalized binomial coefficients, The Fibonacci Quarterly, 2.4 (1964), 296-302.
[16] D. Zeitlin, Problem H-17, The Fibonacci Quarterly, 1.1 (1963), 51.
MSC2010: 11B37, 11B39
Department of Mathematics, Framingham State University, Framingham, Massachusetts 01701
E-mail address: tkoshy@emeriti.framingham.edu

