IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO p

LAWRENCE SOMER AND MICHAL KŘÍŽEK

Abstract

Let $w(a,-1)$ denote the second-order linear recurrence satisfying the recursion relation $$
w_{n+2}=a w_{n+1}-w_{n}
$$ where a and the initial terms w_{0}, w_{1} are all integers. Let p be an odd prime. The restricted $\operatorname{period} h_{w}(p)$ of $w(a,-1)$ modulo p is the least positive integer r such that $w_{n+r} \equiv M w_{n}$ $(\bmod p)$ for all $n \geq 0$ and some nonzero residue M modulo p. We distinguish two recurrences, the Lucas sequence of the first kind $u(a,-1)$ and the Lucas sequence of the second kind $v(a,-1)$, satisfying the above recursion relation and having initial terms $u_{0}=0, u_{1}=1$ and $v_{0}=2, v_{1}=a$, respectively. We show that if $u\left(a_{1},-1\right)$ and $u\left(a_{2},-1\right)$ both have the same restricted period modulo p, or equivalently, the same period modulo p, then $u\left(a_{1},-1\right)$ and $u\left(a_{2},-1\right)$ have the same distribution of residues modulo p. Similar results are obtained for Lucas sequences of the second kind.

1. Introduction

Consider the second-order linear recurrence $(w)=w(a, b)$ satisfying the recursion relation

$$
\begin{equation*}
w_{n+2}=a w_{n+1}-b w_{n} \tag{1.1}
\end{equation*}
$$

where the parameters a and b and the initial terms w_{0} and w_{1} are all integers. We distinguish two special recurrences, the Lucas sequence of the first kind (LSFK) $u(a, b)$ and the Lucas sequence of the second kind (LSSK) $v(a, b)$ with initial terms $u_{0}=0, u_{1}=1$ and $v_{0}=2, v_{1}=a$, respectively. Associated with the linear recurrence $w(a, b)$ is the characteristic polynomial $f(x)$ defined by

$$
\begin{equation*}
f(x)=x^{2}-a x+b \tag{1.2}
\end{equation*}
$$

with characteristic roots α and β and discriminant $D=a^{2}-4 b=(\alpha-\beta)^{2}$. By the Binet formulas,

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad v_{n}=\alpha^{n}+\beta^{n} \tag{1.3}
\end{equation*}
$$

Throughout this paper, p will denote an odd prime unless specified otherwise, and ε will specify an element from $\{-1,1\}$. It was shown in $[7, \mathrm{pp} .344-345]$ that $w(a, b)$ is purely periodic modulo p if $p \nmid b$. From here on, we assume that $p \nmid b$.

The period of $w(a, b)$ modulo p, denoted by $\lambda_{w}(p)$, is the least positive integer m such that $w_{n+m} \equiv w_{n}(\bmod p)$ for all $n \geq 0$. The restricted period of $w(a, b)$ modulo p, denoted by $h_{w}(p)$, is the least positive integer r such that $w_{n+r} \equiv M w_{n}(\bmod p)$ for all $n \geq 0$ and some fixed nonzero residue M modulo p. Here $M=M_{w}(p)$ is called the multiplier of $w(a, b)$ modulo p. Since the LSFK $u(a, b)$ is purely periodic modulo p and has initial terms $u_{0}=0$ and $u_{1}=1$, it is easily seen that $h_{u}(p)$ is the least positive integer r such that $u_{r} \equiv 0(\bmod p)$. It is proved in [7, pp. 354-355] that $h_{w}(p) \mid \lambda_{w}(p)$. Let $E_{w}(p)=\frac{\lambda_{w}(p)}{h_{w}(p)}$. Then by [7, pp. 354-355] $E_{w}(p)$ is the multiplicative order of the multiplier M modulo p.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

Our main result of this paper will be to prove that if p is a fixed prime and $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ are two LSFK's with the same restricted period modulo p, then $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ have the same distribution of residues modulo p. We will prove a similar result for the LSSK's $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$.

We now define what it means for the recurrences $w\left(a_{1}, b\right)$ and $w^{\prime}\left(a_{2}, b\right)$ with the same parameter b to have the same distribution of residues modulo p. Let $w(a, b)$ be a recurrence and p be a fixed prime. Given a residue d modulo p, we let $A_{w}(d)$ denote the number of times that d appears in a full period of (w) modulo p. We have the following theorem regarding upper bounds for $A_{w}(d)$.

Theorem 1.1. Let p be a fixed prime and consider the recurrence $w(a, b)$. Let d be a fixed residue modulo p such that $0 \leq d \leq p-1$.
(i) $A_{w}(d) \leq \min \left(2 \cdot \operatorname{ord}_{p} b, p\right)$, where $\operatorname{ord}_{p} b$ denotes the multiplicative order of b modulo p.
(ii) If $b=1$ then $A_{w}(d) \leq 2$.
(iii) If $b=-1$ then $A_{w} \leq 4$.

Proof. Part (i) was proved in Theorem 3 of [11]. Parts (ii) and (iii) follow from part (i).
We let

$$
\begin{equation*}
N_{w}(p)=\#\left\{d \mid A_{w}(d)>0\right\} . \tag{1.4}
\end{equation*}
$$

We define the set $S_{w}(p)$ by

$$
\begin{equation*}
S_{w}(p)=\left\{i \mid A_{w}(d)=i \text { for some } d \text { such that } 0 \leq d \leq p-1\right\} . \tag{1.5}
\end{equation*}
$$

Further, if i is a nonnegative integer, we define $B_{w}(i)$ by

$$
\begin{equation*}
B_{w}(i)=\#\left\{d \mid 0 \leq d \leq p-1 \text { and } A_{w}(d)=i\right\} . \tag{1.6}
\end{equation*}
$$

We observe by Theorem 1.1 that

$$
\begin{equation*}
B_{w}(i)=0 \quad \text { if } i>\min \left(2 \cdot \operatorname{ord}_{p} b, p\right) . \tag{1.7}
\end{equation*}
$$

We say that the linear recurrences $w\left(a_{1}, b\right)$ and $w^{\prime}\left(a_{2}, b\right)$ have the same distribution of residues modulo p if $N_{w}(p)=N_{w^{\prime}}(p), S_{w}(p)=S_{w^{\prime}}(p)$, and $B_{w}(i)=B_{w^{\prime}}(i)$ for all $i \geq 0$. Recurrences that have the same distribution of residues modulo p are also said to be identically distributed modulo p.

To show that two recurrences $w\left(a_{1}, b\right)$ and $w^{\prime}\left(a_{2}, b\right)$ are identically distributed modulo p, it suffices by (1.7) to show that $B_{w}(i)=B_{w^{\prime}}(i)$ for all $i \in\{0, \ldots, \ell\}$, where $\ell=\min \left(2 \cdot \operatorname{ord}_{p} b, p\right)$. This follows, since

$$
\begin{equation*}
N_{w}(p)=\sum_{i=1}^{\ell} B_{w}(i) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{w}(p)=\left\{i \mid B_{w}(i)>0\right\} . \tag{1.9}
\end{equation*}
$$

It is also of interest that

$$
\begin{equation*}
\lambda_{w}(p)=\sum_{i=0}^{\ell} i B_{w}(i) . \tag{1.10}
\end{equation*}
$$

Example 1.2. Let $p=17$. We show that the LSFK's $u(2,-1)$ and $u^{\prime}(14,-1)$ are identically distributed modulo 17 . The first 18 terms of $u(2,-1)$ and $u^{\prime}(14,-1)$ are

$$
\{0,1,2,5,12,12,2,16,0,16,15,12,5,5,15,1,0,1\}
$$

THE FIBONACCI QUARTERLY

and

$$
\{0,1,14,10,1,7,14,16,0,16,3,7,16,10,3,1,0,1\}
$$

respectively. Thus,

$$
\begin{align*}
& h_{u}(17)=h_{u^{\prime}}(17)=8, \lambda_{u}(17)=\lambda_{u^{\prime}}(17)=16, \\
& E_{u}(17)=E_{u^{\prime}}(17)=2, \text { and } M_{u}(17) \equiv M_{u^{\prime}}(17)=-1 \quad(\bmod 17) . \tag{1.11}
\end{align*}
$$

We observe that

$$
\begin{aligned}
& A_{u}(d)=0 \text { for } d \in\{3,4,6,7,8,9,10,11,13,14\} \\
& A_{u}(d)=2 \text { for } d \in\{0,1,7,10,14\} \\
& A_{u}(d)=3 \text { for } d \in\{5,12\}
\end{aligned}
$$

while

$$
\begin{aligned}
& A_{u^{\prime}}(d)=0 \text { for } d \in\{2,4,5,6,8,9,11,12,13,15\} \\
& A_{u^{\prime}}(d)=2 \text { for } d \in\{0,3,7,10,14\} \\
& A_{u^{\prime}}(d)=3 \text { for } d \in\{1,16\}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
N_{u}(17)=N_{u^{\prime}}(17)=7 \quad \text { and } \quad S_{u}(17)=S_{u^{\prime}}(17)=\{0,2,3\} . \tag{1.12}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
B_{u}(0) & =B_{u^{\prime}}(0)=10, B_{u}(2)=B_{u^{\prime}}(2)=5, B_{u}(3)=B_{u^{\prime}}(3)=2, \\
\text { and } B_{u}(i) & =B_{u^{\prime}}(i)=0 \quad \text { for } \mathrm{i} \geq 0 \text { and } \mathrm{i} \notin\{0,2,3\} . \tag{1.13}
\end{align*}
$$

Therefore, $u(2,-1)$ and $u^{\prime}(14,-1)$ are identically distributed modulo 17 .

2. The Main Theorems

Our principal results of this paper are Theorems 2.1 and 2.2.
Theorem 2.1. Let p be a fixed prime. Let $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ be two LSFK's with discriminants $D_{1}=a_{1}^{2}+4$ and $D_{2}=a_{2}^{2}+4$, respectively, such that $p \nmid D_{1} D_{2}$. Suppose that $h_{u}(p)=h_{u^{\prime}}(p)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)$, where $\left(D_{i} / p\right)$ denotes the Legendre symbol. This occurs if and only if $\lambda_{u}(p)=\lambda_{u^{\prime}}(p)$. Then $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ are identically distributed modulo p.

Theorem 2.2. Let p be a fixed prime. Let $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ be two LSSK's with discriminants $D_{1}=a_{1}^{2}+4$ and $D_{2}=a_{2}^{2}+4$, respectively, such that $p \nmid D_{1} D_{2}$. Suppose that $\left(D_{1} / p\right)=\left(D_{2} / p\right)$ and that $h_{v}(p)=h_{v^{\prime}}(p)$. This occurs if and only if $\lambda_{v}(p)=\lambda_{v^{\prime}}(p)$. Then $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ are identically distributed modulo p.

3. Preliminaries

Before proving our main theorems, we will need the following results and definitions.
Definition 3.1. Let p be a fixed prime. The recurrence $w(a, b)$ is said to be p-regular if

$$
\left|\begin{array}{ll}
w_{0} & w_{1} \tag{3.1}\\
w_{1} & w_{2}
\end{array}\right|=w_{0} w_{2}-w_{1}^{2} \not \equiv 0 \quad(\bmod p)
$$

Otherwise, the recurrence $w(a, b)$ is called p-irregular.
Theorem 3.2. Suppose that the recurrences $w(a, b)$ and $w^{\prime}(a, b)$ are both p-regular. Then

$$
\lambda_{w}(p)=\lambda_{w^{\prime}}(p), h_{w}(p)=h_{w^{\prime}}(p), E_{w}(p)=E_{w^{\prime}}(p), \quad \text { and } \quad M_{w}(p) \equiv M_{u^{\prime}}(p) \quad(\bmod p) .
$$

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

This is proved in [5, p. 695].
Consider the LSFK $u(a, b)$ when $h_{u}(p)$ is even and $(b / p)=1$. We specify the recurrence $t(a, b)$ satisfying the recursion relation (1.1) and having initial terms $t_{0}=1, t_{1}=b^{\prime}$, where $\left(b^{\prime}\right)^{2} \equiv b(\bmod p)$ and $0 \leq b^{\prime} \leq(p-1) / 2$. The following theorem gives results concerning the p-regularity of the distinguished recurrences $u(a, b), v(a, b)$, and $t(a, b)$.

Theorem 3.3. Let p be a fixed prime. Consider the $\operatorname{LSFK} u(a, b)$ and the $\operatorname{LSSK} v(a, b)$ with discriminant $D=a^{2}-4 b$. Consider also the recurrence $t(a, b)$ if it is defined modulo p. Then
(i) $u(a, b)$ is p-regular,
(ii) $v(a, b)$ is p-regular if $p \nmid D$,
(iii) $t(a, b)$ is p-regular whenever it is defined modulo p.

Proof. (i) We note that

$$
u_{0} u_{2}-u_{1}^{2}=0 \cdot a-1^{2}=-1 \not \equiv 0 \quad(\bmod p) .
$$

Thus, $u(a, b)$ is p-regular by (3.1).
(ii) We observe that

$$
v_{0} v_{2}-v_{1}^{2}=2\left(a^{2}-2 b\right)-a^{2}=a^{2}-4 b=D .
$$

Thus, $v(a, b)$ is p-regular if $p \nmid D$.
Part (iii) is proven in [22, p.7].
Theorem 3.4. Let p be a fixed prime. Suppose that $w(a, b)$ is a p-irregular recurrence.
(i) If $w_{0} \equiv 0(\bmod p)$, then $w_{n} \equiv 0(\bmod p)$ for $n \geq 0$.
(ii) If $w_{0} \not \equiv 0(\bmod p)$, then

$$
w_{n} \equiv\left(\frac{w_{1}}{w_{0}}\right)^{n} w_{0} \quad(\bmod p) \quad \text { for } n \geq 0 .
$$

(iii) $h_{w}(p)=1$.

Proof. Parts (i) and (ii) are proved in [5, p. 695]. Part (iii) follows from parts (i) and (ii).
Definition 3.5. Let p be a fixed prime. The recurrences $w(a, b)$ and $w^{\prime}(a, b)$ are p-equivalent if $w^{\prime}(a, b)$ is a nonzero multiple of a translation of $w(a, b)$ modulo p, that is, there exists a nonzero residue c and a fixed integer r such that

$$
\begin{equation*}
w_{n}^{\prime} \equiv c w_{n+r} \quad(\bmod p) \quad \text { for all } n \geq 0 \tag{3.2}
\end{equation*}
$$

It is clear that p-equivalence is indeed an equivalence relation on the set of recurrences $w(a, b)$ modulo p, since c is invertible modulo p.

Theorem 3.6. Suppose that $w(a, b)$ and $w^{\prime}(a, b)$ are p-equivalent recurrences such that $w_{n}^{\prime} \equiv$ $c w_{n+r}(\bmod p)$ for all $n \geq 0$, where c is a fixed nonzero residue modulo p and r is a fixed integer. Then
(i) $w(a, b)$ and $w^{\prime}(a, b)$ are either both p-regular or both p-irregular,
(ii) $w(a, b)$ and $w^{\prime}(a, b)$ are identically distributed modulo p.

Proof. Part (i) is proven in [5, p. 694]. Part (ii) follows from the fact that

$$
A_{w^{\prime}}(c d)=A_{w}(d)
$$

for $d \in\{0, \ldots, p-1\}$.

THE FIBONACCI QUARTERLY

Theorem 3.7. Let $w(a, b)$ be a p-regular recurrence. Let e be a fixed integer such that $1 \leq$ $e \leq h_{w}(p)-1$. Then the ratios $\frac{w_{n+e}}{w_{n}}$ are distinct modulo p for $0 \leq n \leq h_{w}(p)-1$, where we denote the ratio $\frac{w_{n+e}}{w_{n}}(\bmod p)$ by ∞ if $w_{n} \equiv 0(\bmod p)$.

This is proved in Lemma 2 of [19].
Lemma 3.8. Let p be a fixed prime. Consider the $\operatorname{LSFK} u(a, b)$ and the $\operatorname{LSSK} v(a, b)$. Consider also the recurrence $t(a, b)$ if it is defined. Suppose further that in the case of the LSSK $v(a, b)$ that $p \nmid D=a^{2}+4 b$. Then $u(a, b), v(a, b)$, and $t(a, b)$ are all p-regular and have common restricted period h and multiplier M modulo p. Moreover, the following hold:
(i) $u_{h-n} \equiv-M u_{n} / b^{n}(\bmod p)$ for $0 \leq n \leq h$.
(ii) $v_{h-n} \equiv M v_{n} / b^{n}(\bmod p)$ for $0 \leq n \leq h$.
(iii) $t_{h+1-n} \equiv M b^{\prime} t_{n} / b^{n}(\bmod p)$ for $0 \leq n \leq h+1$, where $\left(b^{\prime}\right)^{2} \equiv b(\bmod p)$ and $0 \leq b^{\prime} \leq$ $(p-1) / 2$.

This is proved in Lemma 5 of [19]. The proof is established by induction and use of the recursion relation (1.1) defining $u(a, b), v(a, b)$, and $t(a, b)$.

Lemma 3.9. Let p be a fixed prime. Let $w(a,-1)$ be either the LSFK $u(a,-1)$ or the LSSK $v(a,-1)$, and let $h=h_{w}(p)$, where $p \nmid D$. If h is even, then

$$
\begin{equation*}
w_{n+2 r} \not \equiv \varepsilon w_{n} \quad(\bmod p) \tag{3.3}
\end{equation*}
$$

for any integers n and r such that $0 \leq n<n+2 r \leq h / 2$ or $h / 2 \leq n<n+2 r \leq h$. Moreover, if h is odd, then

$$
\begin{equation*}
w_{n+2 r} \not \equiv \varepsilon w_{n} \quad(\bmod p) \tag{3.4}
\end{equation*}
$$

for any integers n and r such that $0 \leq n<n+2 r \leq h-1$.
Proof. Suppose that h is even and

$$
\begin{equation*}
w_{n+2 r} \equiv \varepsilon w_{n} \quad(\bmod p) \tag{3.5}
\end{equation*}
$$

for some integers n and r such that $0 \leq n<n+2 r \leq h / 2$ or $h / 2 \leq n<n+2 r \leq h$. Then $w_{n} \not \equiv 0(\bmod p)$, since $w_{n+2 r}$ can then be congruent to 0 modulo p only if $2 r \equiv 0(\bmod h)$ by the definition of h. It then follows from Lemma 3.8 (i) and (ii) that

$$
\frac{w_{n+2 r}}{w_{n}} \frac{w_{h-n}}{w_{h-n-2 r}} \equiv(-1)^{2 r} \equiv 1 \quad(\bmod p),
$$

which implies that

$$
\begin{equation*}
\frac{w_{n+2 r}}{w_{n}} \equiv \frac{w_{h-n}}{w_{h-n-2 r}} \equiv \varepsilon \quad(\bmod p), \tag{3.6}
\end{equation*}
$$

where $n \neq h-n-2 r, 0 \leq n<h, 0 \leq h-n-2 r<h$, and $2 \leq 2 r \leq h / 2$. However, (3.6) contradicts Theorem 3.7. Thus, (3.3) holds.

Now suppose that h is odd and

$$
\begin{equation*}
w_{n+2 r} \equiv \varepsilon w_{n} \quad(\bmod p) \tag{3.7}
\end{equation*}
$$

for some n and r such that $0 \leq n<n+2 r \leq h-1$. By the argument given above, $w \not \equiv 0$ $(\bmod p)$. It now follows from Lemma 3.8 (i) and (ii) that

$$
\frac{w_{n+2 r}}{w_{n}} \frac{w_{h-n}}{w_{h-n-2 r}} \equiv(-1)^{2 r} \equiv 1 \quad(\bmod p),
$$

where $0 \leq n \leq h-2,1 \leq h-n-2 r \leq h-2$, and $2 \leq 2 r \leq h-1$. Hence,

$$
\begin{equation*}
\frac{w_{n+2 r}}{w_{n}} \equiv \frac{w_{h-n}}{w_{h-n-2 r}} \equiv \varepsilon \quad(\bmod p) . \tag{3.8}
\end{equation*}
$$

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

By Theorem 3.7, we must have that

$$
n=h-n-2 r,
$$

from which we derive that

$$
2 n=h-2 r,
$$

which is a contradiction, since $h-2 r$ is odd. Thus, (3.4) is satisfied.
We note that Lemma 3.9 follows from Lemmas 2 and 5 of [19], Lemma 7 (i) and (ii) of [15], and Lemma 7 of [20].
Proposition 3.10. Consider the LSFK $u(a, b)$ and the $\operatorname{LSSK} v(a, b)$ with discriminant $D=$ $a^{2}-4 b \neq 0$. Let p be a fixed prime and let $h=h_{u}(p)$.
(i) If $m \mid n$, then $u_{m} \mid u_{n}$.
(ii) $u_{2 n}=u_{n} v_{n}$.
(iii) $v_{n}^{2}-D u_{n}^{2}=4 b^{n}$.
(iv) If h is even, then $v_{h / 2} \equiv 0(\bmod p)$.

Proof. Parts (i)-(iii) follow from the Binet formulas (1.3). We now establish part (iv). Suppose that h is even. Then h is the least positive integer such that $u_{n} \equiv 0(\bmod p)$. Hence, by part (ii),

$$
u_{h}=u_{h / 2} v_{h / 2} \equiv 0 \quad(\bmod p),
$$

where $u_{h / 2} \not \equiv 0(\bmod p)$. Therefore, $v_{h / 2} \equiv 0(\bmod p)$.
Theorem 3.11. Let k be a fixed positive integer. Consider the LSFK $u(a, b)$ and $\operatorname{LSSK} v(a, b)$, where $b \neq 0$, with characteristic roots α and β and discriminant $D=a^{2}-4 b \neq 0$. Suppose that $u_{k}(a, b) \neq 0$. Then

$$
\left\{\frac{u_{k n}(a, b)}{u_{k}(a, b)}\right\}_{n=0}^{\infty}
$$

is a LSFK $u^{\prime}\left(a^{\prime}, b^{\prime}\right)$ and $\left\{v_{k n}(a, b)\right\}_{n=0}^{\infty}$ is a LSSK $v^{\prime}\left(a^{\prime}, b^{\prime}\right)$, where $u^{\prime}\left(a^{\prime}, b^{\prime}\right)$ and $v^{\prime}\left(a^{\prime}, b^{\prime}\right)$ have characteristic roots α^{k} and β^{k}, parameters $a^{\prime}=v_{k}(a, b)$ and $b^{\prime}=b^{k}$, and discriminant $D^{\prime}=$ $D u_{k}^{2}(a, b)$.
Proof. We note by the Binet formula (1.3) that

$$
\begin{equation*}
\frac{u_{k n}(a, b)}{u_{k}(a, b)}=\frac{\left(\alpha^{k n}-\beta^{k n}\right) /(\alpha-\beta)}{\left(\alpha^{k}-\beta^{k}\right) /(\alpha-\beta)}=\frac{\left(\alpha^{k}\right)^{n}-\left(\beta^{k}\right)^{n}}{\alpha^{k}-\beta^{k}} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k n}(a, b)=\alpha^{k n}+\beta^{k n}=\left(\alpha^{k}\right)^{n}+\left(\beta^{k}\right)^{n} . \tag{3.10}
\end{equation*}
$$

Thus by (3.9) and (3.10)

$$
\left\{\frac{u_{k n}(a, b)}{u_{k}(a, b)}\right\}_{n=0}^{\infty}
$$

is a LSFK $u^{\prime}\left(a^{\prime}, b^{\prime}\right)$ and $\left\{v_{k n}(a, b)\right\}_{n=0}^{\infty}$ is a LSSK $v^{\prime}\left(a^{\prime}, b^{\prime}\right)$, where $u^{\prime}\left(a^{\prime}, b^{\prime}\right)$ and $v^{\prime}\left(a^{\prime}, b^{\prime}\right)$ both have characteristic roots. Moreover, $a^{\prime}=\alpha^{k}+\beta^{k}=v_{k}(a, b)$ and $b^{\prime}=\alpha^{k} \beta^{k}=(\alpha \beta)^{k}=b^{k}$. Furthermore, by Proposition 3.10 (iii),

$$
D^{\prime}=\left(a^{\prime}\right)^{2}-4 b^{\prime}=v_{k}^{2}(a, b)-4 b^{k}=D u_{k}^{2}(a, b) .
$$

A similar proof of Theorem 3.11 is given in [10, pp. 189-190] and [8, p. 437].
Lemma 3.12. Consider the $\operatorname{LSFK} u(a, b)$ and the $\operatorname{LSSK} v(a, b)$. Then

THE FIBONACCI QUARTERLY

(i) $u_{n}^{\prime}(-a, b)=(-1)^{n+1} u_{n}(a, b)$ for $n \geq 0$,
(ii) $v_{n}^{\prime}(-a, b)=(-1)^{n} v_{n}(a, b)$ for $n \geq 0$.

Proof. Parts (i) and (ii) follow from the Binet formulas (1.3).
Lemma 3.13. Let p be a fixed prime and let $w(a, b)$ be a p-regular recurrence. Let $M=M_{w}(p)$. Then

$$
A_{w}(d)=A_{w}\left(M^{j} d\right) \quad \text { for } 1 \leq j \leq E_{w}(p)-1 .
$$

This follows from the proof of Lemma 10 of [16] and Lemma 13 of [19].
Theorem 3.14. Let p be a fixed prime. Consider the recurrences $u(a, b), v(a, b)$, and $t(a, b)$. Let $h=h_{u}(p)$. Then
(i) $v(a, b)$ is p-equivalent to $u(a, b)$ if and only if h is even.
(ii) $t(a, b)$ is not p-equivalent to $u(a, b)$ when $t(a, b)$ is defined.

Proof. We prove parts (i) and (ii) together. By Proposition 3.10 (iv), $v_{h / 2} \equiv 0(\bmod p)$ when h is even. Then

$$
v_{h / 2} \equiv v_{h / 2+1} \cdot u_{0} \equiv v_{h / 2+1} \cdot 0 \equiv 0 \quad(\bmod p)
$$

and

$$
v_{h / 2+1} \equiv v_{h / 2+1} \cdot u_{1} \equiv v_{h / 2+1} \cdot 1 \equiv v_{h / 2+1} \quad(\bmod p) .
$$

It now follows by the recursion relation (1.1) defining both $u(a, b)$ and $v(a, b)$ that $v(a, b)$ is p-equivalent to $u(a, b)$ when h is even. It is proved in Lemma 6 of [19] that $v(a, b)$ is not p-equivalent to $u(a, b)$ when h is odd and $t(a, b)$ is not p-equivalent to $u(a, b)$ when $t(a, b)$ is defined.

Theorem 3.15. Let p be a fixed prime. Consider the p-regular recurrence $w(a, b)$. Let $h=$ $h_{w}(p)$ and $\lambda=\lambda_{w}(p)$. Then
(i) $h \mid p-(D / p)$, where $(D / p)=0$ if $p \mid D$.
(ii) If $(D / p)=0$, then $h=p$.
(iii) If $p \nmid D$, then $h \mid(p-(D / p)) / 2$ if and only if $(b / p)=1$.
(iv) If $w(a, b)=u(a, b)$, then $u_{n} \equiv 0(\bmod p)$ if and only if $h \mid n$.
(v) Let h_{1} be the restricted period modulo p of the $\operatorname{LSFK} u(a, b)$ and h_{2} be the restricted period modulo p of the LSFK $u^{\prime}(-a, b)$. Then $h_{1}=h_{2}$.
(vi) If $(D / p)=1$, then $\lambda \mid p-1$.

Proof. We first note that by Theorem 3.2 and Theorem 3.3 (i), $h_{w}(p)=h_{u}(p)$ and $\lambda_{w}(p)=$ $\lambda_{u}(p)$, since both $w(a, b)$ and $u(a, b)$ are p-regular. Parts (i) and (vi) are proved in [6, pp.4445] and [10, pp. 290, 296, 297]. Parts (ii) and (iv) are proved in [8, pp. 423-424]. Part (iii) is proved in [8, p. 441]. Part (v) follows from part (iv) and Lemma 3.12 (i).
Theorem 3.16. Let $w(a,-1)$ be a p-regular recurrence with discriminant D. Then
(i) $E_{w}(p)=1,2$, or 4 .
(ii) $E_{w}(p)=1$ if and only if $h_{w}(p) \equiv 2(\bmod 4)$. Moreover, if $E_{w}(p)=1$, then $(D / p)=1$.
(iii) $E_{w}(p)=2$ if and only if $h_{w}(p) \equiv 0(\bmod 4)$. Moreover, if $E_{w}(p)=2$, then $(D / p)=$ $(-1 / p)$.
(iv) $E_{w}(p)=4$ if and only if $h_{w}(p)$ is odd. Moreover, if $E_{w}(p)=4$ then $p \equiv 1(\bmod 4)$.
(v) If $p \equiv 3(\bmod 4)$ and $(D / p)=1$, then $h_{w}(p) \equiv 2(\bmod 4)$ and $E_{w}(p)=1$.
(vi) If $p \equiv 3(\bmod 4)$ and $(D / p)=-1$, then $h_{w}(p) \equiv 0(\bmod 4)$ and $E_{w}(p)=2$.
(vii) If $p \equiv 1(\bmod 4)$ and $(D / p)=-1$, then $h_{w}(p)$ is odd and $E_{w}(p)=4$.
(viii) If $(D / p)=-1$, then $\lambda_{w}(p) \mid 2(p+1)$.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

Proof. By Theorem 3.3 (i), $u(a, b)$ is p-regular. It now follows from Theorem 3.2 that $h_{w}(p)=$ $h_{u}(p)$ and $\lambda_{w}(p)=\lambda_{u}(p)$. Parts (i)-(vii) now follow from Lemma 3 and Theorem 13 of [13].

We now establish part (viii). First suppose that $(D / p)=-1$ and $p \equiv 3(\bmod 4)$. Then $E_{w}(p)=2$ by part (vi). By Theorem 3.15 (i), $h_{w}(p) \mid p+1$. Thus, $\lambda_{w}(p) \mid 2(p+1)$.

Finally, suppose that $(D / p)=-1$ and $p \equiv 1(\bmod 4)$. Then $E_{w}(p)=4$ by part (vii). Moreover, $(-1 / p)=1$. It thus follows from Theorem 3.15 (iii) that $h_{w}(p) \mid(p+1) / 2$. Consequently, $\lambda_{w}(p) \mid 2(p+1)$.

Theorem 3.17. Let $w(a, 1)$ be a p-regular recurrence with discriminant D. Then
(i) $E_{w}(p)=1$ or 2 .
(ii) If $\lambda_{w}(p)$ is odd, then $h_{w}(p)$ is odd and $E_{w}(p)=1$.
(iii) If $\lambda_{w}(p) \equiv 2(\bmod 4)$, then $h_{w}(p)$ is odd and $E_{w}(p)=2$.
(iv) If $\lambda_{w}(p) \equiv 0(\bmod 4)$, then $h_{w}(p)$ is even and $E_{w}(p)=2$.
(v) If $\left(\frac{2-a}{p}\right)=-1$ and $\left(\frac{2+a}{p}\right)=1$, then $\lambda_{w}(p)$ is odd.
(vi) If $\left(\frac{2-a}{p}\right)=1$ and $\left(\frac{2+a}{p}\right)=-1$, then $\lambda_{w}(p) \equiv 2(\bmod 4)$.
(vii) If $\left(\frac{2-a}{p}\right)=\left(\frac{2+a}{p}\right)=-1$, then $\lambda_{w}(p) \equiv 0(\bmod 4)$.
(viii) $h_{w}(p) \mid(p-(D / p)) / 2$ and $\lambda_{w}(p) \mid p-(D / p)$.

This follows from Theorem 3.2, Theorem 3.3 (i), and Theorem 3.15 (iii) of this paper and from Theorem 16 of [13].
Lemma 3.18. Let p be a fixed prime and consider the $\operatorname{LSFK} u(a,-1)$ and $\operatorname{LSSK} v(a,-1)$. Then
(i) $u(a,-1)$ and $u^{\prime}(-a,-1)$ are identically distributed modulo p,
(ii) $v(a,-1)$ and $v^{\prime}(-a,-1)$ are identically distributed modulo p.

Proof. (i) We note by Theorem 3.3 (i) that both $u(a, b)$ and $u^{\prime}(a, b)$ are p-regular. By Theorem $3.15(\mathrm{v}), h_{u}(p)=h_{u^{\prime}}(p)$. It follows from Theorem 3.16 that $E_{u}(p)=E_{u^{\prime}}(p)$, and hence, $\lambda_{u}(p)=\lambda_{u^{\prime}}(p)$. By Lemma 3.12 (i),

$$
\begin{equation*}
u_{2 i+1}^{\prime}(-a,-1)=u_{2 i+1}(a,-1) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{2 i}^{\prime}(-a,-1)=-u_{2 i}(a,-1) \tag{3.12}
\end{equation*}
$$

for $i \geq 0$.
Suppose that $h_{u}(p) \equiv 2(\bmod 4)$. Then by Theorem $3.16(i i), E_{u}(p)=1$, and thus $M_{u}(p) \equiv$ $1(\bmod p)$. Moreover by Lemma $3.8(\mathrm{i})$,

$$
\begin{equation*}
u_{2 i+1} \equiv u_{h_{u}-2 i-1} \quad(\bmod p) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{2 i} \equiv-u_{h_{u}-2 i} \quad(\bmod p) \tag{3.14}
\end{equation*}
$$

for $0 \leq i \leq\left(h_{u}-2\right) / 4$. It now follows from (3.11)-(3.14) that $A_{u}(d)=A_{u^{\prime}}(d)$ for $0 \leq d \leq p-1$. Hence, $u(a,-1)$ and $u^{\prime}(-a,-1)$ are identically distributed modulo p.

Now suppose that $h_{u}(p)$ is odd or divisible by 4 . Since $M_{u}^{2}(p) \equiv-1(\bmod p)$ if $h_{u}(p)$ is odd, and $M_{u}(p) \equiv-1(\bmod p)$ if $h_{u}(p)$ is divisible by 4 , it follows from Lemma 3.13 that

$$
\begin{equation*}
A_{u}(d)=A_{u}(-d) \quad \text { and } \quad A_{u^{\prime}}(d)=A_{u^{\prime}}(-d) \tag{3.15}
\end{equation*}
$$

for $0 \leq d \leq p-1$. By (3.11) and (3.12),

$$
\begin{equation*}
A_{u}(d)+A_{u}(-d)=A_{u^{\prime}}(d)+A_{u^{\prime}}(-d) \tag{3.16}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

for $0 \leq d \leq p-1$. Therefore, from (3.15) and (3.16), we see that $A_{u}(d)=A_{u^{\prime}}(d)$ for $0 \leq d \leq p-1$. Thus, $u(a,-1)$ and $u^{\prime}(-a,-1)$ are identically distributed modulo p.
(ii) By Theorem 3.6 and Theorem 3.14 (i), $u(a,-1)$ and $v(a,-1)$ are identically distributed modulo p, and $u^{\prime}(-a,-1)$ and $v^{\prime}(-a,-1)$ are also identically distributed modulo p if $h_{u}(p)$ is even and $p \nmid D$. Thus, by part (i), $v(a,-1)$ and $v^{\prime}(-a,-1)$ have the same distribution of residues modulo p if $h_{u}(p)$ is even and $p \nmid D$.

Now suppose that $p \mid D$. Then by the proof of Theorem 3.3 (ii) both $v(a,-1)$ and $v^{\prime}(-a,-1)$ are p-irregular if $p \mid D$. By inspection

$$
v_{0} \equiv 2, v_{1} \equiv a, v_{2} \equiv-2, v_{3} \equiv-a, v_{4} \equiv 2, v_{5} \equiv a, \ldots \quad(\bmod p)
$$

and

$$
v_{0}^{\prime} \equiv 2, v_{1}^{\prime} \equiv-a, v_{2}^{\prime} \equiv-2, v_{3}^{\prime} \equiv a, v_{4}^{\prime} \equiv 2, v_{5}^{\prime} \equiv-a, \ldots \quad(\bmod p),
$$

where $a^{2} \equiv-4(\bmod p)$, since $p \mid D=a^{2}+4$. Hence, $\lambda_{v}(p)=\lambda_{v^{\prime}}(p)=4$, and $v(a,-1)$ and $v^{\prime}(-a,-1)$ are identically distributed modulo p.

Further, suppose that $p \nmid D$ and $h_{u}(p)$ is odd. Then both $v(a,-1)$ and $v^{\prime}(-a,-1)$ are p-regular and $h_{v}(p)=h_{v^{\prime}}(p)=h_{u}(p)$ is odd. Moreover, $E_{v}(p)=E_{v^{\prime}}(p)=E_{u}(p)=4$ and $M_{v}^{2}(p) \equiv M_{v^{\prime}}^{2}(p) \equiv-1(\bmod p)$. Further, by Lemma $3.12(\mathrm{ii})$,

$$
\begin{equation*}
v_{2 i+1}^{\prime}(-a,-1)=-v_{2 i+1}(a,-1) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{2 i}^{\prime}(-a,-1)=v_{2 i}(a,-1) \tag{3.18}
\end{equation*}
$$

for $i \geq 0$. Since $M_{v}^{2} \equiv-1(\bmod p)$, it follows from Lemma 3.13 that

$$
\begin{equation*}
A_{v}(d)=A_{v}(-d) \quad \text { and } \quad A_{v^{\prime}}(d)=A_{v^{\prime}}(-d) \tag{3.19}
\end{equation*}
$$

for $0 \leq d \leq p-1$. By (3.17) and (3.18),

$$
\begin{equation*}
A_{v}(d)+A_{v}(-d)=A_{v^{\prime}}(d)+A_{v^{\prime}}(-d) \tag{3.20}
\end{equation*}
$$

for $0 \leq d \leq p-1$. Thus, from (3.19) and (3.20), we find that $A_{v}(d)=A_{v^{\prime}}(d)$ for $0 \leq d \leq p-1$. Consequently, $v(a,-1)$ and $v^{\prime}(-a,-1)$ are identically distributed modulo p.
Theorem 3.19. Let p be a fixed prime.
(i) If $p \equiv 1(\bmod 4)$, then there exists a LSFK $u(a,-1)$ such that $(D / p)=1$ and $h_{u}(p)=$ m if and only if $m \mid(p-1) / 2$ and $m \neq 1$.
(ii) If $p \equiv 3(\bmod 4)$, then there exists a LSFK $u(a,-1)$ such that $(D / p)=1$ and $h_{u}(p)=$ m if and only if $m \mid p-1$ and $m \nmid(p-1) / 2$.
(iii) If $p \equiv 1(\bmod 4)$, then there exists a LSFK $u(a,-1)$ such that $(D / p)=-1$ and $h_{u}(p)=m$ if and only if $m \mid(p+1) / 2$ and $m \neq 1$.
(iv) If $p \equiv 3(\bmod 4)$, then there exists a LSFK $u(a,-1)$ such that $(D / p)=-1$ and $h_{u}(p)=m$ if and only if $m \mid p+1$ and $m \nmid(p+1) / 2$.

Proof. Parts (i) and (ii) follow from Theorem 12 of [14]. Parts (iii) and (iv) follow from Theorems 3 and 4 of [18].

Theorem 3.20. Let p be a fixed prime such that either $p=4 n+1$ or $p=4 n+3$. Consider all the possible distinct discriminants $D \equiv a^{2}+4$ modulo p of recurrences $w(a,-1)$, where $0 \leq a \leq p-1$.
(i) There exist exactly $n+1$ distinct discriminants D modulo p such that either $(D / p)=0$ or $(D / p)=1$. There exists exactly one discriminant $D \equiv a^{2}+4(\bmod p)$ such that $(D / p)=0$ if $p \equiv 1(\bmod 4)$ and no such discriminant if $p \equiv 3(\bmod 4)$.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

(ii) There exist exactly $(p+1) / 2-(n+1)$ distinct discriminants $D \equiv a^{2}+4(\bmod p)$ such that $(D / p)=-1$.
Proof. (i) To find all $a \in\{0,1, \ldots, p-1\}$ such that

$$
\left(\frac{a^{2}+4}{p}\right)=0 \text { or } 1,
$$

all one needs to do is find all solutions to the congruence

$$
\begin{equation*}
x^{2}-a^{2}=(x+a)(x-a) \equiv 4 \quad(\bmod p) . \tag{3.21}
\end{equation*}
$$

There are $p-1$ sets of solutions for x and a generated by

$$
\begin{equation*}
x+a \equiv k, x-a \equiv 4 / k \quad(\bmod p), \quad 1 \leq k \leq p-1 . \tag{3.22}
\end{equation*}
$$

In general, four sets of solutions lead to the same x^{2} and a^{2} modulo p for a fixed k :

$$
\begin{gathered}
x+a \equiv k, \quad x-a \equiv 4 / k ; \quad x+a \equiv 4 / k, \quad x-a \equiv k ; \\
x+a \equiv-k, \quad x-a \equiv-4 / k ; \quad x+a \equiv-4 / k, \quad x-a \equiv-k \quad(\bmod p) .
\end{gathered}
$$

Since $k \not \equiv 0(\bmod p)$, we find that $k \not \equiv-k$ and $4 / k \not \equiv-4 / k(\bmod p)$. However, $4 / k \equiv k$ if and only if $k \equiv \pm 2(\bmod p)$. Also, $-4 / k \equiv k(\bmod p)$ if and only if $k \equiv \pm \sqrt{-4}(\bmod p)$. Combining these facts with the fact that $p \equiv 1(\bmod 4)$ if and only if both ± 4 are quadratic residues modulo p, one finds that the number of solutions of the congruence $x^{2} \equiv a^{2}+4$ $(\bmod 4)$ is $n+1$ if p is equal to either $4 n+1$ or $4 n+3$. By the above discussion, we see that there exists a discriminant $D \equiv a^{2}+4$ such that $D \equiv 0(\bmod p)$ if and only if $p \equiv 1(\bmod 4)$. Moreover, this discriminant is unique modulo p if it exists.

Part (ii) follows from the fact that there exist exactly $(p+1) / 2$ distinct values of $a^{2}+4$ modulo p, which are generated by those a 's for which $0 \leq a \leq(p-1) / 2$.

Theorem 3.20 is essentially proved in [12, p.39].
Theorem 3.21. Let p be a fixed prime. Let a and b be fixed integers such that $p \nmid b$. Define the relation p-equivalence on the set of all p-regular recurrences $w(a, b)$ modulo p. Let $h=h_{u}(a, b)$ and $D=a^{2}-4 b$. Then the number of equivalence classes is equal to

$$
\frac{p-(D / p)}{h} .
$$

This is proved in Theorem 2.14 of [5].

4. Proofs of the Main Theorems

Proof of Theorem 2.1. Let $h_{1}=h_{u}(p), h_{2}=h_{u^{\prime}}(p), \lambda_{1}=\lambda_{u}(p)$, and $\lambda_{2}=\lambda_{u^{\prime}}(p)$. By hypothesis, $\left(D_{1} / p\right)=\left(D_{2} / p\right)$ and

$$
\begin{equation*}
h_{1}=h_{2} . \tag{4.1}
\end{equation*}
$$

By Theorem 3.16 (i)-(iv), the equality (4.1) holds if and only if $E_{u}(p)=E_{u^{\prime}}(p)$ and $\lambda_{1}=\lambda_{2}$. We will show that $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ are identically distributed modulo p. We divide the proof into four cases depending on whether $p \equiv 1$ or 3 modulo 4 and whether $\left(D_{1} / p\right)=$ $\left(D_{2} / p\right)=1$ or $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$.
Case 1: $p \equiv 3(\bmod 4)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$.
Proof of Theorem 2.1 for Case 1. By Theorem 3.15 (iii) and Theorem 3.16 (vi),

$$
h_{1}=h_{2} \equiv 0 \quad(\bmod 4), \quad h_{1} \mid p+1, \quad h_{1} \nmid(p+1) / 2, \quad E_{u}(p)=E_{u^{\prime}}(p)=2,
$$

THE FIBONACCI QUARTERLY

and

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=2 h_{1} . \tag{4.2}
\end{equation*}
$$

By Theorem 3.19 (iv), there exists a LSFK $u^{\prime \prime}\left(a_{3},-1\right)$ with discriminant D_{3} such that $\left(D_{3} / p\right)=-1$ and $h_{3}=h_{u^{\prime \prime}}(p)$ has a maximal value of $p+1$. Let $\lambda_{3}=\lambda_{u^{\prime \prime}}(p)$. Then by Theorem 3.16 (vi),

$$
\lambda_{3}=2 h_{3}=2(p+1) .
$$

By Theorem 3.20 (ii), there exist exactly $(p+1) / 4$ distinct discriminants $a^{2}+4$ of LSFK's $u(a,-1)$ modulo p for which $\left(\frac{a^{2}+4}{p}\right)=-1$.

Now consider the LSSK $v^{\prime \prime}\left(a_{3},-1\right)$. Since $p \nmid D_{3}, v^{\prime \prime}\left(a_{3},-1\right)$ is p-regular by Theorem 3.3 (ii), and thus $h_{v^{\prime \prime}}(p)=h_{3}$. By (3.3), if i and j are odd integers such that $0 \leq i<j \leq h_{3} / 2=$ $(p+1) / 2$, then

$$
\begin{equation*}
v_{i}^{\prime \prime}\left(a_{3},-1\right) \not \equiv \pm v_{j}^{\prime \prime}\left(a_{3},-1\right) \quad(\bmod p) . \tag{4.3}
\end{equation*}
$$

Making note of Theorem 3.11, we now consider all LSFK's

$$
\begin{equation*}
\hat{u}\left(v_{2 m-1}^{\prime \prime}\left(a_{3},-1\right),(-1)^{2 m-1}\right)=\hat{u}\left(v_{2 m-1}^{\prime \prime}\left(a_{3},-1\right),-1\right)=\left\{\frac{u_{(2 m-1) n}^{\prime \prime}\left(a_{3},-1\right)}{u_{2 m-1}^{\prime \prime}\left(a_{3},-1\right)}\right\}_{n=0}^{\infty} \tag{4.4}
\end{equation*}
$$

where $1 \leq m \leq(p+1) / 4$. Since $0 \leq 2 m-1 \leq(p-1) / 2$, we see by Theorem 3.15 (iv) that $u_{2 m-1}^{\prime \prime}\left(a_{3},-1\right) \not \equiv 0(\bmod p)$. It now follows from (4.3) and Proposition 3.10 (iii) that the $(p+1) / 4$ LSFK's in (4.4) all have distinct discriminants which are quadratic nonresidues modulo p, since

$$
\begin{equation*}
\left(v_{2 m-1}^{\prime \prime}\left(a_{3},-1\right)\right)^{2}+4=D_{3}\left(u_{2 m-1}^{\prime \prime}\left(a_{3},-1\right)\right)^{2} . \tag{4.5}
\end{equation*}
$$

Thus, there exist some $\varepsilon_{1}, \varepsilon_{2}$ such that $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$ and both $\hat{u}\left(\varepsilon_{1} a_{1},-1\right)$ and $\tilde{u}\left(\varepsilon_{2} a_{2},-1\right)$ appear among the $(p+1) / 4$ LSFK's in (4.4) when reduced modulo p. Let

$$
r=\frac{\lambda_{3}}{\lambda_{1}} .
$$

It follows from (4.2) that r is a positive odd integer. We further see from (4.4) that

$$
\begin{equation*}
\hat{u}\left(\varepsilon_{1} a_{1},-1\right)=\left\{\frac{u_{k n}^{\prime \prime}\left(a_{3},-1\right)}{u_{k}^{\prime \prime}\left(a_{3},-1\right)}\right\}_{n=0}^{\infty} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{u}\left(\varepsilon_{2} a_{2},-1\right)=\left\{\frac{u_{\ell n}^{\prime \prime}\left(a_{3},-1\right)}{u_{\ell}^{\prime \prime}\left(a_{3},-1\right)}\right\}_{n=0}^{\infty} \tag{4.7}
\end{equation*}
$$

for all $n \geq 0$ and some odd integers k and ℓ such that $k, \ell \in\{1, \ldots,(p-1) / 2\}$ and

$$
\begin{equation*}
\operatorname{gcd}\left(k, \lambda_{3}\right)=\operatorname{gcd}\left(\ell, \lambda_{3}\right)=r \tag{4.8}
\end{equation*}
$$

We note by (4.8) that the sets

$$
\begin{equation*}
\{k n\}_{n=1}^{\lambda_{1}} \quad \text { and }\{\ell n\}_{n=1}^{\lambda_{1}} \tag{4.9}
\end{equation*}
$$

contain the same sets of residues modulo λ_{3}. Since $k, \ell \in\{1, \ldots,(p-1) / 2\}$ and $h_{3}=p+1$, we see by Theorem 3.15 (iv) that both $u_{k}^{\prime \prime}\left(a_{3},-1\right)$ and $u_{\ell}^{\prime \prime}\left(a_{3},-1\right)$ are invertible modulo p. It now follows from (4.6), (4.7), and (4.9) that $\hat{u}\left(\varepsilon_{1} a_{1},-1\right)$ and $\tilde{u}\left(\varepsilon_{2} a_{2},-1\right)$ are identically distributed modulo p.

The result now follows upon noting by Lemma 3.18 (i) that $u(a,-1)$ and $u(-a,-1)$ are identically distributed modulo p for any integer a.
Case 2: $p \equiv 3(\bmod 4)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=1$.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

Proof of Theorem 2.1 for Case 2. By Theorem 3.15 (iii) and Theorem 3.16 (v),

$$
h_{1}=h_{2} \equiv 2 \quad(\bmod 4), \quad h_{1} \mid p-1, \quad h_{1} \nmid(p-1) / 2, \quad E_{u}(p)=E_{u^{\prime}}(p)=1,
$$

and

$$
\lambda_{1}=\lambda_{2}=h_{1} .
$$

By Theorem 3.19 (ii), there exists a LSFK $u^{\prime \prime}\left(a_{3},-1\right)$ with discriminant D_{3} such that $\left(D_{3} / p\right)=1$ and $h_{3}=h_{u^{\prime \prime}}(p)$ has a maximal value of $p-1$. By Theorem 3.20 (i), there exist exactly $(p+1) / 4$ distinct discriminants $a^{2}+4$ of LSFK's $u(a,-1)$ modulo p for which $\left(\frac{a^{2}+4}{p}\right)=1$. We further note that by (3.3), if i and j are odd integers such that $0 \leq i<j \leq$ $h_{3} / 2=(p-1) / 2$, then

$$
v_{i}^{\prime \prime}\left(a_{3},-1\right) \not \equiv \pm v_{j}^{\prime \prime}\left(a_{3},-1\right) \quad(\bmod p) .
$$

Moreover, there are exactly $(p+1) / 4$ odd integers m such that $0 \leq m \leq(p-1) / 2$. The rest of the proof is similar to that of Case 1.
Case 3: $p \equiv 1(\bmod 4)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$.
Proof of Theorem 2.1 for Case 3. By Theorem 3.15 (iii) and Theorem 3.16 (vii),

$$
h_{1}=h_{2} \equiv 1 \quad(\bmod 2), \quad h_{1} \mid(p+1) / 2, \quad h_{1}>1, \quad E_{u}(p)=E_{u^{\prime}}(p)=4,
$$

and

$$
\lambda_{1}=\lambda_{2}=4 h .
$$

By Theorem 3.19 (iii), there exists a LSFK $u^{\prime \prime}\left(a_{3},-1\right)$ with discriminant D_{3} such that $\left(D_{3} / p\right)=-1$ and $h_{3}=h_{u^{\prime \prime}}(p)$ has a maximal value of $(p+1) / 2$. By Theorem 3.20 (ii), there exist exactly $(p-1) / 4$ distinct discriminants $a^{2}+4$ of LSFK's $u(a,-1)$ modulo p for which $\left(\frac{a^{2}+4}{p}\right)=-1$. We further note that by (3.4), if i and j are odd integers such that $0 \leq i<j<h_{3}=(p+1) / 2$, then

$$
v_{i}^{\prime \prime}\left(a_{3},-1\right) \not \equiv \pm v_{j}^{\prime \prime}\left(a_{3},-1\right) \quad(\bmod p) .
$$

Moreover, there are exactly $(p-1) / 4$ odd integers m such that $1 \leq m<(p+1) / 2$. The remainder of the proof is similar to that of Case 1.
Case 4: $p \equiv 1(\bmod 4)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=1$.
Proof of Theorem 2.1 for Case 4. Let $p-1=2^{\gamma} m$, where $\gamma \geq 2$ and m is odd. By Theorem 3.15 (iii),

$$
\begin{equation*}
h_{1}=h_{2}, \quad h_{1} \mid(p-1) / 2=2^{\gamma-1} m, \quad \text { and } \quad h_{1}>1 . \tag{4.10}
\end{equation*}
$$

By Theorem 3.20 (i), there exist exactly $(p-1) / 4=2^{\gamma-2} m$ distinct discriminants $a^{2}+4$ of LSFK's $u(a,-1)$ modulo p for which $\left(\frac{a^{2}+4}{p}\right)=1$.

Let $0 \leq i \leq \gamma-1$. By Theorem 3.19 (i), if it is not the case that $i=0$ and $m=1$, then there exists a LSFK $u^{\prime \prime}\left(a_{3},-1\right)$ with discriminant D_{3} such that $\left(D_{3} / p\right)=1$ and $h_{3}=h_{u^{\prime \prime}}(p)=2^{i} m$. Let $\lambda_{3}=\lambda_{u^{\prime \prime}}(p)$. First suppose that $2 \leq i \leq \gamma-1$. Consider the LSSK $v^{\prime \prime}\left(a_{3},-1\right)$. Since $p \nmid D_{3}, v^{\prime \prime}\left(a_{3},-1\right)$ is p-regular and thus $h_{v^{\prime \prime}}(p)=h_{3}$. Since h_{3} is even, it follows from (3.3) that if k and ℓ are odd integers such that $0 \leq k<\ell \leq h_{3} / 2=2^{i-1} m$, then

$$
\begin{equation*}
v_{k}^{\prime \prime}\left(a_{3},-1\right) \not \equiv \pm v_{\ell}^{\prime \prime}\left(a_{3},-1\right) \quad(\bmod p) . \tag{4.11}
\end{equation*}
$$

Taking note of Theorem 3.11, we consider all LSFK's

$$
\begin{equation*}
\hat{u}\left(v_{2 j-1}^{\prime \prime}\left(a_{3},-1\right),(-1)^{2 j-1}\right)=\hat{u}\left(v_{2 j-1}^{\prime \prime}\left(a_{3},-1\right),-1\right)=\left\{\frac{u_{(2 j-1) n}^{\prime \prime}\left(a_{3},-1\right)}{u_{2 j-1}^{\prime j}\left(a_{3},-1\right)}\right\}_{n=0}^{\infty}, \tag{4.12}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

where $1 \leq j \leq 2^{i-2} m$. Since $0 \leq 2 j-1 \leq 2^{i-1} m$, we see by Theorem 3.15 (iv) that $u_{2 j-1}^{\prime \prime}\left(a_{3},-1\right) \not \equiv 0(\bmod p)$. It now follows from (4.11) and (4.5) that the $2^{i-2} m$ LSFK's in (4.12) all have distinct discriminants which are nonzero quadratic residues modulo p.

Suppose that k is an odd integer such that $1 \leq k \leq 2^{i-1} m$. Suppose further that $\operatorname{gcd}\left(k, \lambda_{3}\right)=$ r. Since k is odd, then $\operatorname{gcd}\left(k, \lambda_{3}\right)=r$. It now follows that the sets $\{k n\}_{n=0}^{\infty}$ and $\{r c\}_{c=1}^{\lambda_{3} / r}$ have exactly the same elements modulo p. Since $u_{k}^{\prime \prime}\left(a_{3},-1\right)$ is invertible modulo p, it follows from (4.12) that the period of $\hat{u}\left(v_{k}^{\prime \prime}\left(a_{3},-1\right),-1\right)$ modulo p is equal to $\lambda_{3} / r=\lambda_{4}$. Then $\nu_{2}\left(\lambda_{4}\right)=$ $\nu_{2}\left(\lambda_{3}\right)$, where $\nu_{2}(n)=c$ if $2^{c} \mid n$, but $2^{c+1} \nmid n$. Let h_{4} denote the restricted period of $\hat{u}\left(v_{k}^{\prime \prime}\left(a_{3},-1\right),-1\right)$ modulo p. Since $i \geq 2$, it follows from Theorem 3.16 (iii) that $\lambda_{4}=2 h_{4}$ and $\lambda_{3}=2 h_{3}$. Thus, $\nu_{2}\left(h_{4}\right)=\nu_{2}\left(h_{3}\right)=i$. We now note that in (4.12) we have generated $2^{i-2} m$ LSFK's $u(a,-1)$ with distinct discriminants $a^{2}+4$ and distinct restricted periods h modulo p such that $\left(\frac{a^{2}+4}{p}\right)=1$ and $\nu_{2}(h)=\nu_{2}\left(h_{3}\right)=i \geq 2$.

We next suppose that $i=1$ and that h_{3} is thus equal to $2 m$. Then $h_{3}=\lambda_{3}$ by Theorem 3.16 (ii). Moreover, by (3.3), we see that (4.11) holds if k and ℓ are odd integers such that $0 \leq$ $k<\ell \leq h_{3} / 2=m$. Now consider the LSFK's in (4.12), where we now take j to satisfy $1 \leq j \leq(m+1) / 2$. Then $1 \leq 2 j-1 \leq m$. It now follows from Theorem 3.15 (iv) that $u_{2 j-1}^{\prime \prime}\left(a_{3},-1\right) \not \equiv 0(\bmod p)$ for $1 \leq 2 j-1 \leq m$. By our argument above we can generate $(m+1) / 2$ LSFK's $u(a,-1)$ with distinct discriminants $a^{2}+4$ and distinct discriminants $a^{2}+4$ and distinct restricted periods h modulo p such that $\left(\frac{a^{2}+4}{p}\right)=1$ and $\nu_{2}(h)=\nu_{2}\left(h_{3}\right)=1$.

We finally suppose that $i=0$ and that h_{3} is consequently equal to m. Then $\lambda_{3}=4 h_{3}$ by Theorem 3.16 (iv). Furthermore, by (3.4) we find that (4.11) holds if k and ℓ are odd integers such that $0 \leq k<\ell \leq h_{3}-1=m-1$. We now consider the LSFK's in (4.12), where we take j to satisfy $1 \leq j \leq(m-1) / 2$. Then $1 \leq 2 j-1 \leq m-2$. By Theorem 3.15 (iv), we see that $u_{2 j-1}^{\prime \prime}\left(a_{3},-1\right) \not \equiv 0(\bmod p)$ for $1 \leq 2 j-1 \leq m-2$. By our argument above, we can construct ($m-1$)/2 LSFK's $u(a,-1)$ with distinct discriminants $a^{2}+4$ and distinct restricted periods h modulo p such that $\left(\frac{a^{2}+4}{p}\right)=1$ and $\nu_{2}(h)=\nu_{2}\left(h_{3}\right)=0$.

Letting i vary from 0 to $\gamma-1$, we see from our above discussion that we have generated exactly

$$
\left(\frac{m-1}{2}+\frac{m+1}{2}\right)+\sum_{i=2}^{\gamma-1} 2^{i-2} m=m+m\left(2^{\gamma-2}-1\right)=2^{\gamma-2} m
$$

LSFK's $u(a,-1)$ having distinct discriminants D modulo p such that $(D / p)=1$. Since there are exactly $2^{\gamma-2} m$ such LSFK's $u(a,-1)$ modulo p by our above discussion, it follows that $\tilde{u}\left(\varepsilon_{1} a_{1},-1\right)$ and $\bar{u}\left(\varepsilon_{2} a_{2},-1\right)$ appear among the LSFK's we have constructed above when reduced modulo p, where ε_{1} and ε_{2} are some elements of $\{-1,1\}$. The rest of the proof is similar to the proof of Case 1.

This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. Since $p \nmid D_{1} D_{2}$, both $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ are p-regular by Theorem 3.3 (ii). Consider the LSFK's $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$. Then by Theorems 3.2 and 3.3 (ii),

$$
\begin{equation*}
h_{u}(p)=h_{v}(p) \quad \text { and } \quad h_{u^{\prime}}(p)=h_{v^{\prime}}(p) . \tag{4.13}
\end{equation*}
$$

By hypothesis, $h_{v}(p)=h_{v^{\prime}}(p)$. Suppose that $h_{v}(p)$ and $h_{v^{\prime}}(p)$ are both even. Then by Theorem 3.14 (i), $v\left(a_{1},-1\right)$ is p-equivalent to $u\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{2},-1\right)$. By Theorem 3.6 (ii), $v\left(a_{1},-1\right)$ and $u\left(a_{1},-1\right)$ are identically distributed modulo p, while $v^{\prime}\left(a_{2},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ are also identically distributed modulo p. By Theorem 2.1, both

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

$u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ are identically distributed modulo p. Thus, $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ are identically distributed modulo p.

It thus suffices to suppose that $h_{v}(p)=h_{v^{\prime}}(p)$ is odd. We consider two cases in which $h_{v}(p)$ is odd and $\left(D_{1} / p\right)=-1$ or 1 . We note that by Theorem 3.16 (iv), it then follows that $p \equiv 1$ $(\bmod 4)$. Moreover, by Theorem $3.16\left(\right.$ vii), if $p \equiv 1(\bmod 4)$ and $\left(D_{1} / p\right)=-1$, then $h_{v}(p)$ is odd. Our proof will then complete once we prove Theorem 2.2 for the following two cases. In the first case $p \equiv 1(\bmod 4)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$. In the second case, $p \equiv 1(\bmod 4)$, $\left(D_{1} / p\right)=\left(D_{2} / p\right)=1$, and $h_{v}(p)$ is odd. We let $h_{1}=h_{v}(p), h_{2}=h_{v^{\prime}}(p), \lambda_{1}=\lambda_{v}(p)$, and $\lambda_{2}=\lambda_{v^{\prime}}(p)$.
Case 1: $p \equiv 1(\bmod 4)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$.
Proof of Theorem 2.2 for Case 1. By Theorem 3.15 (iii) and Theorem 3.16 (vii),
$h_{1}=h_{2} \equiv 1 \quad(\bmod 2), \quad h_{1} \mid(p+1) / 2, \quad h_{1}>1, \quad E_{v}(p)=E_{v^{\prime}}(p)=4, \quad$ and $\lambda_{1}=\lambda_{2}=4 h_{1}$.
By Theorem 3.19 (iii), there exists a LSFK $u^{\prime \prime}\left(a_{3},-1\right)$ with discriminant D_{3} such that $\left(D_{3} / p\right)=$ -1 and $h_{3}=h_{u^{\prime \prime}}(p)$ has a maximal value of $(p+1) / 2$. Thus, by Theorem 3.3 (ii) and Theorem 3.2, the restricted period $h_{3}=h_{v^{\prime \prime}}(p)$ of $v^{\prime \prime}\left(a_{3},-1\right)$ modulo p is equal to $(p+1) / 2$ also, and $v^{\prime \prime}\left(a_{3},-1\right)$ has the same discriminant D_{3} as $u^{\prime \prime}\left(a_{3},-1\right)$. By Theorem 3.20 (ii), there exist exactly $(p-1) / 4$ distinct discriminants $a^{2}+4$ of LSSK's $v(a,-1)$ modulo p for which $\left(\frac{a^{2}+4}{p}\right)=-1$. We further observe by (3.4) that if i and j are odd integers such that $1 \leq i<j<h_{3} / 2=(p+1) / 2$, then

$$
\begin{equation*}
v_{i}^{\prime \prime}\left(a_{3},-1\right) \not \equiv v_{j}^{\prime \prime}\left(a_{3},-1\right) \quad(\bmod p) . \tag{4.14}
\end{equation*}
$$

Taking into account Theorem 3.11, we now consider all the LSSK's

$$
\begin{equation*}
\hat{v}\left(v_{2 m-1}^{\prime \prime}\left(a_{3},-1\right),(-1)^{2 m-1}\right)=\hat{v}\left(v_{2 m-1}^{\prime \prime}\left(a_{3},-1\right),-1\right)=\left\{v_{(2 m-1) n}^{\prime \prime}\left(a_{3},-1\right)\right\}_{n=0}^{\infty}, \tag{4.15}
\end{equation*}
$$

where $1 \leq m \leq(p-1) / 4$. By (4.14) and (4.5), these $(p-1) / 4$ LSSK's all have discriminants which are distinct modulo p and which are quadratic nonresidues modulo p. Thus, both $\hat{v}\left(\varepsilon_{1} a_{1},-1\right)$ and $\tilde{v}\left(\varepsilon_{2} a_{2},-1\right)$ appear among the $(p-1) / 4$ LSSK's in (4.15), where ε_{1} and ε_{2} are elements of $\{-1,1\}$. We also note that by Lemma 3.18 (ii), $v(a,-1)$ and $v^{\prime}(-a,-1)$ are identically distributed modulo p for all integers a. The rest of the proof is similar to that of the proof of Case 1 of Theorem 2.1.
Case 2: $p \equiv 1(\bmod 4),\left(D_{1} / p\right)=\left(D_{2} / p\right)=1$, and $h_{v}(p)$ is odd.
Proof of Theorem 2.2 for Case 2. Let $p-1=2^{\gamma} m$, where $\gamma \geq 2$ and m is odd. By Theorem 3.15 (iii) and Theorem 3.16 (iv),
$h_{1}=h_{2} \equiv 1 \quad(\bmod 2), \quad h_{1} \mid(p+1) / 2, \quad h_{1}>1, \quad E_{v}(p)=E_{v^{\prime}}(p)=4, \quad$ and $\lambda_{1}=\lambda_{2}=4 h_{1}$.
By Theorem 3.20 (i), there exist exactly $(p-1) / 4=2^{\gamma-2} m$ distinct discriminants $a^{2}+4$ of LSSK's $v(a,-1)$ modulo p for which $\left(\frac{a^{2}+4}{p}\right)=-1$. By Theorem 3.19 (i), Theorem 3.3 (ii), and Theorem 3.2, it follows that if $0 \leq i \leq \gamma-1$ and it is not the case that $i=0$ and $m=1$, then there exists a LSSK $v^{\prime \prime}\left(a_{3},-1\right)$ with discriminant D_{3} such that $\left(D_{3} / p\right)=1$ and $h_{3}=h_{v^{\prime \prime}}(p)=$ $2^{i} m$. We also note by (3.3) that if $1 \leq i \leq \gamma-1$ and $1 \leq 2 k-1<2 \ell-1 \leq h_{3} / 2=2^{i-1} m$, then

$$
\begin{equation*}
v_{2 k-1}^{\prime \prime}\left(a_{3},-1\right) \not \equiv \pm v_{2 \ell-1}^{\prime \prime}\left(a_{3},-1\right) \quad(\bmod p) \tag{4.17}
\end{equation*}
$$

Moreover, by (3.4), (4.17) also holds if $i=0, m>1$, and $1 \leq 2 k-1<2 \ell-1 \leq h_{3}-1=2^{i} m-1$. Further, by Theorem 3.3 (ii), Theorem 3.2, and the argument given in the proof of Case 4 of

THE FIBONACCI QUARTERLY

Theorem 2.1, we see that there are exactly $(p-1) / 4=2^{\gamma-2} m$ LSSK's of the form

$$
\begin{equation*}
\hat{v}\left(v_{2 j-1}^{\prime \prime}\left(a_{3},-1\right),-1\right), \tag{4.18}
\end{equation*}
$$

where $1 \leq 2 j-1 \leq 2^{i-1} m$ if $1 \leq i \leq \gamma-1$ and $1 \leq 2 j-1 \leq m-2$ if $i=0$ and $m>$ 1. Additionally, the discriminants of those $(p-1) / 4$ LSSK's are distinct nonzero quadratic residues modulo p, since

$$
\left(v_{2 j-1}^{\prime \prime}\left(a_{3},-1\right)\right)^{2}+4=D_{3}\left(u_{2 j-1}^{\prime \prime}\left(a_{3},-1\right)\right)^{2}
$$

by Proposition 3.10 (iii). We also note by Theorem 3.3 (ii), Theorem 3.2, and the argument given in the proof of Case 4 of Theorem 2.1 that for the LSSK $\hat{v}\left(v_{2 j-1}^{\prime \prime}\left(a_{3},-1\right),-1\right)$ given in (4.18), we have that

$$
\nu_{2}\left(h_{v^{\prime \prime}}(p)\right)=\nu_{2}\left(2^{i} m\right)=i .
$$

The remainder of the proof now follows from arguments similar to those given in the proofs of Case 1 of Theorem 2.1 and Case 1 of this theorem.

The proof of Theorem 2.2 is now complete.

5. Corollaries of the Main Theorems

Corollary 5.1 follows from Theorem 2.1 upon application of Theorems 3.6 and 3.2.
Corollary 5.1. Let p be a fixed prime. Let $w\left(a_{1},-1\right)$ and $w^{\prime}\left(a_{2},-1\right)$ be recurrences with discriminants $D_{1}=a_{1}^{2}+4$ and $D_{2}=a_{2}^{2}+4$, respectively, such that $p \nmid D_{1} D_{2}$ and $\left(D_{1} / p\right)=$ $\left(D_{2} / p\right)$. Suppose that $w\left(a_{1},-1\right)$ is p-equivalent to $u\left(a_{1},-1\right)$ and $w^{\prime}\left(a_{2},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{2},-1\right)$. Suppose further that $h_{w}(p)=h_{w^{\prime}}(p)$. This occurs if and only if $\lambda_{w}(p)=\lambda_{w^{\prime}}(p)$. Then $w\left(a_{1},-1\right)$ and $w^{\prime}\left(a_{2},-1\right)$ are identically distributed modulo p.

The above statement remains valid and follows from Theorem 2.2 if we replace u by v and u^{\prime} by v^{\prime}.
Corollary 5.2. Let p be a fixed prime. Let $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ be LSSK's with discriminants D_{1} and D_{2} such that $p \nmid D_{1} D_{2}$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)$. Suppose that $h_{v}(p)=h_{v^{\prime}}(p)$ is even. Then $v\left(a_{1},-1\right), u\left(a_{1},-1\right), v^{\prime}\left(a_{2},-1\right)$, and $u^{\prime}\left(a_{2},-1\right)$ are all identically distributed modulo p.

Proof. By Theorem 3.14 (i), $v\left(a_{1},-1\right)$ is p-equivalent to $u\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{2},-1\right)$. The result now follows from Corollary 5.1.

Corollary 5.3. Let $p \equiv 3(\bmod 4)$ be a fixed prime and let $\varepsilon \in\{-1,1\}$. Then there exists a LSFK $u(a,-1)$ with discriminant D such that $(D / p)=\varepsilon$ and $h_{u}(p)=p-(D / p)$.

Let $w^{\prime}\left(a_{1},-1\right)$ be any p-regular recurrence with discriminant D_{1} such that $\left(D_{1} / p\right)=\varepsilon$ and $h_{w^{\prime}}(p)=p-(D / p)$. Then $w^{\prime}\left(a_{1},-1\right)$ and $u(a,-1)$ are identically distributed modulo p.
Proof. By Theorem 3.19 (ii) and (iv), there exists a LSFK $u(a,-1)$ with discriminant D such that $(D / p)=\varepsilon$ and $h_{u}(p)=p-(D / p)$. We note that $u(a,-1)$ is p-regular by Theorem 3.3 (i). By Theorem 3.21, $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{1},-1\right)$. Since $h_{w^{\prime}}(p)=p-(D / p)$, we have that $h_{u^{\prime}}(p)=p-(D / p)$. By Theorem 3.6 (ii), $w^{\prime}\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{1},-1\right)$ are identically distributed modulo p. By Theorem 2.1, $u^{\prime}\left(a_{1},-1\right)$ and $u(a,-1)$ are identically distributed modulo p. Thus, $w^{\prime}\left(a_{1},-1\right)$ and $u(a,-1)$ are identically distributed modulo p.

Corollary 5.4. Let $p \equiv 1(\bmod 4)$ be a fixed prime. Then there exists a LSFK $u(a,-1)$ with discriminant D such that $(D / p)=-1$ and $h_{u}(p)=(p+1) / 2$.

Let $w^{\prime}\left(a_{1},-1\right)$ be any p-regular recurrence with discriminant D_{1} such that $\left(D_{1} / p\right)=-1$ and $h_{w^{\prime}}(p)=(p+1) / 2$. Then $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to either $u^{\prime}\left(a_{1},-1\right)$ or $v^{\prime}\left(a_{1},-1\right)$.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

If $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{1},-1\right)$, then $w^{\prime}\left(a_{1},-1\right)$ is identically distributed modulo p to $u(a,-1)$. If $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $v^{\prime}\left(a_{1},-1\right)$, then $w^{\prime}\left(a_{1},-1\right)$ is identically distributed modulo p to $v(a,-1)$.

Proof. By Theorem 3.19 (iii), there exists a LSFK $u(a,-1)$ with discriminant D such that $(D / p)=-1$ and $h_{u}(p)=(p+1) / 2$. We note that both $u(a,-1)$ and $v(a,-1)$ are p-regular by Theorem 3.3 (i) and (ii). By Theorem 3.14 (i), $v(a,-1)$ is not p-equivalent to $u(a,-1)$, and $v^{\prime}\left(a_{1},-1\right)$ is not p-equivalent to $u^{\prime}\left(a_{1},-1\right)$. By Theorem 3.21, there are exactly two equivalence classes of p-regular and p-equivalent recurrences modulo p given that $w^{\prime}\left(a_{1},-1\right)$ has discriminant D_{1} such that $\left(D_{1} / p\right)=-1$ and $h_{w^{\prime}}(p)=(p+1) / 2$. It thus follows that $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to either $u^{\prime}\left(a_{1},-1\right)$ or $v^{\prime}\left(a_{1},-1\right)$. By Theorem 3.6 (ii) $w^{\prime}\left(a_{1},-1\right)$ is identically distributed modulo p to $u^{\prime}\left(a_{1},-1\right)$ if $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{1},-1\right)$ and $w^{\prime}\left(a_{1},-1\right)$ is identically distributed to $v^{\prime}\left(a_{1},-1\right)$ if $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $v^{\prime}\left(a_{1},-1\right)$. By Theorems 2.1 and $2.2, u(a,-1)$ and $u^{\prime}\left(a_{1},-1\right)$ are identically distributed modulo p, and $v(a,-1)$ and $v^{\prime}\left(a_{1},-1\right)$ are identically distributed modulo p. The result now follows.

Primes q such that $2 q+1$ is prime are called Sophie Germain primes of the first kind, while primes q for which $2 q-1$ is prime are called Sophie Germain primes of the second kind. The prime p is a Mersenne prime if $p=2^{q}-1$ for some q, where q must be a prime.

Corollaries 5.5-5.7 restrict Theorems 2.1 and 2.2 to the cases in which the prime p has a special form, namely, $p=2 q+1$, where q is a Sophie Germain prime of the first kind, $p=2 q-1$, where q is a Sophie Germain prime of the second kind, or p is a Mersenne prime.

By inspection, we see that the first few Sophie Germain primes of the first kind are

$$
2,3,5,11,23,29,41,53,83,89,113,131, \ldots
$$

while the few Sophie Germain primes of the second kind are

$$
2,3,7,19,31,37,79,97,139,157,199,211, \ldots
$$

According to [3], the largest known Sophie Germain prime of the first kind is

$$
18543637900515 \cdot 2^{666667}-1
$$

with 200701 digits, while we find from [4] that the largest known Sophie Germain prime of the second kind is

$$
1579755 \cdot 2^{158712}+1
$$

with 47784 digits. We note that if q is an odd Sophie Germain prime of the first kind, then $2 q+1 \equiv 3(\bmod 4)$, whereas if q is a Sophie Germain prime of the second kind, then $2 q-1 \equiv 1$ $(\bmod 4)$.

There are 48 known Mersenne primes (see [2]) with the largest of these being

$$
2^{57885161}-1
$$

with 17425170 digits. If p is a Mersenne prime, then clearly $p \equiv 3(\bmod 4)$.
Corollary 5.5. Let p be a prime such that $(p-1) / 2$ is an odd Sophie Germain prime of the first kind. Then $p \equiv 3(\bmod 4)$.

Let $w^{\prime}\left(a_{1},-1\right)$ and $w^{\prime \prime}\left(a_{2},-1\right)$ be p-regular recurrences with discriminants D_{1} and D_{2}, respectively, such that $p \nmid a_{1} a_{2}$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)=1$. Then $h_{w^{\prime}}(p)=h_{w^{\prime \prime}}(p)=p-1$, and $w^{\prime}\left(a_{1},-1\right)$ and $w^{\prime \prime}\left(a_{2},-1\right)$ are identically distributed modulo p.

THE FIBONACCI QUARTERLY

Proof. Let $q=(p-1) / 2$. Since q is odd, it follows that $p=2 q+1 \equiv 3(\bmod 4)$. Let $w(a,-1)$ be any p-regular recurrence with restricted period $h=h_{w}(p)$ and discriminant D such that $a \not \equiv 0(\bmod p)$ and $(D / p)=1$. By Theorem 3.15 (i) and (iii),

$$
\begin{equation*}
h \mid p-1 \quad \text { and } \quad h \nmid(p-1) / 2 . \tag{5.1}
\end{equation*}
$$

Since $p-1=2 q$, it follows from (5.1) that $h=2$ or $h=2 q=p-1$. As $u(a,-1)$ is p-regular by Theorem 3.3 (i), it follows from Theorem 3.2 that $h_{u}(p)=h$. If $h_{u}(p)=2$, then clearly $a \equiv 0$ $(\bmod p)$, since $u_{0}(a,-1)=0$ and $u_{2}(a,-1)=a$. However, $a \not \equiv 0(\bmod p)$ by assumption. Thus,

$$
h_{w^{\prime}}(p)=h_{w^{\prime \prime}}(p)=p-1 .
$$

The result now follows from Corollary 5.3.
Corollary 5.6. Let p be a prime such that $(p+1) / 2$ is an odd Sophie Germain prime of the second kind. Then $p \equiv 1(\bmod 4)$.

Let $u(a,-1)$ and $v\left(a_{2},-1\right)$ be Lucas sequences of the first kind and second kind, respectively, with the same discriminant D such that $(D / p)=-1$. Let $w^{\prime}\left(a_{1},-1\right)$ be any p-regular recurrence with discriminant D_{1} such that $\left(D_{1} / p\right)=-1$. Then $h_{w^{\prime}}(p)=h_{u}(p)=h_{v}(p)=(p+1) / 2$, and $w^{\prime}\left(a_{1},-1\right)$ is either p-equivalent to $u^{\prime}\left(a_{1},-1\right)$ or $v^{\prime}\left(a_{1},-1\right)$. If $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $u^{\prime}\left(a_{1},-1\right)$, then $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $u(a,-1)$. If $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $v^{\prime}\left(a_{1},-1\right)$, then $w^{\prime}\left(a_{1},-1\right)$ is p-equivalent to $v(a,-1)$.

Proof. Let $q=(p+1) / 2$. Since q is odd, it follows that $p=2 q-1 \equiv 1(\bmod 4)$. Let $w^{\prime}(a,-1)$ be any p-regular recurrence with restricted period $h=h_{w^{\prime}}(p)$ and discriminant D such that $(D / p)=-1$. By Theorem 3.15 (iii),

$$
\begin{equation*}
h \mid(p+1) / 2 \quad \text { and } \quad h \neq 1 . \tag{5.2}
\end{equation*}
$$

Since $(p+1) / 2=q$, it follows from (5.2) that $h=q$. Thus,

$$
h_{w^{\prime}}(p)=h_{u}(p)=h_{v}(p)=(p+1) / 2 .
$$

The result now follows from Corollary 5.4.
Corollary 5.7. Let p be a Mersenne prime. Let $w^{\prime}\left(a_{1},-1\right)$ and $w^{\prime \prime}\left(a_{2},-1\right)$ be p-regular recurrences with discriminants D_{1} and D_{2}, respectively, such that $\left(D_{1} / p\right)=\left(D_{2} / p\right)=-1$. Then $h_{w^{\prime}}(p)=h_{w^{\prime \prime}}(p)=p+1$, and $w^{\prime}\left(a_{1},-1\right)$ and $w^{\prime \prime}\left(a_{2},-1\right)$ are identically distributed modulo p.

Proof. Let $p=2^{q}-1$ for some prime q. Then clearly, $p \equiv 3(\bmod 4)$. Let $w(a,-1)$ be a p regular recurrence with restricted period $h=h_{w}(p)$ and discriminant D such that $(D / p)=-1$. By Theorem 3.15 (i) and (iii),

$$
\begin{equation*}
h \mid p+1 \quad \text { and } \quad h \nmid(p+1) / 2 . \tag{5.3}
\end{equation*}
$$

Since $p+1=2^{q}$, it follows from (5.3) that $h=p+1=2^{q}$. Thus,

$$
h_{w^{\prime}}(p)=h_{w^{\prime \prime}}(p)=p+1 .
$$

The result now follows from Corollary 5.3.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

6. Recurrences Whose Distribution of Residues Are Completely Determined Modulo p

We will sharpen Theorems 2.1 and 2.2 for certain recurrences. Theorem 2.1 shows that the LSFK's $u\left(a_{1},-1\right)$ and $u^{\prime}\left(a_{2},-1\right)$ with the same restricted periods modulo p, (or equivalently the same periods modulo p) are identically distributed modulo p if their discriminants have the same quadratic character modulo p. An analogous result was obtained in Theorem 2.2 for the LSSK's $v\left(a_{1},-1\right)$ and $v^{\prime}\left(a_{2},-1\right)$. However, these theorems do not necessarily explicitly describe the actual distribution of residues modulo p. For certain recurrences (w) we will be able to explicitly determine $S_{w}(p), N_{w}(p)$, and $B_{w}(i)$ for $i \geq 0$ given only the period of (w) modulo p and also possibly the quadratic character of the discriminants of these recurrences modulo p.

In some instances, we will consider the k th-order linear recurrence $w\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, where $k \geq 1$, defined by the recursion relation

$$
\begin{equation*}
w_{n+k}=a_{1} w_{n+k-1}-a_{2} w_{n+k-2}+\cdots+(-1)^{k+1} a_{k} w_{k} \tag{6.1}
\end{equation*}
$$

We suppose from here on that $p \nmid a_{k}$. Then $w\left(a_{1}, \ldots, a_{k}\right)$ is purely periodic modulo p by [7, pp.344-345]. We distinguish the k th-order unit sequence $u\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ satisfying (6.1) and having the initial terms $u_{0}=u_{1}=\cdots=u_{k-2}=0, u_{k-1}=1$. Our definitions for $\lambda_{w}(p), h_{w}(p)$, $E_{w}(p), A_{w}(d), S_{w}(p), N_{w}(p)$, and $B_{w}(i)$ will all carry over naturally from the case in which $k=2$ to general k.

Before presenting our results on recurrences for which the distribution of residues modulo p is completely determined, we will need the following refinement of Theorem 1.1.

Theorem 6.1. Let p be a fixed prime and consider the recurrence $w(a, b)$. Let d be a fixed residue modulo p such that $0 \leq d \leq p-1$. Let $g=\operatorname{ord}_{p} b$.
(i) If $w(a, b)$ is not p-equivalent to $u(a, b), v(a, b)$, or $t(a, b)$, then

$$
\begin{equation*}
A(d) \leq g \tag{6.2}
\end{equation*}
$$

(ii) If $w(a, b)$ is p-equivalent to $u(a, b), v(a, b)$, or $t(a, b)$, then

$$
\begin{equation*}
A(0) \leq E_{w}(p) \leq \min (p-1,2 g) \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A(d) \leq \min \left(g+E_{w}(p), 2 g, p\right) \tag{6.4}
\end{equation*}
$$

if $d \neq 0$.
(iii) Suppose that $w(a, b)$ is p-equivalent to $u(a, b)$, and g and $E_{w}(p)$ are both odd. Then

$$
\begin{equation*}
A(d) \leq g . \tag{6.5}
\end{equation*}
$$

(iv) Suppose that $w(a, b)$ is p-equivalent to $t(a, b)$ and that g is even. Then

$$
\begin{equation*}
A(d) \leq g \tag{6.6}
\end{equation*}
$$

This is proved in Theorem 2 of [19].
Theorems 6.2-6.6 and Theorems 6.8-6.9 show that the distribution of residues of the p regular recurrence $w(a, 1)$ is completely determined modulo p given the value of $\lambda_{u}(p)$ when $p \nmid D$.

Theorem 6.2. Let p be a fixed prime. Suppose that $w(a, 1)$ is p-equivalent to $u(a, 1), \lambda_{w}(p)$ is odd, and $p \nmid D$. Then

$$
E_{w}(p)=1, \quad h_{w}(p) \mid(p-(D / p)) / 2, \quad \text { and } \quad h_{w}(p) \neq 1 .
$$

THE FIBONACCI QUARTERLY

Moreover,

$$
S_{w}(p)=\{0,1\}, \quad N_{w}(p)=\lambda_{w}(p)=h_{w}(p), \quad B_{w}(0)=p-\lambda_{w}(p), \quad \text { and } \quad B_{w}(1)=\lambda_{w}(p) .
$$

This follows from Theorems 4 and 7 of [17] and from Theorem 3.6 of this paper.
Theorem 6.3. Let p be a fixed prime. Suppose that $w(a, 1)$ is p-equivalent to $u(a, 1), \lambda_{w}(p) \equiv 2$ $(\bmod 4)$, and $p \nmid D$. Then

$$
E_{w}(p)=2, \quad h_{w}(p) \equiv 1 \quad(\bmod 2), \quad h_{w}(p) \mid(p-(D / p)) / 2, \quad \text { and } \quad h_{w}(p) \neq 1
$$

Furthermore,

$$
S_{w}(p)=\{0,2\}, \quad N_{w}(p)=h_{w}(p)=\frac{1}{2} \lambda_{w}(p), B_{w}(0)=p-h_{w}(p), \quad \text { and } \quad B_{w}(2)=h_{w}(p) .
$$

This follows from Theorems 5 and 7 of [16] and from Theorem 3.6 of this paper.
Theorem 6.4. Let p be a fixed prime. Suppose that $w(a, 1)$ is p-equivalent to $u(a, 1), \lambda_{w}(p) \equiv 0$ $(\bmod 4)$, and $p \nmid D$. Then

$$
E_{w}(p)=2, \quad h_{w}(p) \equiv 0 \quad(\bmod 2), \quad h_{w}(p) \mid(p-(D / p)) / 2, \quad \text { and } \quad h_{w}(p) \neq 1 .
$$

Moreover,

$$
\begin{gathered}
S_{w}(p)=\{0,1,2\}, N_{w}(p)=h_{w}(p)+1=\frac{1}{2} \lambda_{w}(p)+1, \\
B_{w}(0)=p-h_{w}(p)-1, B_{w}(1)=2, \text { and } B_{w}(2)=h_{w}(p)-1 .
\end{gathered}
$$

This follows from Theorems 6 and 7 of [17] and from Theorem 3.6 of this paper.
Theorem 6.5. Let p be a fixed prime. Suppose that $w(a, 1)$ is p-equivalent to $v(a, 1)$, where $\lambda_{w}(p)$ is odd and $p \nmid D$. Then

$$
E_{w}(p)=1, \quad h_{w}(p) \equiv 1 \quad(\bmod 2), \quad h_{w}(p) \mid(p-(D / p)) / 2, \quad \text { and } \quad h_{w}(p) \neq 1
$$

Additionally,

$$
\begin{gathered}
S_{w}(p)=\{0,1,2\}, \quad N_{w}(p)=\frac{\lambda_{w}(p)+1}{2}, \\
B_{w}(0)=p-\frac{\lambda_{w}(p)+1}{2}, B_{w}(1)=1, \quad \text { and } \quad B_{w}(2)=\frac{\lambda_{w}(p)-1}{2} .
\end{gathered}
$$

This follows from Theorem 10 of [20] and from Theorem 3.6 of this paper.
Theorem 6.6. Let p be a fixed prime. Suppose that $w(a, 1)$ is p-equivalent to $v(a, 1)$, where $\lambda_{w}(p) \equiv 2(\bmod 4)$ and $p \nmid D$. Then

$$
E_{w}(p)=2, h_{w}(p) \equiv 1 \quad(\bmod 2), \quad \text { and } \quad h_{w}(p) \mid(p-(D / p)) / 2 .
$$

Moreover,

$$
\begin{gathered}
S_{w}(p)=\{0,1,2\}, \quad N_{w}(p)=h_{w}(p)+1=\frac{1}{2} \lambda_{w}(p)+1, \\
B_{w}(0)=p-h_{w}(p)-1, \quad B_{w}(1)=2, \quad \text { and } \quad B_{w}(2)=h_{w}(p)-1 .
\end{gathered}
$$

This follows from Theorem 11 of [20] and from Theorem 3.6 of this paper.
Remark 6.7. It follows from Theorem 3.14 (i) that $v(a, 1)$ is p-equivalent to $u(a, 1)$ if $h_{u}(p)$ is even. This case is treated in Theorem 6.4.

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

Theorem 6.8. Let p be a fixed prime. Suppose that $t(a, 1)$ is defined and $w(a, 1)$ is p-equivalent to $t(a, 1)$, where $p \nmid D$. Then

$$
E_{w}(p)=2, h_{w}(p) \equiv 0 \quad(\bmod 2), \quad \text { and } \quad h_{w}(p) \mid(p-(D / p)) / 2 .
$$

Further,

$$
\begin{aligned}
& S_{w}(p)=\{0,2\}, \quad N_{w}(p)=h_{w}(p)=\lambda_{w}(p) / 2, \\
& B_{w}(0)=p-h_{w}(p), \quad \text { and } \quad B_{w}(2)=h_{w}(p) .
\end{aligned}
$$

This is proved in Theorem 3.8 (b) of [21].
Theorem 6.9. Let p be a fixed prime. Suppose that $w(a, 1)$ is p-regular and that $w(a, 1)$ is not p-equivalent to $u(a, 1), v(a, 1)$, or $t(a, 1)$. Then

$$
\begin{equation*}
h_{w}(p) \leq(p-(D / p)) / 4, \quad h_{w}(p) \mid(p-(D / p)) / 2, \quad \text { and } \quad \lambda_{w}(p) \leq(p-(D / p)) / 2 \tag{6.7}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
S_{w}(p)=\{0,1\}, \quad N_{w}(p)=\lambda_{w}(p), \quad B_{w}(0)=p-\lambda_{w}(p), \quad \text { and } \quad B_{w}(1)=\lambda_{w}(p) . \tag{6.8}
\end{equation*}
$$

Proof. We note that (6.7) follows from Theorems 3.15 (ii), 3.14 (i) and (ii), and Theorem 3.21. Moreover, (6.8) follows from the fact that $A_{w}(d)=0$ or 1 for $0 \leq d \leq p-1$ by Theorem 6.1 (i).

Theorems 6.10-6.14 consider more general recurrences than the recurrences $w(a, 1)$ treated in Theorems 6.2-6.6, 6.8, and 6.9. In these theorems, as contrasted to our previous assumption, we allow the possibility that $p=2$.

Theorem 6.10. Let p be a fixed prime, possibly even. Let the recurrence (w) be either the firstorder recurrence $w\left(a_{1}\right)$ defined by $w_{n+1}=a_{1} w_{1}$, where $p \nmid a_{1}$ or the p-irregular second-order recurrence $w(a, b)$. Then

$$
S_{w}(p)=\{0,1\}, \quad N_{w}(p)=\lambda_{w}(p), \quad B_{w}(0)=p-\lambda_{w}(p), \quad \text { and } \quad B_{w}(1)=\lambda_{w}(p) .
$$

Proof. This follows from the facts that $h_{w}(p)=1$ and $A_{w}(0)=0$ if $w_{0} \not \equiv 0(\bmod p)$.
Theorem 6.11. Let p be a fixed prime, possibly even. Consider the p-regular second-order recurrence $w(a, b)$ with discriminant D such that $p \mid D$. Then

$$
h_{w}(p)=p, \quad S_{w}(p)=\left\{\frac{\lambda_{w}(p)}{p}\right\}, \quad N_{w}(p)=p, \quad \text { and } \quad B_{w}\left(\frac{\lambda_{w}(p)}{p}\right)=p .
$$

This is proved in [1] and [23].
Theorem 6.12. Let p be a fixed prime, possibly even. Let $w\left(a_{1}, \ldots, a_{k}\right)$ be p-equivalent to the k th-order unit sequence $u\left(a_{1}, \ldots, a_{k}\right)$, where $k \geq 2, a_{1}=a_{2}=\cdots=a_{k-1}=0, a_{k}=$ $(-1)^{k+1} M$, and $p \nmid M$. Then

$$
h_{w}(p)=k, \quad M_{u}(p) \equiv M \quad(\bmod p), \quad \text { and } \quad E_{w}(p)=\operatorname{ord}_{p} M=\frac{\lambda_{w}(p)}{k} .
$$

Moreover, the following hold:
(i) If $k=2$ and $M \equiv 1(\bmod p)$, then

$$
\begin{aligned}
N_{w}(p) & =2 \\
S_{w}(p) & =\{1\} \quad \text { if } p=2, \\
S_{w}(p) & =\{0,1\} \quad \text { if } p>2, \\
B_{w}(0) & =p-N_{w}(p), \quad \text { and } \quad B_{w}(1)=2 .
\end{aligned}
$$

THE FIBONACCI QUARTERLY

(ii) If it is not the case that $k=2$ and $M \equiv 1(\bmod p)$, then

$$
\begin{aligned}
& N_{w}(p)=\frac{\lambda_{w}(p)}{k}+1, \\
& S_{w}(p)=\left\{0,1, \frac{(k-1) \lambda_{w}(p)}{k}\right\} \quad \text { if } N_{w}(p)<p, \\
& S_{w}(p)=\left\{1, \frac{(k-1) \lambda_{w}(p)}{k}\right\} \quad \text { if } N_{w}(p)=p, \\
& B_{w}(0)=p-N_{w}(p), \quad B_{w}(1)=\frac{\lambda_{w}(p)}{k}, \quad \text { and } \quad B_{w}\left(\frac{(k-1) \lambda_{w}(p)}{k}\right)=1 .
\end{aligned}
$$

Proof. By Theorem 3.6 (i), generalized to k th-order recurrences, it suffices to consider the case in which $w\left(a_{1}, \ldots, a_{k}\right)$ is the k th-order unit sequence $u\left(a_{1}, \ldots, a_{k}\right)$. By inspection, one sees that $u_{n} \equiv M^{i-1}(\bmod p)$ if $n=k i-1$ for $i \geq 1$ and $u_{n} \equiv 0(\bmod p)$ if $n \not \equiv-1(\bmod k)$. The theorem now follows immediately.
Theorem 6.13. Let p be a fixed prime, possibly even. Let $w\left(a_{1}, \ldots, a_{k}\right)$ be p-equivalent to the k th-order unit sequence $u\left(a_{1}, \ldots, a_{k}\right)$, where $k \geq 2$ and $a_{i}=(-1)^{i}$ for $i \in\{1,2, \ldots, k\}$. Then

$$
h_{w}(p)=k+1, \quad M_{w}(p) \equiv 1 \quad(\bmod p), \quad \text { and } \quad E_{w}(p)=1 .
$$

Moreover, the following hold:
(i) If $p=2$, then

$$
\begin{aligned}
N_{w}(p) & =2, \\
S_{w}(p) & =\{k-1,2\}, \\
B_{w}(2) & =2 \quad \text { if } k=3 \\
B_{w}(k-1) & =B_{w}(2)=1 \quad \text { if } k \neq 3 .
\end{aligned}
$$

(ii) If $p \geq 3$, then

$$
\begin{aligned}
& N_{w}(p)=3, \\
& S_{w}(p)=\{1, k-1\} \quad \text { if } p=3, \\
& S_{w}(p)=\{0,1, k-1\} \quad \text { if } p>3, \\
& B_{w}(0)=p-3 \quad \text { and } \quad B_{w}(1)=3 \quad \text { if } k=2, \\
& B_{w}(0)=p-3, \quad B_{w}(1)=2 \quad \text { and } \quad B_{w}(k-1)=1 \quad \text { if } k \geq 3 .
\end{aligned}
$$

Proof. It suffices to consider the case in which $w\left(a_{1}, \ldots, a_{k}\right)$ is the k th-order unit sequence $u\left(a_{1}, \ldots, a_{k}\right)$. By inspection, one sees that $u\left(a_{1}, \ldots, a_{k}\right)$ is purely periodic with a period of $k+1$ and that $u_{0}=u_{1}=\cdots=u_{k-2}=0, u_{k-1}=1$, and $u_{k}=-1$. The result now follows immediately.
Theorem 6.14. Let p be a fixed prime, possibly even. Let $w\left(a_{1}, \ldots, a_{k}\right)$ be a recurrence such that $k \geq 2, p \nmid a_{k}$, and $\lambda_{w}(p)=p^{k}-1$. Then

$$
\begin{gathered}
h_{w}(p)=\frac{p^{k}-1}{p-1}, \quad E_{w}(p)=p-1, \\
A_{w}(0)=p^{k-1}-1, \quad \text { and } \quad A_{w}(d)=p^{k-1} \quad \text { if } d \not \equiv 0 \quad(\bmod p) .
\end{gathered}
$$

Moreover,

$$
\begin{gathered}
S_{w}(p)=\left\{p^{k-1}-1, p^{k-1}\right\}, \quad N_{w}(p)=p \\
B_{w}\left(p^{k-1}-1\right)=1, \quad \text { and } \quad B_{w}\left(p^{k-1}\right)=p-1 .
\end{gathered}
$$

IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO P

This is proved in [9, p. 449].

Acknowledgement

The authors are indebted to the referee for careful reading and useful suggestions. This paper was supported by RVO 67985840 of the Czech Republic.

References

[1] R. T. Bumby, A distribution property for linear recurrence of the second order, Proc. Amer. Math. Soc., 50 (1975), 101-106.
[2] C. K. Caldwell, Mersenne primes: history, theorems and lists, http://primes.utm.edu/mersenne/.
[3] C. K. Caldwell, The top twenty, Sophie Germain (p), http://primes.utm.edu/top20/page.php?id=2.
[4] C. K. Caldwell, The top twenty, Cunningham chains (2nd kind), http://primes.utm.edu/top20/page.php?id=20.
[5] W. Carlip and L. Somer, Bounds for frequencies of residues of regular second-order recurrences modulo p^{r}, Number Theory in Progress, Vol. 2, (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 691-719.
[6] R. D. Carmichael, On the numerical factors of arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math., 15 (1913), 30-70.
[7] R. D. Carmichael, On sequences of integers defined by recurrence relations, Quart. J. Pure Appl. Math., 48 (1920), 343-372.
[8] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math., 31 (1930), 419-448.
[9] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983.
[10] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-240, 289-321.
[11] H. Niederreiter, A. Schinzel, and L. Somer, Maximal frequencies of elements in second-order linear recurring sequences over a finite field, Elem. Math., 46 (1991), 139-143.
[12] L. Somer, Fibonacci-like groups and periods of Fibonacci-like sequences, The Fibonacci Quarterly, 15.1 (1977), 35-41.
[13] L. Somer, The divisibility properties of primary Lucas recurrences with respect to primes, The Fibonacci Quarterly, 18.4 (1980), 316-334.
[14] L. Somer, Possible periods of primary Fibonacci-like sequences with respect to a fixed odd prime, The Fibonacci Quarterly, 20.4 (1982), 311-333.
[15] L. Somer, Primes having an incomplete system of residues for a class of second-order recurrences, Applications of Fibonacci numbers, A.F. Horadam, A. N. Philippou, and G. E. Bergum (eds.), Kluwer Academic Publ., Dordrecht, 1988, 113-141.
[16] L. Somer, Distribution of residues of certain second-order linear recurrences modulo p, Applications of Fibonacci numbers, Vol. 3, G.E. Bergum, A. N. Philippou, and A. F. Horadam (eds.), Kluwer Academic Publ., Dordrecht, 1990, 311-324.
[17] L. Somer, Distribution of certain second-order linear recurrences modulo p-II, The Fibonacci Quarterly, 29.1 (1991), 72-78.
[18] L. Somer, Periodicity properties of k th order linear recurrences with irreducible characteristic polynomial over a finite field, Finite fields, coding theory and advances in communications and computing, G. L. Mullen and P. J.-S. Shiue (eds.), Marcel Dekker Inc., New York, 1993, 195-207.
[19] L. Somer, Upper bounds for frequencies of elements in second-order recurrences over a finite field, Applications of Fibonacci Numbers, Vol. 5, G. E. Bergum, A. N. Philippou, and A. F. Horadam (eds.), (St. Andrew, 1992), Kluwer Acad. Sci. Publ., Dordrecht, 1993, 527-546.
[20] L. Somer, Distribution of residues of certain second-order linear recurrences modulo $p-I I I$, Applications of Fibonacci numbers, vol. 6, G. E. Bergum, A. N. Philippou, and A. F. Horadam (eds.), Kluwer Academic Publ., Dordrecht, 1996, 451-471.
[21] L. Somer and W. Carlip, Stability of second-order recurrences modulo p^{r}, Int. J. Math. Math. Sci., 23 (2000), 225-241.
[22] L. Somer and M. Křížek, Easy criteria to determine if a prime divides certain second-order recurrences, The Fibonacci Quarterly, 51.1 (2013), 3-12.
[23] W. A. Webb and C. T. Long, Distribution modulo p^{h} of the general linear second order recurrence, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 92-100.

THE FIBONACCI QUARTERLY

MSC2010: 11B39, 11A07, 11A41
Department of Mathematics, Catholic University of America, Washington, D.C. 20064
E-mail address: somer@cua.edu
Institute of Mathematics, Academy of Sciences, Žitná 25, CZ - 11567 Prague 1, Czech Republic
E-mail address: krizek@math.cas.cz

