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Abstract. In this paper, we find closed forms, in terms of rational numbers, for certain finite
sums. Our most general results are for finite sums where the denominator of the summand is
a product of terms from a sequence that generalizes both the Fibonacci and Lucas numbers.

1. Introduction

The Fibonacci and Lucas numbers are defined, respectively, for all integers n, by

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

To appreciate the many topics in the study of Fibonacci numbers, one need only glance at the
chapter headings in the lovely book of Hoggatt, Jr. [2]. Chapter 10 deals with the topic of
Fibonacci identities. Two well-known Fibonacci identities that occur in chapter 10 are

Fn−1Fn+1 − F 2
n = (−1)n, (1.1)

and

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1. (1.2)

Identities (1.1) and (1.2) are known as Simson’s identity, and the Gelin-Cesàro identity, re-
spectively. Although these identities are quite old, they continue to provoke research. In this
regard, we refer the interested reader to [1] and [3].

The present paper deals with reciprocal summation involving Fibonacci numbers, a topic
not covered in [2]. Specifically, we continue the line of research in [4, 5, 6], where we give
closed forms for certain finite sums in which the denominator of the summand consists of a
product of Fibonacci (or generalized Fibonacci) numbers. Two instances of such finite sums
are

n−1
∑

i=1

1

FiFi+1Fi+2Fi+3
=

7

4
− 1

2

(

Fn−1

Fn

+
3Fn

Fn+1
+

Fn+1

Fn+2

)

, (1.3)

and

8

n−1
∑

i=1

L2(i+1)L2(i+2)

F2iF2(i+1)F2(i+2)F2(i+3)
= 2 + F2(n−2)

(

7

3F2n
− 9

8F2(n+1)
+

1

3F2(n+2)

)

, (1.4)

both valid for n ≥ 2. The sums (1.3) and (1.4) occur in [4] and [5], respectively.
In order to indicate the flavor of the results that we present in this paper, we begin by writing

down the closed forms for two finite sums that involve the Fibonacci and Lucas numbers,
respectively. For n ≥ 2, we have

6

n−1
∑

i=1

(−1)iF2i+3

FiFi+1Fi+2Fi+3
+ 5 =

2Fn−2Fn+4

FnFn+2
. (1.5)
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Again, for n ≥ 2, we have

5922

n−1
∑

i=1

L4i+6

L2iL2i+2L2i+4L2i+6
− 41 =

F2(n−2)

20

(

2538

L2n
− 329

L2n+2
+

378

L2n+4

)

. (1.6)

The finite sum (1.5) is an instance of a six-parameter family of identities that we present in
Section 2, while (1.6) is an instance of a seven-parameter family of similar identities that we
also present in Section 2.

We now introduce the two other pairs of integer sequences that are featured in this paper.
Let a ≥ 0 and b ≥ 0 be integers with (a, b) 6= (0, 0). For p a positive integer, we define, for all
integers n, the sequences {Wn} and

{

W n

}

by

Wn = pWn−1 +Wn−2, W0 = a, W1 = b,

and

W n = Wn−1 +Wn+1.

For (a, b, p) = (0, 1, 1), we have {Wn}={Fn}, and
{

Wn

}

={Ln}. Retaining the parameter p,

and taking (a, b) = (0, 1), we write {Wn}={Un}, and
{

W n

}

={Vn}, which are integer sequences

that generalize the Fibonacci and Lucas numbers, respectively. Set ∆ = p2+4. Then Un = Vn,
and V n = ∆Un, so that Fn = Ln, and Ln = 5Fn.

Let α =
(

p+
√
∆
)

/2, and β =
(

p−
√
∆
)

/2, denote the two distinct real roots of x2 −
px − 1 = 0. Set A = b − aβ, and B = b − aα. Then the closed forms (the Binet forms) for
{Wn} and

{

W n

}

are, respectively,

Wn =
Aαn −Bβn

α− β
,

and

W n = Aαn +Bβn.

We require also the constant eW = AB = b2 − pab− a2.
In Section 5, we prove one of our theorems with the use of a method that can be used to

prove all the results that we present in this paper. Indeed, this method of proof is used in [5]
and [6]. To this end, we choose to write

Un =
(

αn + (−1)n+1α−n
)

/
√
∆,

Vn = αn + (−1)nα−n,

Wn =
((

b+ aα−1
)

αn + (−1)n+1 (b− aα)α−n
)

/
√
∆,

W n =
(

b+ aα−1
)

αn + (−1)n (b− aα)α−n, (1.7)

where these closed forms are valid for all integers n. We note also that p = α− α−1.
There is a finite sum that we feature throughout. For integers 0 ≤ l1 < l2, k ≥ 1, m ≥ 0,

and n ≥ 2, this finite sum is

ΩW (k,m, n, l1, l2) =

l2−1
∑

i=l1

(−1)ki

Wk(i+2)+mWk(i+n)+m

. (1.8)

If, for instance, on the right side of (1.8) we replace each occurrence of W by U , we denote
the resulting sum by ΩU (k,m, n, l1, l2).

We now give an identity involving ΩW that is required for the proofs of all the theorems in
this paper. We give this identity, whose proof can be found in [5], as a lemma.
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Lemma 1.1. With the constraints on l1, l2, k, m, and n, given above,

Uk(n−1)ΩW (n+ 1)− Uk(n−2)ΩW (n) =
(−1)k(n+l1)Uk(l2−l1)

Wk(n+l1)+mWk(n+l2)+m

.

The reader will notice that, in the statement of Lemma 1.1, we take ΩW (n) to mean
ΩW (k,m, n, l1, l2). Likewise, in the sequel, we suppress certain arguments from quantities
when there is no danger of confusion. We do this to prevent the formulas in question from
becoming too unwieldy. Again, in Theorem 2.1, ΩU (m1,m2) means ΩU (k,m, n,m1,m2). A
similar interpretation applies to the statement of all the theorems in this paper.

As we have already stated, the sums (1.5) and (1.6) are particular instances of two of our
results. We begin in Section 2 with finite sums in which the denominator of the summand
consists of a product of four factors. For finite sums of the type considered in this paper, where
the denominator of the summand consists of fewer than four factors, see [5]. In Sections 3 and
4, we consider finite sums in which the denominator of the summand consists of a product
of five and six factors, respectively. In Section 5, we present a sample proof that sets forth a
method by which all of our results can be proved.

2. The Summand has Four Factors in the Denominator

Throughout this paper, k ≥ 1, m ≥ 0, and n ≥ 2 always represent integers, and henceforth
we do not restate this. In this section, 0 < m1 < m2 < m3 represent integers. We now present
the six-parameter family of finite reciprocal sums that yields (1.5) as a special case. Define
the finite sum

S1(k,m, n,m1,m2,m3) =
n−1
∑

i=1

(−1)kiUk(2i+m1+m2)+2m

Uki+mUk(i+m1)+mUk(i+m2)+mUk(i+m3)+m

.

For 0 ≤ i ≤ 3, define ai = ai(k,m1,m2,m3) by

a0 = Um1k
Um2k

Um3k
U(m3−m2)kU(m3−m1)k,

a1 = U(m1+m2)kU(m3−m2)kU(m3−m1)k,

a2 = (−1)km2Um1k
U(m3−m2)kU(m3−m2−m1)k,

a3 = −Um1k
Um2k

U(2m3−m2−m1)k.

Then we have the following theorem.

Theorem 2.1. With S1 and the ai as defined above,

a0 (S1(n)− S1(2)) = Uk(n−2) (a1ΩU (0,m1) + a2ΩU (m1,m2)

+ a3ΩU (m2,m3)) .

In Theorem 2.1, taking (p, k,m,m1,m2,m3) = (1, 1, 0, 1, 2, 3), we obtain (1.5). In the
numerator of the summand of S1, replace m1 +m2 by m1 +m3, or simply by m3. Then we
have also obtained closed forms for the corresponding finite sums, together with several other
similarly defined sums. We do not present these closed forms here.

In the summand of S1, we replaced each occurrence of U by V , but were unable to find the
closed form of the corresponding finite sum. Likewise, in the numerator of the summand of S1,
we replaced U by V , but were unable to find the closed form of the corresponding finite sum.
However, by taking m3 = m1+m2, we were able to find the closed forms of the aforementioned
sums. The condition m3 = m1 +m2 encompasses all instances where 0, m1, m2, and m3 are
in arithmetic progression. Assuming this condition, we succeeded in finding closed forms for
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sums analogous to S1 that involve the more general sequences {Wn} and
{

Wn

}

. We now give
two of these results (we have discovered several others).

Define

S2(k,m, n,m1,m2,m3) =

n−1
∑

i=1

(−1)kiWk(2i+m1+m2)+2m

Wki+mWk(i+m1)+mWk(i+m2)+mWk(i+m3)+m

.

For 0 ≤ i ≤ 3, define bi = bi(k,m1,m2) by

b0 = eWUm1k
Um2k

U(m1+m2)kU(m2−m1)k,

b1 = (−1)k(m1+m2)+1U(m2−m1)kW−(m1+m2)k,

b2 = (−1)k(m1+m2)W0U2m1k
,

b3 = −U(m2−m1)kW(m1+m2)k.

We then have the following theorem.

Theorem 2.2. Let 0 < m1 < m2 be integers, and let m3 = m1 +m2. Then

b0 (S2(n)− S2(2)) = Uk(n−2) (b1ΩW (0,m1) + b2ΩW (m1,m2)

+ b3ΩW (m2,m3)) .

In Theorem 2.2, taking (p, a, b, k,m,m1,m2) = (1, 2, 1, 2, 0, 1, 2), we obtain (1.6).
Next, define

S3(k,m, n,m1,m2,m3) =

n−1
∑

i=1

(−1)kiW k(2i+m1+m2)+2m

Wki+mWk(i+m1)+mWk(i+m2)+mWk(i+m3)+m

.

For 0 ≤ i ≤ 3, define ci = ci(k,m1,m2) as

c0 = eWUm1k
Um2k

U(m1+m2)kU(m2−m1)k,

c1 = (−1)k(m1+m2)U(m2−m1)kW−(m1+m2)k,

c2 = (−1)k(m1+m2)+1W 0U2m1k
,

c3 = U(m2−m1)kW (m1+m2)k.

We then have the following theorem.

Theorem 2.3. Let 0 < m1 < m2 be integers, and let m3 = m1 +m2. Then

c0 (S3(n)− S3(2)) = Uk(n−2) (c1ΩW (0,m1) + c2ΩW (m1,m2)

+ c3ΩW (m2,m3)) .

It is easy to see that, with Wn = Fn, or Wn = Ln, Theorem 2.3 yields a four-parameter
family of sums that are analogous to (1.5) and (1.6), and where the summand of each member
of this family involves both Fn and Ln.

To conclude this section, we give closed forms for two finite sums where, in each case, the
numerator of the summand contains a square. For integers 0 < m1 < m2, define

S4(k,m, n,m1,m2) =

n−1
∑

i=1

(−1)kiW 2
k(i+m2)+m

Wki+mWk(i+m1)+mWk(i+2m2−m1)+mWk(i+2m2)+m

.
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For 0 ≤ i ≤ 2, define di = di(k,m1,m2) as

d0 = Um1k
Vm2k

V(m2−m1)kU(2m2−m1)k,

d1 = Um2k
V(m2−m1)k,

d2 = 2(−1)k(m1+m2)Um1k
.

Then we have the following theorem.

Theorem 2.4. We have

d0 (S4(n)− S4(2)) = Uk(n−2) (d1ΩW (0,m1) + d2ΩW (m1, 2m2 −m1)

+ d1ΩW (2m2 −m1, 2m2)) .

Next, for integers 0 < m1 < m2, define

S5(k,m, n,m1,m2) =

n−1
∑

i=1

(−1)kiW
2
k(i+m2)+m

Wki+mWk(i+m1)+mWk(i+2m2−m1)+mWk(i+2m2)+m

.

For 0 ≤ i ≤ 2, define fi = fi(k,m1,m2) by

f0 = Um1k
Um2k

U(m2−m1)kU(2m2−m1)k,

f1 = Vm2k
U(m2−m1)k,

f2 = 2(−1)k(m1+m2+1)Um1k
.

Then we have the following theorem.

Theorem 2.5. We have

f0 (S5(n)− S5(2)) = Uk(n−2) (f1ΩW (0,m1) + f2ΩW (m1, 2m2 −m1)

+ f1ΩW (2m2 −m1, 2m2)) .

Taking (p, a, b, k,m,m1,m2) = (1, 0, 1, 2, 0, 1, 2) in Theorem 2.5, we obtain

n−1
∑

i=1

L2
2(i+2)

F2iF2(i+1)F2(i+3)F2(i+4)

=
36

385
+

F2(n−2)

12

(

7

6F2n
− 1

8F2(n+1)
− 1

21F2(n+2)
+

7

110F2(n+3)

)

.

3. The Summand has Five Factors in the Denominator

In this section, and in the sections that follow, we require quantities analogous to ai, bi, ci,
di and fi, defined in the previous section. For simplicity, we use the same pro-numerals here
(and in subsequent sections) to describe these quantities. In this section, we take 0 < m1 <
m2 < m3 < m4 to be integers. Define the sum

T1(k,m, n,m1, . . . ,m4) =
n−1
∑

i=1

(−1)kiVk(3i+m1+m2+m3)+3m

Uki+mUk(i+m1)+m · · ·Uk(i+m4)+m

.

We were unable to find the closed form for the sums that we present in this section without
certain simplifying assumptions on the mi. We chose to take m3 = 2m2 −m1, and m4 = 2m2.
These assumptions encompass all instances where 0, m1, m2, m3, and m4 are in arithmetic
progression, and also bring a nice symmetry to the subscripts in the denominator of the
summand. Indeed, under these assumptions, the successive differences between the subscripts
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in the denominator of the summand are km1, k(m2 − m1), k(m2 − m1), and km1. For
convenience, we record these assumptions as follows: For integers 0 < m1 < m2, define
integers m4 and m5 as

m3 = 2m2 −m1, and m4 = 2m2. (3.1)

We now define quantities ai = ai(k,m1,m2), for 0 ≤ i ≤ 2, that help us to succinctly give
the closed form for T1. Define

a0 = Um1k
U(2m2−m1)kU

2
m2k

U2
(m2−m1)k

,

a1 =
(

V2m2k
+ (−1)km2+1

)

U2
(m2−m1)k

,

a2 = (−1)k(m1+m2)+1Um1k
U(2m2−m1)k.

We then have the following theorem.

Theorem 3.1. Let 0 < m1 < m2 be integers. Let m3 and m4 be as defined in (3.1). Then

a0 (T1(n)− T1(2)) = Uk(n−2) (a1ΩU(0,m1) + a2ΩU(m1,m2)

− a2ΩU (m2,m3)− a1ΩU (m3,m4)) . (3.2)

We now state a dual result for Theorem 3.1 that we obtained by interchanging the roles of
U and V in T1. In the summand of T1, replace V by U , and replace each occurrence of U
by V . Then (3.2) remains valid provided we multiply the left side by ∆2, and replace each
occurrence of ΩU by ΩV . Where we have discovered dual results for other results in this paper,
we present these as well.

Define the sum

T2(k,m, n,m1, . . . ,m4) =
n−1
∑

i=1

(−1)kiUk(3i+m1+m2+m3)+3m

Uki+mUk(i+m1)+m · · ·Uk(i+m4)+m

.

For 0 ≤ i ≤ 2, define bi = bi(k,m1,m2) as

b0 = Um1k
U2m2k

U2(m2−m1)kU(2m2−m1)k,

b1 =
(

V2m2k
+ (−1)km2

)

U2(m2−m1)k,

b2 =
(

(−1)k(m1+m2)+1V(2m2−m1)k − 2Vm1k

)

Um1k
.

We then have the following theorem.

Theorem 3.2. Let 0 < m1 < m2 be integers. Let m3 and m4 be as defined in (3.1). Then

b0 (T2(n)− T2(2)) = Uk(n−2) (b1ΩU (0,m1) + b2ΩU (m1,m2)

+ b2ΩU(m2,m3) + b1ΩU(m3,m4)) . (3.3)

In the summand of T2, replace each occurrence of U by V . Then (3.3) remains valid provided
we multiply the left side by ∆, and replace each occurrence of ΩU by ΩV .

Next, define the sum

T3(k,m, n,m1, . . . ,m4) =

n−1
∑

i=1

(−1)kiV2k(i+m2)+2mVk(i+m2)+m

Uki+mUk(i+m1)+m · · ·Uk(i+m4)+m

.
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For 0 ≤ i ≤ 2, define ci = ci(k,m1,m2) as

c0 = Um1k
U(2m2−m1)kU

2
m2k

U2
(m2−m1)k

,

c1 = V2m2k
U2
(m2−m1)k

,

c2 = 2(−1)k(m1+m2)+1Um1k
U(2m2−m1)k.

Then we have the following theorem.

Theorem 3.3. Let 0 < m1 < m2 be integers. Let m3 and m4 be as defined in (3.1). Then

c0 (T3(n)− T3(2)) = Uk(n−2) (c1ΩU (0,m1) + c2ΩU(m1,m2)

− c2ΩU (m2,m3)− c1ΩU (m3,m4)) . (3.4)

In the summand of T3, replace Vk(i+m2)+m by Uk(i+m2)+m, and leave the quantity V2k(i+m2)+2m

unchanged. Also replace each occurrence of U by V . Then (3.4) remains valid provided we
multiply the left side by ∆2, and replace each occurrence of ΩU by ΩV .

To conclude this section, we give the closed form for a finite sum in which the numerator
of the summand contains a cube. Define the sum

T4(k,m, n,m1, . . . ,m4) =
n−1
∑

i=1

(−1)kiW
3
k(i+m2)+m

Wki+mWk(i+m1)+m · · ·Wk(i+m4)+m

.

For 0 ≤ i ≤ 2, define di = di(k,m1,m2) by

d0 = Um1k
U(2m2−m1)kU

2
m2k

U2
(m2−m1)k

,

d1 = U2
(m2−m1)k

V 2
m2k

,

d2 = 4(−1)k(m1+m2)+1Um1k
U(2m2−m1)k.

We then have the following theorem.

Theorem 3.4. Let 0 < m1 < m2 be integers. Let m3 and m4 be as defined in (3.1). Then

d0 (T4(n)− T4(2)) = Uk(n−2) (d1ΩW (0,m1) + d2ΩW (m1,m2)

− d2ΩW (m2,m3)− d1ΩW (m3,m4)) . (3.5)

In Theorem 3.4, take (p, a, b, k,m,m1,m2) = (1, 2, 1, 1, 0, 1, 2). Then

n−1
∑

i=1

(−1)iF 3
i+2

LiLi+1Li+2Li+3Li+4
+

2

231

=
Fn−2

125

(

3

2Ln

− 1

Ln+1
− 4

7Ln+2
+

9

22Ln+3

)

.

Before leaving this section, we remark that in the definitions of T1, T2, and T3, we replaced
each occurrence of U and V by W and W , respectively. Then, with the same assumptions on
the mi, we attempted to find closed forms for the corresponding finite sums. Our motivation
was to achieve greater generality. However, we were unsuccessful. The same can be said for
all other results in this paper that involve the sequences {Un} and {Vn}.
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4. The Summand has Six Factors in the Denominator

Let 0 < m1 < m2 < m3 be integers. The first three theorems in this section require that

m4 = m2 +m3 −m1, and m5 = m2 +m3. (4.1)

Define the sum

X1(k,m, n,m1, . . . ,m5) =

n−1
∑

i=1

Uk(2i+m2+m3)+2m

Uki+mUk(i+m1)+m · · ·Uk(i+m5)+m

.

For 0 ≤ i ≤ 2, define ai = ai(k,m,m1,m2,m3) as

a0 = (−1)m+1Um1k
Um2k

Um3k
U(m2−m1)kU(m3−m1)kU(m2+m3−m1)k,

a1 = −U(m2−m1)kU(m3−m1)k,

a2 = (−1)km1Um1k
U(m2+m3−m1)k.

We then have the following theorem.

Theorem 4.1. Let 0 < m1 < m2 < m3 be integers. Let m4 and m5 be as defined in (4.1).
Then

a0 (X1(n)−X1(2)) = Uk(n−2) (a1ΩU (0,m1) + a2ΩU (m1,m2)

− a2ΩU(m3,m4)− a1ΩU (m4,m5)) . (4.2)

In the denominator of the summand of X1, replace each occurrence of U by V . Then (4.2)
remains valid provided we multiply the left side by −∆2, and replace each occurrence of ΩU

by ΩV .
Define the sum

X2(k,m, n,m1, . . . ,m5) =

n−1
∑

i=1

(−1)kiUk(4i+2m2+2m3)+4m

Uki+mUk(i+m1)+m · · ·Uk(i+m5)+m

.

Interestingly, the bi that we now define have a connection to the ai in Theorem 4.1. For
0 ≤ i ≤ 2, define bi = bi(k,m,m1,m2,m3) as

b0 = (−1)m+1a0,

b1 = −V(m2+m3)ka1,

b2 = (−1)km2+1V(m3−m2)ka2.

Then we have the following theorem.

Theorem 4.2. Let 0 < m1 < m2 < m3 be integers. Let m4 and m5 be as defined in (4.1).
Then

b0 (X2(n)−X2(2)) = Uk(n−2) (b1ΩU (0,m1) + b2ΩU (m1,m2)

− b2ΩU (m3,m4)− b1ΩU(m4,m5)) . (4.3)

In the denominator of the summand of X2, replace each occurrence of U by V . Then (4.3)
remains valid provided we multiply the left side by ∆2, and replace each occurrence of ΩU by
ΩV .

Define the sum

X3(k,m, n,m1, . . . ,m5) =

n−1
∑

i=1

(−1)kiU2
k(2i+m2+m3)+2m

Uki+mUk(i+m1)+m · · ·Uk(i+m5)+m

.
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Some of the ci that we now define have a connection to the ai in Theorem 4.1. For 0 ≤ i ≤ 3,
define ci = ci(k,m,m1,m2,m3) by

c0 = (−1)m+1a0,

c1 = −U(m2+m3)ka1,

c2 = (−1)km1+1Um1k

(

(−1)km3Um2k
U(m2−m1)k + (−1)km2Um3k

U(m3−m1)k

)

,

c3 = 2(−1)k(m1+m3)+1Um1k
Um2k

U(m2−m1)k.

We then have the following theorem.

Theorem 4.3. Let 0 < m1 < m2 < m3 be integers. Let m4 and m5 be as defined in (4.1).
Then

c0 (X3(n)−X3(2)) = Uk(n−2) (c1ΩU(0,m1) + c2ΩU (m1,m2)

+ c3ΩU (m2,m3) + c2ΩU (m3,m4)

+ c1ΩU (m4,m5)) . (4.4)

In the denominator of the summand of X3, replace each occurrence of U by V . Then (4.4)
remains valid provided we multiply the left side by ∆2, and replace each occurrence of ΩU by
ΩV .

For our next result, we requirem1 andm2 to be positive integers with 0 < 2m1 < m2. Then,
with m3 = 2m1+m2, m4 = 2m2, and m5 = 2m1+2m2, we define X4(n) = X4(k,m, n,m1,m2)
to be the sum

n−1
∑

i=1

(−1)kiW 4
k(i+m1+m2)+m

Wki+mWk(i+2m1)+mWk(i+m2)+mWk(i+m3)+mWk(i+m4)+mWk(i+m5)+m

.

For 0 ≤ i ≤ 3, define di = di(k,m1,m2) by

d0 = U2m1k
Um2k

U2m2k
U(m2−2m1)kU(2m1+m2)kV(m2−m1)kV(m1+m2)k,

d1 = U(m2−2m1)kU
3
(m1+m2)k

V(m2−m1)k,

d2 = (−1)k(m1+m2)+1U2m1k
Um2k

(

(−1)km1U2m1k
U(m2−m1)kV(m1+m2)k

− 4Um1k
U(m2−m1)kVm2k

+ 2(−1)km2U(m1+m2)kU(3m1−m2)k

)

,

d3 = 2(−1)km2Um1k
U(m2−2m1)k

(

Um1k
U(m2−m1)kV(m1+m2)k

+ 2Um2k
U(m1+m2)k

)

.

We have the following theorem.

Theorem 4.4. Let m1 and m2 be integers with 0 < 2m1 < m2. Let m3, m4, and m5 be as
given in the definition of X4. Then

d0 (X4(n)−X4(2)) = Uk(n−2) (d1ΩW (0, 2m1) + d2ΩW (2m1,m2)

+ d3ΩW (m2,m3) + d2ΩW (m3,m4)

+ d1ΩW (m4,m5)) .

For the final theorem in this paper, we require m1, m2, and m3 to be positive integers with
0 < m1 < 2m2 < 2m3. Then, with m4 = 2m2 + 2m3 −m1, and m5 = 2m2 + 2m3, we define
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X5(n) = X5(k,m, n,m1,m2,m3) to be the sum

n−1
∑

i=1

W 2
k(i+m2+m3)+m

Wki+mWk(i+m1)+mWk(i+2m2)+mWk(i+2m3)+mWk(i+m4)+mWk(i+m5)+m

.

For 0 ≤ i ≤ 3, define fi = fi(k,m,m1,m2,m3) as

f0 = eWUm1k
U2m2k

U2m3k
U(2m2−m1)kU(2m3−m1)kU(2m2+2m3−m1)k

× V(m3−m2)kV(m2+m3−m1)kV(m2+m3)k,

f1 = (−1)mU(m2+m3)kU(2m2−m1)kU(2m3−m1)kV(m3−m2)kV(m2+m3−m1)k,

f2 = (−1)k(m1+m2+m3)+m+1Um1k
V(m3−m2)k

(

(−1)k(m2+m3)U(m2+m3−m1)k

×U(3m2+3m3−m1)k − U(2m2−m1)kU(2m3−m1)k + (−1)km1U2
(m3−m2)k

)

,

f3 = 2(−1)k(m1+m2+m3)+m+1Um1k
U2m2k

U(2m2−m1)kV(3m3+m2−m1)k.

We have the following theorem.

Theorem 4.5. Let m1, m2, and m3 be integers with 0 < m1 < 2m2 < 2m3. Let m4 and m5

be as given in the definition of X5. Then

f0 (X5(n)−X5(2)) = Uk(n−2) (f1ΩW (0,m1) + f2ΩW (m1, 2m2)

+ f3ΩW (2m2, 2m3) + f2ΩW (2m3,m4)

+ f1ΩW (m4,m5)) .

In Theorems 4.1 to 4.5, we have presented closed forms for eight finite sums. This includes
the dual results for Theorems 4.1 to 4.3. We have discovered closed forms for a further eight
finite sums of a similar nature that we do not present here. In the paragraph that follows, we
briefly indicate the form of these results.

In the definitions of X1, X2, and X3, replace each occurrence of U in the numerator of the
summand by V , and denote these finite sums by XV

1 , XV
2 , and XV

3 , respectively. Then we
have discovered closed forms for XV

1 , XV
2 , and XV

3 , and we have found dual results in each
case. For 1 ≤ i ≤ 3, the dual result for XV

i
is the closed form for the following finite sum: In

XV
i
, replace each occurrence of U in the denominator of the summand by V . Finally, in X4

and X5, replace each occurrence of W in the numerator of the summand by W . Then we have
discovered closed forms for the two corresponding finite sums.

As an example, in Theorem 4.2, take (p, k,m,m1,m2,m3) = (1, 1, 0, 1, 2, 3). Then

240

n−1
∑

i=1

(−1)iF4i+10

FiFi+1Fi+2Fi+3Fi+4Fi+5
+ 377

= Fn−2

(

440

Fn

− 60

Fn+1
+

24

Fn+3
− 55

Fn+4

)

.

In Theorem 4.3, also take (p, k,m,m1,m2,m3) = (1, 1, 0, 1, 2, 3). Then

720
n−1
∑

i=1

(−1)iF 2
2i+5

FiFi+1Fi+2Fi+3Fi+4Fi+5
+ 507

= Fn−2

(

600

Fn

− 60

Fn+1
− 80

Fn+2
− 24

Fn+3
+

75

Fn+4

)

.
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5. A Sample Proof

In [5], we give a sample proof with the use of two methods: with the use of generalized
Fibonacci identities, and also with the use of the closed forms of the sequences involved. In
[6], we give a sample proof that uses the closed forms. Once again, in order for this paper to
be self contained, we demonstrate the method of proof that employs the closed forms. The
advantages of this method are that it is transparent, mechanical, and it applies to all the
results in this paper. To assist with the lengthy algebra, we make use of the computer algebra
system Mathematica 8. What follows is a proof of Theorem 3.4.

Proof. All the finite sums in this paper are defined for n ≥ 2, and so it is for these values of n
that the following argument holds. In the statement of Theorem 3.4, denote the quantities on
the left and right sides of (3.5) by L (n) and R (n), respectively. Since m3 = 2m2 −m1, and
m4 = 2m2, the expression for L(n+ 1)− L(n) is

(−1)knUm1k
U(2m2−m1)kU

2
m2k

U2
(m2−m1)k

W
3
k(n+m2)+m

Wkn+mWk(n+m1)+mWk(n+m2)+mWk(n+2m2−m1)+mWk(n+2m2)+m

. (5.1)

Next, we require the difference R(n+1)−R(n), which we obtain with the use of Lemma 1.1.
Since this difference is quite lengthy, it is convenient to express it in terms of five quantities
gi = gi(k,m, n,m1,m2) that we define as follows:

g1 = −Um1k
U(m2−m1)k,

g2 = (−1)km1U(m2−m1)kV
2
m2k

Wkn+mWk(n+m1)+mWk(n+m2)+m,

g3 = 4(−1)km1U(2m2−m1)kWkn+mWk(n+m1)+mWk(n+2m2)+m,

g4 = 4(−1)km2U(2m2−m1)kWkn+mWk(n+2m2−m1)+mWk(n+2m2)+m,

g5 = U(m2−m1)kV
2
m2k

Wk(n+m2)+mWk(n+2m2−m1)+mWk(n+2m2)+m.

The expression for R(n+ 1)−R(n) is then

(−1)kng1 (g2 − g3 + g4 − g5)

Wkn+mWk(n+m1)+mWk(n+m2)+mWk(n+2m2−m1)+mWk(n+2m2)+m

. (5.2)

Our aim is to prove that L(n + 1) − L(n) = R(n + 1) − R(n), and we achieve this by
proving that the numerators in (5.1) and (5.2) are equal. Quite simply, we express each of
these numerators in terms of the closed forms given in (1.7), and then consider their difference.
Upon expansion, we see that this difference reduces to zero. This, together with the fact that
L(2) = R(2) = 0, proves Theorem 3.4. �

For the sake of anyone who may wish to duplicate our proof, we remark that the algebra
involved becomes much easier if one intervenes, and evaluates any power of −1 based on the
parities of k, m, n, m1, and m2. Accordingly, to prove that the numerators in (5.1) and
(5.2) are equal, one is required to consider thirty-two cases. This was incorporated into our
programming, and was easily accomplished.

6. Concluding Comments

Numerical evidence suggests that results, analogous to those presented here, exist for finite
sums in which the denominator of the summand consists of seven or more factors. However,
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such results become more unwieldy as the number of factors in the denominator of the sum-
mand increases. We hope that the presentation here has given the reader an appreciation of
the types of results that are possible.
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