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Abstract. Let w(a,−1) denote the second-order linear recurrence satisfying the recursion
relation

wn+2 = awn+1 − wn,

where a and the initial terms w0, w1 are all integers. Let p be an odd prime. The restricted
period hw(p) of w(a,−1) modulo p is the least positive integer r such that wn+r ≡ Mwn

(mod p) for all n ≥ 0 and some nonzero residue M modulo p. We distinguish two recurrences,
the Lucas sequence of the first kind u(a,−1) and the Lucas sequence of the second kind
v(a,−1), satisfying the above recursion relation and having initial terms u0 = 0, u1 = 1 and
v0 = 2, v1 = a, respectively. We show that if u(a1,−1) and u(a2,−1) both have the same
restricted period modulo p, or equivalently, the same period modulo p, then u(a1,−1) and
u(a2,−1) have the same distribution of residues modulo p. Similar results are obtained for
Lucas sequences of the second kind.

1. Introduction

Consider the second-order linear recurrence (w) = w(a, b) satisfying the recursion relation

wn+2 = awn+1 − bwn, (1.1)

where the parameters a and b and the initial terms w0 and w1 are all integers. We distinguish
two special recurrences, the Lucas sequence of the first kind (LSFK) u(a, b) and the Lucas
sequence of the second kind (LSSK) v(a, b) with initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a,
respectively. Associated with the linear recurrence w(a, b) is the characteristic polynomial f(x)
defined by

f(x) = x2 − ax+ b (1.2)

with characteristic roots α and β and discriminant D = a2 − 4b = (α − β)2. By the Binet
formulas,

un =
αn − βn

α− β
, vn = αn + βn. (1.3)

Throughout this paper, p will denote an odd prime unless specified otherwise, and ε will
specify an element from {−1, 1}. It was shown in [7, pp. 344–345] that w(a, b) is purely periodic
modulo p if p - b. From here on, we assume that p - b.

The period of w(a, b) modulo p, denoted by λw(p), is the least positive integer m such that
wn+m ≡ wn (mod p) for all n ≥ 0. The restricted period of w(a, b) modulo p, denoted by
hw(p), is the least positive integer r such that wn+r ≡ Mwn (mod p) for all n ≥ 0 and some
fixed nonzero residue M modulo p. Here M = Mw(p) is called the multiplier of w(a, b) modulo
p. Since the LSFK u(a, b) is purely periodic modulo p and has initial terms u0 = 0 and u1 = 1,
it is easily seen that hu(p) is the least positive integer r such that ur ≡ 0 (mod p). It is proved

in [7, pp. 354–355] that hw(p) | λw(p). Let Ew(p) =
λw(p)
hw(p) . Then by [7, pp. 354–355] Ew(p) is

the multiplicative order of the multiplier M modulo p.
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Our main result of this paper will be to prove that if p is a fixed prime and u(a1,−1)
and u′(a2,−1) are two LSFK’s with the same restricted period modulo p, then u(a1,−1) and
u′(a2,−1) have the same distribution of residues modulo p. We will prove a similar result for
the LSSK’s v(a1,−1) and v′(a2,−1).

We now define what it means for the recurrences w(a1, b) and w′(a2, b) with the same
parameter b to have the same distribution of residues modulo p. Let w(a, b) be a recurrence
and p be a fixed prime. Given a residue d modulo p, we let Aw(d) denote the number of times
that d appears in a full period of (w) modulo p. We have the following theorem regarding
upper bounds for Aw(d).

Theorem 1.1. Let p be a fixed prime and consider the recurrence w(a, b). Let d be a fixed

residue modulo p such that 0 ≤ d ≤ p− 1.

(i) Aw(d) ≤ min(2 · ordpb, p), where ordpb denotes the multiplicative order of b modulo p.
(ii) If b = 1 then Aw(d) ≤ 2.
(iii) If b = −1 then Aw ≤ 4.

Proof. Part (i) was proved in Theorem 3 of [11]. Parts (ii) and (iii) follow from part (i). �

We let

Nw(p) = #{d |Aw(d) > 0}. (1.4)

We define the set Sw(p) by

Sw(p) = {i |Aw(d) = i for some d such that 0 ≤ d ≤ p− 1}. (1.5)

Further, if i is a nonnegative integer, we define Bw(i) by

Bw(i) = #{d | 0 ≤ d ≤ p− 1 and Aw(d) = i}. (1.6)

We observe by Theorem 1.1 that

Bw(i) = 0 if i > min(2 · ordpb, p). (1.7)

We say that the linear recurrences w(a1, b) and w′(a2, b) have the same distribution of residues

modulo p if Nw(p) = Nw′(p), Sw(p) = Sw′(p), and Bw(i) = Bw′(i) for all i ≥ 0. Recurrences
that have the same distribution of residues modulo p are also said to be identically distributed

modulo p.
To show that two recurrences w(a1, b) and w′(a2, b) are identically distributed modulo p, it

suffices by (1.7) to show that Bw(i) = Bw′(i) for all i ∈ {0, . . . , `}, where ` = min(2 · ordpb, p).
This follows, since

Nw(p) =
∑̀

i=1

Bw(i) (1.8)

and

Sw(p) = {i |Bw(i) > 0}. (1.9)

It is also of interest that

λw(p) =
∑̀

i=0

iBw(i). (1.10)

Example 1.2. Let p = 17. We show that the LSFK’s u(2,−1) and u′(14,−1) are identically
distributed modulo 17. The first 18 terms of u(2,−1) and u′(14,−1) are

{0, 1, 2, 5, 12, 12, 2, 16, 0, 16, 15, 12, 5, 5, 15, 1, 0, 1}
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and
{0, 1, 14, 10, 1, 7, 14, 16, 0, 16, 3, 7, 16, 10, 3, 1, 0, 1},

respectively. Thus,

hu(17) = hu′(17) = 8, λu(17) = λu′(17) = 16,

Eu(17) = Eu′(17) = 2, and Mu(17) ≡ Mu′(17) = −1 (mod 17).
(1.11)

We observe that

Au(d) = 0 for d ∈ {3, 4, 6, 7, 8, 9, 10, 11, 13, 14},
Au(d) = 2 for d ∈ {0, 1, 7, 10, 14},
Au(d) = 3 for d ∈ {5, 12},

while

Au′(d) = 0 for d ∈ {2, 4, 5, 6, 8, 9, 11, 12, 13, 15},
Au′(d) = 2 for d ∈ {0, 3, 7, 10, 14},
Au′(d) = 3 for d ∈ {1, 16}.

Hence,
Nu(17) = Nu′(17) = 7 and Su(17) = Su′(17) = {0, 2, 3}. (1.12)

Moreover,

Bu(0) = Bu′(0) = 10, Bu(2) = Bu′(2) = 5, Bu(3) = Bu′(3) = 2,

and Bu(i) = Bu′(i) = 0 for i ≥ 0 and i 6∈ {0, 2, 3}. (1.13)

Therefore, u(2,−1) and u′(14,−1) are identically distributed modulo 17.

2. The Main Theorems

Our principal results of this paper are Theorems 2.1 and 2.2.

Theorem 2.1. Let p be a fixed prime. Let u(a1,−1) and u′(a2,−1) be two LSFK’s with

discriminants D1 = a21 + 4 and D2 = a22 + 4, respectively, such that p - D1D2. Suppose

that hu(p) = hu′(p) and (D1/p) = (D2/p), where (Di/p) denotes the Legendre symbol. This

occurs if and only if λu(p) = λu′(p). Then u(a1,−1) and u′(a2,−1) are identically distributed

modulo p.

Theorem 2.2. Let p be a fixed prime. Let v(a1,−1) and v′(a2,−1) be two LSSK’s with

discriminants D1 = a21 + 4 and D2 = a22 + 4, respectively, such that p - D1D2. Suppose that

(D1/p) = (D2/p) and that hv(p) = hv′(p). This occurs if and only if λv(p) = λv′(p). Then

v(a1,−1) and v′(a2,−1) are identically distributed modulo p.

3. Preliminaries

Before proving our main theorems, we will need the following results and definitions.

Definition 3.1. Let p be a fixed prime. The recurrence w(a, b) is said to be p-regular if
∣

∣

∣

∣

w0 w1

w1 w2

∣

∣

∣

∣

= w0w2 − w2
1 6≡ 0 (mod p). (3.1)

Otherwise, the recurrence w(a, b) is called p-irregular.

Theorem 3.2. Suppose that the recurrences w(a, b) and w′(a, b) are both p-regular. Then

λw(p) = λw′(p), hw(p) = hw′(p), Ew(p) = Ew′(p), and Mw(p) ≡ Mu′(p) (mod p).
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This is proved in [5, p. 695].
Consider the LSFK u(a, b) when hu(p) is even and (b/p) = 1. We specify the recurrence

t(a, b) satisfying the recursion relation (1.1) and having initial terms t0 = 1, t1 = b′, where
(b′)2 ≡ b (mod p) and 0 ≤ b′ ≤ (p − 1)/2. The following theorem gives results concerning the
p-regularity of the distinguished recurrences u(a, b), v(a, b), and t(a, b).

Theorem 3.3. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b) with

discriminant D = a2 − 4b. Consider also the recurrence t(a, b) if it is defined modulo p. Then

(i) u(a, b) is p-regular,
(ii) v(a, b) is p-regular if p - D,

(iii) t(a, b) is p-regular whenever it is defined modulo p.

Proof. (i) We note that

u0u2 − u21 = 0 · a− 12 = −1 6≡ 0 (mod p).

Thus, u(a, b) is p-regular by (3.1).
(ii) We observe that

v0v2 − v21 = 2(a2 − 2b)− a2 = a2 − 4b = D.

Thus, v(a, b) is p-regular if p - D.
Part (iii) is proven in [22, p. 7]. �

Theorem 3.4. Let p be a fixed prime. Suppose that w(a, b) is a p-irregular recurrence.

(i) If w0 ≡ 0 (mod p), then wn ≡ 0 (mod p) for n ≥ 0.
(ii) If w0 6≡ 0 (mod p), then

wn ≡
(

w1

w0

)n

w0 (mod p) for n ≥ 0.

(iii) hw(p) = 1.

Proof. Parts (i) and (ii) are proved in [5, p. 695]. Part (iii) follows from parts (i) and (ii). �

Definition 3.5. Let p be a fixed prime. The recurrences w(a, b) and w′(a, b) are p-equivalent
if w′(a, b) is a nonzero multiple of a translation of w(a, b) modulo p, that is, there exists a

nonzero residue c and a fixed integer r such that

w′

n ≡ cwn+r (mod p) for all n ≥ 0. (3.2)

It is clear that p-equivalence is indeed an equivalence relation on the set of recurrences
w(a, b) modulo p, since c is invertible modulo p.

Theorem 3.6. Suppose that w(a, b) and w′(a, b) are p-equivalent recurrences such that w′

n ≡
cwn+r (mod p) for all n ≥ 0, where c is a fixed nonzero residue modulo p and r is a fixed

integer. Then

(i) w(a, b) and w′(a, b) are either both p-regular or both p-irregular,
(ii) w(a, b) and w′(a, b) are identically distributed modulo p.

Proof. Part (i) is proven in [5, p. 694]. Part (ii) follows from the fact that

Aw′(cd) = Aw(d)

for d ∈ {0, . . . , p− 1}. �
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Theorem 3.7. Let w(a, b) be a p-regular recurrence. Let e be a fixed integer such that 1 ≤
e ≤ hw(p) − 1. Then the ratios

wn+e

wn
are distinct modulo p for 0 ≤ n ≤ hw(p) − 1, where we

denote the ratio
wn+e

wn
(mod p) by ∞ if wn ≡ 0 (mod p).

This is proved in Lemma 2 of [19].

Lemma 3.8. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b). Con-

sider also the recurrence t(a, b) if it is defined. Suppose further that in the case of the LSSK

v(a, b) that p - D = a2+4b. Then u(a, b), v(a, b), and t(a, b) are all p-regular and have common

restricted period h and multiplier M modulo p. Moreover, the following hold:

(i) uh−n ≡ −Mun/b
n (mod p) for 0 ≤ n ≤ h.

(ii) vh−n ≡ Mvn/b
n (mod p) for 0 ≤ n ≤ h.

(iii) th+1−n ≡ Mb′tn/b
n (mod p) for 0 ≤ n ≤ h+ 1, where (b′)2 ≡ b (mod p) and 0 ≤ b′ ≤

(p − 1)/2.

This is proved in Lemma 5 of [19]. The proof is established by induction and use of the
recursion relation (1.1) defining u(a, b), v(a, b), and t(a, b).

Lemma 3.9. Let p be a fixed prime. Let w(a,−1) be either the LSFK u(a,−1) or the LSSK

v(a,−1), and let h = hw(p), where p - D. If h is even, then

wn+2r 6≡ εwn (mod p) (3.3)

for any integers n and r such that 0 ≤ n < n+2r ≤ h/2 or h/2 ≤ n < n+2r ≤ h. Moreover,

if h is odd, then

wn+2r 6≡ εwn (mod p) (3.4)

for any integers n and r such that 0 ≤ n < n+ 2r ≤ h− 1.

Proof. Suppose that h is even and

wn+2r ≡ εwn (mod p) (3.5)

for some integers n and r such that 0 ≤ n < n + 2r ≤ h/2 or h/2 ≤ n < n + 2r ≤ h. Then
wn 6≡ 0 (mod p), since wn+2r can then be congruent to 0 modulo p only if 2r ≡ 0 (mod h) by
the definition of h. It then follows from Lemma 3.8 (i) and (ii) that

wn+2r

wn

wh−n

wh−n−2r
≡ (−1)2r ≡ 1 (mod p),

which implies that
wn+2r

wn
≡ wh−n

wh−n−2r
≡ ε (mod p), (3.6)

where n 6= h − n − 2r, 0 ≤ n < h, 0 ≤ h − n − 2r < h, and 2 ≤ 2r ≤ h/2. However, (3.6)
contradicts Theorem 3.7. Thus, (3.3) holds.

Now suppose that h is odd and

wn+2r ≡ εwn (mod p) (3.7)

for some n and r such that 0 ≤ n < n + 2r ≤ h − 1. By the argument given above, w 6≡ 0
(mod p). It now follows from Lemma 3.8 (i) and (ii) that

wn+2r

wn

wh−n

wh−n−2r
≡ (−1)2r ≡ 1 (mod p),

where 0 ≤ n ≤ h− 2, 1 ≤ h− n− 2r ≤ h− 2, and 2 ≤ 2r ≤ h− 1. Hence,
wn+2r

wn
≡ wh−n

wh−n−2r
≡ ε (mod p). (3.8)
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By Theorem 3.7, we must have that

n = h− n− 2r,

from which we derive that
2n = h− 2r,

which is a contradiction, since h− 2r is odd. Thus, (3.4) is satisfied. �

We note that Lemma 3.9 follows from Lemmas 2 and 5 of [19], Lemma 7 (i) and (ii) of [15],
and Lemma 7 of [20].

Proposition 3.10. Consider the LSFK u(a, b) and the LSSK v(a, b) with discriminant D =
a2 − 4b 6= 0. Let p be a fixed prime and let h = hu(p).

(i) If m | n, then um | un.
(ii) u2n = unvn.
(iii) v2n −Du2n = 4bn.
(iv) If h is even, then vh/2 ≡ 0 (mod p).

Proof. Parts (i)–(iii) follow from the Binet formulas (1.3). We now establish part (iv). Suppose
that h is even. Then h is the least positive integer such that un ≡ 0 (mod p). Hence, by part
(ii),

uh = uh/2vh/2 ≡ 0 (mod p),

where uh/2 6≡ 0 (mod p). Therefore, vh/2 ≡ 0 (mod p). �

Theorem 3.11. Let k be a fixed positive integer. Consider the LSFK u(a, b) and LSSK v(a, b),
where b 6= 0, with characteristic roots α and β and discriminant D = a2 − 4b 6= 0. Suppose

that uk(a, b) 6= 0. Then
{

ukn(a, b)

uk(a, b)

}

∞

n=0

is a LSFK u′(a′, b′) and {vkn(a, b)}∞n=0 is a LSSK v′(a′, b′), where u′(a′, b′) and v′(a′, b′) have

characteristic roots αk and βk, parameters a′ = vk(a, b) and b′ = bk, and discriminant D′ =
Du2k(a, b).

Proof. We note by the Binet formula (1.3) that

ukn(a, b)

uk(a, b)
=

(αkn − βkn)/(α − β)

(αk − βk)/(α − β)
=

(αk)n − (βk)n

αk − βk
(3.9)

and
vkn(a, b) = αkn + βkn = (αk)n + (βk)n. (3.10)

Thus by (3.9) and (3.10)
{

ukn(a, b)

uk(a, b)

}

∞

n=0

is a LSFK u′(a′, b′) and {vkn(a, b)}∞n=0 is a LSSK v′(a′, b′), where u′(a′, b′) and v′(a′, b′) both
have characteristic roots. Moreover, a′ = αk + βk = vk(a, b) and b′ = αkβk = (αβ)k = bk.
Furthermore, by Proposition 3.10 (iii),

D′ = (a′)2 − 4b′ = v2k(a, b)− 4bk = Du2k(a, b).

�

A similar proof of Theorem 3.11 is given in [10, pp. 189–190] and [8, p. 437].

Lemma 3.12. Consider the LSFK u(a, b) and the LSSK v(a, b). Then
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(i) u′n(−a, b) = (−1)n+1un(a, b) for n ≥ 0,
(ii) v′n(−a, b) = (−1)nvn(a, b) for n ≥ 0.

Proof. Parts (i) and (ii) follow from the Binet formulas (1.3). �

Lemma 3.13. Let p be a fixed prime and let w(a, b) be a p-regular recurrence. Let M = Mw(p).
Then

Aw(d) = Aw(M
jd) for 1 ≤ j ≤ Ew(p)− 1.

This follows from the proof of Lemma 10 of [16] and Lemma 13 of [19].

Theorem 3.14. Let p be a fixed prime. Consider the recurrences u(a, b), v(a, b), and t(a, b).
Let h = hu(p). Then

(i) v(a, b) is p-equivalent to u(a, b) if and only if h is even.

(ii) t(a, b) is not p-equivalent to u(a, b) when t(a, b) is defined.

Proof. We prove parts (i) and (ii) together. By Proposition 3.10 (iv), vh/2 ≡ 0 (mod p) when
h is even. Then

vh/2 ≡ vh/2+1 · u0 ≡ vh/2+1 · 0 ≡ 0 (mod p)

and
vh/2+1 ≡ vh/2+1 · u1 ≡ vh/2+1 · 1 ≡ vh/2+1 (mod p).

It now follows by the recursion relation (1.1) defining both u(a, b) and v(a, b) that v(a, b) is
p-equivalent to u(a, b) when h is even. It is proved in Lemma 6 of [19] that v(a, b) is not
p-equivalent to u(a, b) when h is odd and t(a, b) is not p-equivalent to u(a, b) when t(a, b) is
defined. �

Theorem 3.15. Let p be a fixed prime. Consider the p-regular recurrence w(a, b). Let h =
hw(p) and λ = λw(p). Then

(i) h | p− (D/p), where (D/p) = 0 if p | D.

(ii) If (D/p) = 0, then h = p.
(iii) If p - D, then h | (p− (D/p))/2 if and only if (b/p) = 1.
(iv) If w(a, b) = u(a, b), then un ≡ 0 (mod p) if and only if h | n.
(v) Let h1 be the restricted period modulo p of the LSFK u(a, b) and h2 be the restricted

period modulo p of the LSFK u′(−a, b). Then h1 = h2.
(vi) If (D/p) = 1, then λ | p− 1.

Proof. We first note that by Theorem 3.2 and Theorem 3.3 (i), hw(p) = hu(p) and λw(p) =
λu(p), since both w(a, b) and u(a, b) are p-regular. Parts (i) and (vi) are proved in [6, pp. 44–
45] and [10, pp. 290, 296, 297]. Parts (ii) and (iv) are proved in [8, pp. 423–424]. Part (iii) is
proved in [8, p. 441]. Part (v) follows from part (iv) and Lemma 3.12 (i). �

Theorem 3.16. Let w(a,−1) be a p-regular recurrence with discriminant D. Then

(i) Ew(p) = 1, 2, or 4.
(ii) Ew(p) = 1 if and only if hw(p) ≡ 2 (mod 4). Moreover, if Ew(p) = 1, then (D/p) = 1.
(iii) Ew(p) = 2 if and only if hw(p) ≡ 0 (mod 4). Moreover, if Ew(p) = 2, then (D/p) =

(−1/p).
(iv) Ew(p) = 4 if and only if hw(p) is odd. Moreover, if Ew(p) = 4 then p ≡ 1 (mod 4).
(v) If p ≡ 3 (mod 4) and (D/p) = 1, then hw(p) ≡ 2 (mod 4) and Ew(p) = 1.
(vi) If p ≡ 3 (mod 4) and (D/p) = −1, then hw(p) ≡ 0 (mod 4) and Ew(p) = 2.
(vii) If p ≡ 1 (mod 4) and (D/p) = −1, then hw(p) is odd and Ew(p) = 4.
(viii) If (D/p) = −1, then λw(p) | 2(p + 1).
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Proof. By Theorem 3.3 (i), u(a, b) is p-regular. It now follows from Theorem 3.2 that hw(p) =
hu(p) and λw(p) = λu(p). Parts (i)–(vii) now follow from Lemma 3 and Theorem 13 of [13].

We now establish part (viii). First suppose that (D/p) = −1 and p ≡ 3 (mod 4). Then
Ew(p) = 2 by part (vi). By Theorem 3.15 (i), hw(p) | p+ 1. Thus, λw(p) | 2(p + 1).

Finally, suppose that (D/p) = −1 and p ≡ 1 (mod 4). Then Ew(p) = 4 by part (vii). More-
over, (−1/p) = 1. It thus follows from Theorem 3.15 (iii) that hw(p) | (p+1)/2. Consequently,
λw(p) | 2(p + 1). �

Theorem 3.17. Let w(a, 1) be a p-regular recurrence with discriminant D. Then

(i) Ew(p) = 1 or 2.
(ii) If λw(p) is odd, then hw(p) is odd and Ew(p) = 1.
(iii) If λw(p) ≡ 2 (mod 4), then hw(p) is odd and Ew(p) = 2.
(iv) If λw(p) ≡ 0 (mod 4), then hw(p) is even and Ew(p) = 2.

(v) If
(

2−a
p

)

= −1 and
(

2+a
p

)

= 1, then λw(p) is odd.

(vi) If
(

2−a
p

)

= 1 and
(

2+a
p

)

= −1, then λw(p) ≡ 2 (mod 4).

(vii) If
(

2−a
p

)

=
(

2+a
p

)

= −1, then λw(p) ≡ 0 (mod 4).

(viii) hw(p) | (p − (D/p))/2 and λw(p) | p− (D/p).

This follows from Theorem 3.2, Theorem 3.3 (i), and Theorem 3.15 (iii) of this paper and
from Theorem 16 of [13].

Lemma 3.18. Let p be a fixed prime and consider the LSFK u(a,−1) and LSSK v(a,−1).
Then

(i) u(a,−1) and u′(−a,−1) are identically distributed modulo p,
(ii) v(a,−1) and v′(−a,−1) are identically distributed modulo p.

Proof. (i) We note by Theorem 3.3 (i) that both u(a, b) and u′(a, b) are p-regular. By Theo-
rem 3.15 (v), hu(p) = hu′(p). It follows from Theorem 3.16 that Eu(p) = Eu′(p), and hence,
λu(p) = λu′(p). By Lemma 3.12 (i),

u′2i+1(−a,−1) = u2i+1(a,−1) (3.11)

and
u′2i(−a,−1) = −u2i(a,−1) (3.12)

for i ≥ 0.
Suppose that hu(p) ≡ 2 (mod 4). Then by Theorem 3.16 (ii), Eu(p) = 1, and thus Mu(p) ≡

1 (mod p). Moreover by Lemma 3.8 (i),

u2i+1 ≡ uhu−2i−1 (mod p) (3.13)

and
u2i ≡ −uhu−2i (mod p) (3.14)

for 0 ≤ i ≤ (hu−2)/4. It now follows from (3.11)–(3.14) that Au(d) = Au′(d) for 0 ≤ d ≤ p−1.
Hence, u(a,−1) and u′(−a,−1) are identically distributed modulo p.

Now suppose that hu(p) is odd or divisible by 4. Since M2
u(p) ≡ −1 (mod p) if hu(p) is

odd, and Mu(p) ≡ −1 (mod p) if hu(p) is divisible by 4, it follows from Lemma 3.13 that

Au(d) = Au(−d) and Au′(d) = Au′(−d) (3.15)

for 0 ≤ d ≤ p− 1. By (3.11) and (3.12),

Au(d) +Au(−d) = Au′(d) +Au′(−d) (3.16)
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for 0 ≤ d ≤ p − 1. Therefore, from (3.15) and (3.16), we see that Au(d) = Au′(d) for
0 ≤ d ≤ p− 1. Thus, u(a,−1) and u′(−a,−1) are identically distributed modulo p.

(ii) By Theorem 3.6 and Theorem 3.14 (i), u(a,−1) and v(a,−1) are identically distributed
modulo p, and u′(−a,−1) and v′(−a,−1) are also identically distributed modulo p if hu(p)
is even and p - D. Thus, by part (i), v(a,−1) and v′(−a,−1) have the same distribution of
residues modulo p if hu(p) is even and p - D.

Now suppose that p | D. Then by the proof of Theorem 3.3 (ii) both v(a,−1) and v′(−a,−1)
are p-irregular if p | D. By inspection

v0 ≡ 2, v1 ≡ a, v2 ≡ −2, v3 ≡ −a, v4 ≡ 2, v5 ≡ a, . . . (mod p)

and

v′0 ≡ 2, v′1 ≡ −a, v′2 ≡ −2, v′3 ≡ a, v′4 ≡ 2, v′5 ≡ −a, . . . (mod p),

where a2 ≡ −4 (mod p), since p | D = a2 + 4. Hence, λv(p) = λv′(p) = 4, and v(a,−1) and
v′(−a,−1) are identically distributed modulo p.

Further, suppose that p - D and hu(p) is odd. Then both v(a,−1) and v′(−a,−1) are
p-regular and hv(p) = hv′(p) = hu(p) is odd. Moreover, Ev(p) = Ev′(p) = Eu(p) = 4 and
M2

v (p) ≡ M2
v′(p) ≡ −1 (mod p). Further, by Lemma 3.12 (ii),

v′2i+1(−a,−1) = −v2i+1(a,−1) (3.17)

and

v′2i(−a,−1) = v2i(a,−1) (3.18)

for i ≥ 0. Since M2
v ≡ −1 (mod p), it follows from Lemma 3.13 that

Av(d) = Av(−d) and Av′(d) = Av′(−d) (3.19)

for 0 ≤ d ≤ p− 1. By (3.17) and (3.18),

Av(d) +Av(−d) = Av′(d) +Av′(−d) (3.20)

for 0 ≤ d ≤ p−1. Thus, from (3.19) and (3.20), we find that Av(d) = Av′(d) for 0 ≤ d ≤ p−1.
Consequently, v(a,−1) and v′(−a,−1) are identically distributed modulo p. �

Theorem 3.19. Let p be a fixed prime.

(i) If p ≡ 1 (mod 4), then there exists a LSFK u(a,−1) such that (D/p) = 1 and hu(p) =
m if and only if m | (p− 1)/2 and m 6= 1.

(ii) If p ≡ 3 (mod 4), then there exists a LSFK u(a,−1) such that (D/p) = 1 and hu(p) =
m if and only if m | p− 1 and m - (p− 1)/2.

(iii) If p ≡ 1 (mod 4), then there exists a LSFK u(a,−1) such that (D/p) = −1 and

hu(p) = m if and only if m | (p+ 1)/2 and m 6= 1.
(iv) If p ≡ 3 (mod 4), then there exists a LSFK u(a,−1) such that (D/p) = −1 and

hu(p) = m if and only if m | p+ 1 and m - (p+ 1)/2.

Proof. Parts (i) and (ii) follow from Theorem 12 of [14]. Parts (iii) and (iv) follow from
Theorems 3 and 4 of [18]. �

Theorem 3.20. Let p be a fixed prime such that either p = 4n + 1 or p = 4n + 3. Consider

all the possible distinct discriminants D ≡ a2 + 4 modulo p of recurrences w(a,−1), where

0 ≤ a ≤ p− 1.

(i) There exist exactly n+1 distinct discriminants D modulo p such that either (D/p) = 0
or (D/p) = 1. There exists exactly one discriminant D ≡ a2 + 4 (mod p) such that

(D/p) = 0 if p ≡ 1 (mod 4) and no such discriminant if p ≡ 3 (mod 4).
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(ii) There exist exactly (p+1)/2− (n+1) distinct discriminants D ≡ a2+4 (mod p) such
that (D/p) = −1.

Proof. (i) To find all a ∈ {0, 1, . . . , p− 1} such that
(

a2 + 4

p

)

= 0 or 1,

all one needs to do is find all solutions to the congruence

x2 − a2 = (x+ a)(x− a) ≡ 4 (mod p). (3.21)

There are p− 1 sets of solutions for x and a generated by

x+ a ≡ k, x− a ≡ 4/k (mod p), 1 ≤ k ≤ p− 1. (3.22)

In general, four sets of solutions lead to the same x2 and a2 modulo p for a fixed k:

x+ a ≡ k, x− a ≡ 4/k; x+ a ≡ 4/k, x− a ≡ k;

x+ a ≡ −k, x− a ≡ −4/k; x+ a ≡ −4/k, x− a ≡ −k (mod p).

Since k 6≡ 0 (mod p), we find that k 6≡ −k and 4/k 6≡ −4/k (mod p). However, 4/k ≡ k
if and only if k ≡ ±2 (mod p). Also, −4/k ≡ k (mod p) if and only if k ≡ ±

√
−4 (mod p).

Combining these facts with the fact that p ≡ 1 (mod 4) if and only if both ±4 are quadratic
residues modulo p, one finds that the number of solutions of the congruence x2 ≡ a2 + 4
(mod 4) is n+ 1 if p is equal to either 4n+ 1 or 4n+ 3. By the above discussion, we see that
there exists a discriminant D ≡ a2 +4 such that D ≡ 0 (mod p) if and only if p ≡ 1 (mod 4).
Moreover, this discriminant is unique modulo p if it exists.

Part (ii) follows from the fact that there exist exactly (p + 1)/2 distinct values of a2 + 4
modulo p, which are generated by those a’s for which 0 ≤ a ≤ (p− 1)/2. �

Theorem 3.20 is essentially proved in [12, p. 39].

Theorem 3.21. Let p be a fixed prime. Let a and b be fixed integers such that p - b. Define the

relation p-equivalence on the set of all p-regular recurrences w(a, b) modulo p. Let h = hu(a, b)
and D = a2 − 4b. Then the number of equivalence classes is equal to

p− (D/p)

h
.

This is proved in Theorem 2.14 of [5].

4. Proofs of the Main Theorems

Proof of Theorem 2.1. Let h1 = hu(p), h2 = hu′(p), λ1 = λu(p), and λ2 = λu′(p). By
hypothesis, (D1/p) = (D2/p) and

h1 = h2. (4.1)

By Theorem 3.16 (i)–(iv), the equality (4.1) holds if and only if Eu(p) = Eu′(p) and λ1 = λ2.
We will show that u(a1,−1) and u′(a2,−1) are identically distributed modulo p. We divide
the proof into four cases depending on whether p ≡ 1 or 3 modulo 4 and whether (D1/p) =
(D2/p) = 1 or (D1/p) = (D2/p) = −1.

Case 1: p ≡ 3 (mod 4) and (D1/p) = (D2/p) = −1.

Proof of Theorem 2.1 for Case 1. By Theorem 3.15 (iii) and Theorem 3.16 (vi),

h1 = h2 ≡ 0 (mod 4), h1 | p+ 1, h1 - (p+ 1)/2, Eu(p) = Eu′(p) = 2,

NOVEMBER 2015 299



THE FIBONACCI QUARTERLY

and

λ1 = λ2 = 2h1. (4.2)

By Theorem 3.19 (iv), there exists a LSFK u′′(a3,−1) with discriminant D3 such that
(D3/p) = −1 and h3 = hu′′(p) has a maximal value of p + 1. Let λ3 = λu′′(p). Then by
Theorem 3.16 (vi),

λ3 = 2h3 = 2(p + 1).

By Theorem 3.20 (ii), there exist exactly (p + 1)/4 distinct discriminants a2 + 4 of LSFK’s

u(a,−1) modulo p for which
(

a2+4
p

)

= −1.

Now consider the LSSK v′′(a3,−1). Since p - D3, v
′′(a3,−1) is p-regular by Theorem 3.3

(ii), and thus hv′′(p) = h3. By (3.3), if i and j are odd integers such that 0 ≤ i < j ≤ h3/2 =
(p + 1)/2, then

v′′i (a3,−1) 6≡ ±v′′j (a3,−1) (mod p). (4.3)

Making note of Theorem 3.11, we now consider all LSFK’s

û(v′′2m−1(a3,−1), (−1)2m−1) = û(v′′2m−1(a3,−1),−1) =

{

u′′(2m−1)n(a3,−1)

u′′2m−1(a3,−1)

}

∞

n=0

, (4.4)

where 1 ≤ m ≤ (p + 1)/4. Since 0 ≤ 2m − 1 ≤ (p − 1)/2, we see by Theorem 3.15 (iv)
that u′′2m−1(a3,−1) 6≡ 0 (mod p). It now follows from (4.3) and Proposition 3.10 (iii) that
the (p+ 1)/4 LSFK’s in (4.4) all have distinct discriminants which are quadratic nonresidues
modulo p, since

(v′′2m−1(a3,−1))2 + 4 = D3(u
′′

2m−1(a3,−1))2. (4.5)

Thus, there exist some ε1, ε2 such that ε1, ε2 ∈ {−1, 1} and both û(ε1a1,−1) and ũ(ε2a2,−1)
appear among the (p+ 1)/4 LSFK’s in (4.4) when reduced modulo p. Let

r =
λ3

λ1
.

It follows from (4.2) that r is a positive odd integer. We further see from (4.4) that

û(ε1a1,−1) =

{

u′′kn(a3,−1)

u′′k(a3,−1)

}

∞

n=0

(4.6)

and

ũ(ε2a2,−1) =

{

u′′`n(a3,−1)

u′′` (a3,−1)

}

∞

n=0

(4.7)

for all n ≥ 0 and some odd integers k and ` such that k, ` ∈ {1, . . . , (p − 1)/2} and

gcd(k, λ3) = gcd(`, λ3) = r. (4.8)

We note by (4.8) that the sets

{kn}λ1

n=1 and {`n}λ1

n=1 (4.9)

contain the same sets of residues modulo λ3. Since k, ` ∈ {1, . . . , (p−1)/2} and h3 = p+1, we
see by Theorem 3.15 (iv) that both u′′k(a3,−1) and u′′` (a3,−1) are invertible modulo p. It now
follows from (4.6), (4.7), and (4.9) that û(ε1a1,−1) and ũ(ε2a2,−1) are identically distributed
modulo p.

The result now follows upon noting by Lemma 3.18 (i) that u(a,−1) and u(−a,−1) are
identically distributed modulo p for any integer a.

Case 2: p ≡ 3 (mod 4) and (D1/p) = (D2/p) = 1.
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Proof of Theorem 2.1 for Case 2. By Theorem 3.15 (iii) and Theorem 3.16 (v),

h1 = h2 ≡ 2 (mod 4), h1 | p− 1, h1 - (p− 1)/2, Eu(p) = Eu′(p) = 1,

and

λ1 = λ2 = h1.

By Theorem 3.19 (ii), there exists a LSFK u′′(a3,−1) with discriminant D3 such that
(D3/p) = 1 and h3 = hu′′(p) has a maximal value of p − 1. By Theorem 3.20 (i), there
exist exactly (p + 1)/4 distinct discriminants a2 + 4 of LSFK’s u(a,−1) modulo p for which
(

a2+4
p

)

= 1. We further note that by (3.3), if i and j are odd integers such that 0 ≤ i < j ≤
h3/2 = (p − 1)/2, then

v′′i (a3,−1) 6≡ ±v′′j (a3,−1) (mod p).

Moreover, there are exactly (p + 1)/4 odd integers m such that 0 ≤ m ≤ (p − 1)/2. The rest
of the proof is similar to that of Case 1.

Case 3: p ≡ 1 (mod 4) and (D1/p) = (D2/p) = −1.

Proof of Theorem 2.1 for Case 3. By Theorem 3.15 (iii) and Theorem 3.16 (vii),

h1 = h2 ≡ 1 (mod 2), h1 | (p+ 1)/2, h1 > 1, Eu(p) = Eu′(p) = 4,

and

λ1 = λ2 = 4h.

By Theorem 3.19 (iii), there exists a LSFK u′′(a3,−1) with discriminant D3 such that
(D3/p) = −1 and h3 = hu′′(p) has a maximal value of (p + 1)/2. By Theorem 3.20 (ii),
there exist exactly (p − 1)/4 distinct discriminants a2 + 4 of LSFK’s u(a,−1) modulo p for

which
(

a2+4
p

)

= −1. We further note that by (3.4), if i and j are odd integers such that

0 ≤ i < j < h3 = (p+ 1)/2, then

v′′i (a3,−1) 6≡ ±v′′j (a3,−1) (mod p).

Moreover, there are exactly (p − 1)/4 odd integers m such that 1 ≤ m < (p + 1)/2. The
remainder of the proof is similar to that of Case 1.

Case 4: p ≡ 1 (mod 4) and (D1/p) = (D2/p) = 1.

Proof of Theorem 2.1 for Case 4. Let p − 1 = 2γm, where γ ≥ 2 and m is odd. By Theo-
rem 3.15 (iii),

h1 = h2, h1 | (p− 1)/2 = 2γ−1m, and h1 > 1. (4.10)

By Theorem 3.20 (i), there exist exactly (p − 1)/4 = 2γ−2m distinct discriminants a2 + 4 of

LSFK’s u(a,−1) modulo p for which
(

a2+4
p

)

= 1.

Let 0 ≤ i ≤ γ−1. By Theorem 3.19 (i), if it is not the case that i = 0 and m = 1, then there
exists a LSFK u′′(a3,−1) with discriminant D3 such that (D3/p) = 1 and h3 = hu′′(p) = 2im.
Let λ3 = λu′′(p). First suppose that 2 ≤ i ≤ γ − 1. Consider the LSSK v′′(a3,−1). Since
p - D3, v

′′(a3,−1) is p-regular and thus hv′′(p) = h3. Since h3 is even, it follows from (3.3)
that if k and ` are odd integers such that 0 ≤ k < ` ≤ h3/2 = 2i−1m, then

v′′k(a3,−1) 6≡ ±v′′` (a3,−1) (mod p). (4.11)

Taking note of Theorem 3.11, we consider all LSFK’s

û(v′′2j−1(a3,−1), (−1)2j−1) = û(v′′2j−1(a3,−1),−1) =

{

u′′(2j−1)n(a3,−1)

u′′2j−1(a3,−1)

}

∞

n=0

, (4.12)
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where 1 ≤ j ≤ 2i−2m. Since 0 ≤ 2j − 1 ≤ 2i−1m, we see by Theorem 3.15 (iv) that
u′′2j−1(a3,−1) 6≡ 0 (mod p). It now follows from (4.11) and (4.5) that the 2i−2m LSFK’s

in (4.12) all have distinct discriminants which are nonzero quadratic residues modulo p.
Suppose that k is an odd integer such that 1 ≤ k ≤ 2i−1m. Suppose further that gcd(k, λ3) =

r. Since k is odd, then gcd(k, λ3) = r. It now follows that the sets {kn}∞n=0 and {rc}λ3/r
c=1 have

exactly the same elements modulo p. Since u′′k(a3,−1) is invertible modulo p, it follows from
(4.12) that the period of û(v′′k(a3,−1),−1) modulo p is equal to λ3/r = λ4. Then ν2(λ4) =
ν2(λ3), where ν2(n) = c if 2c | n, but 2c+1 - n. Let h4 denote the restricted period of
û(v′′k(a3,−1),−1) modulo p. Since i ≥ 2, it follows from Theorem 3.16 (iii) that λ4 = 2h4 and
λ3 = 2h3. Thus, ν2(h4) = ν2(h3) = i. We now note that in (4.12) we have generated 2i−2m
LSFK’s u(a,−1) with distinct discriminants a2 +4 and distinct restricted periods h modulo p

such that
(

a2+4
p

)

= 1 and ν2(h) = ν2(h3) = i ≥ 2.

We next suppose that i = 1 and that h3 is thus equal to 2m. Then h3 = λ3 by Theorem 3.16
(ii). Moreover, by (3.3), we see that (4.11) holds if k and ` are odd integers such that 0 ≤
k < ` ≤ h3/2 = m. Now consider the LSFK’s in (4.12), where we now take j to satisfy
1 ≤ j ≤ (m + 1)/2. Then 1 ≤ 2j − 1 ≤ m. It now follows from Theorem 3.15 (iv) that
u′′2j−1(a3,−1) 6≡ 0 (mod p) for 1 ≤ 2j − 1 ≤ m. By our argument above we can generate

(m+1)/2 LSFK’s u(a,−1) with distinct discriminants a2+4 and distinct discriminants a2+4

and distinct restricted periods h modulo p such that
(

a2+4
p

)

= 1 and ν2(h) = ν2(h3) = 1.

We finally suppose that i = 0 and that h3 is consequently equal to m. Then λ3 = 4h3 by
Theorem 3.16 (iv). Furthermore, by (3.4) we find that (4.11) holds if k and ` are odd integers
such that 0 ≤ k < ` ≤ h3 − 1 = m− 1. We now consider the LSFK’s in (4.12), where we take
j to satisfy 1 ≤ j ≤ (m− 1)/2. Then 1 ≤ 2j − 1 ≤ m− 2. By Theorem 3.15 (iv), we see that
u′′2j−1(a3,−1) 6≡ 0 (mod p) for 1 ≤ 2j − 1 ≤ m− 2. By our argument above, we can construct

(m − 1)/2 LSFK’s u(a,−1) with distinct discriminants a2 + 4 and distinct restricted periods

h modulo p such that
(

a2+4
p

)

= 1 and ν2(h) = ν2(h3) = 0.

Letting i vary from 0 to γ − 1, we see from our above discussion that we have generated
exactly

(

m− 1

2
+

m+ 1

2

)

+

γ−1
∑

i=2

2i−2m = m+m(2γ−2 − 1) = 2γ−2m

LSFK’s u(a,−1) having distinct discriminants D modulo p such that (D/p) = 1. Since
there are exactly 2γ−2m such LSFK’s u(a,−1) modulo p by our above discussion, it follows
that ũ(ε1a1,−1) and u(ε2a2,−1) appear among the LSFK’s we have constructed above when
reduced modulo p, where ε1 and ε2 are some elements of {−1, 1}. The rest of the proof is
similar to the proof of Case 1.

This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Since p - D1D2, both v(a1,−1) and v′(a2,−1) are p-regular by Theorem
3.3 (ii). Consider the LSFK’s u(a1,−1) and u′(a2,−1). Then by Theorems 3.2 and 3.3 (ii),

hu(p) = hv(p) and hu′(p) = hv′(p). (4.13)

By hypothesis, hv(p) = hv′(p). Suppose that hv(p) and hv′(p) are both even. Then by Theo-
rem 3.14 (i), v(a1,−1) is p-equivalent to u(a1,−1) and v′(a2,−1) is p-equivalent to u′(a2,−1).
By Theorem 3.6 (ii), v(a1,−1) and u(a1,−1) are identically distributed modulo p, while
v′(a2,−1) and u′(a2,−1) are also identically distributed modulo p. By Theorem 2.1, both
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u(a1,−1) and u′(a2,−1) are identically distributed modulo p. Thus, v(a1,−1) and v′(a2,−1)
are identically distributed modulo p.

It thus suffices to suppose that hv(p) = hv′(p) is odd. We consider two cases in which hv(p)
is odd and (D1/p) = −1 or 1. We note that by Theorem 3.16 (iv), it then follows that p ≡ 1
(mod 4). Moreover, by Theorem 3.16 (vii), if p ≡ 1 (mod 4) and (D1/p) = −1, then hv(p) is
odd. Our proof will then complete once we prove Theorem 2.2 for the following two cases. In
the first case p ≡ 1 (mod 4) and (D1/p) = (D2/p) = −1. In the second case, p ≡ 1 (mod 4),
(D1/p) = (D2/p) = 1, and hv(p) is odd. We let h1 = hv(p), h2 = hv′(p), λ1 = λv(p), and
λ2 = λv′(p).

Case 1: p ≡ 1 (mod 4) and (D1/p) = (D2/p) = −1.

Proof of Theorem 2.2 for Case 1. By Theorem 3.15 (iii) and Theorem 3.16 (vii),

h1 = h2 ≡ 1 (mod 2), h1 | (p + 1)/2, h1 > 1, Ev(p) = Ev′(p) = 4, and λ1 = λ2 = 4h1.

By Theorem 3.19 (iii), there exists a LSFK u′′(a3,−1) with discriminantD3 such that (D3/p) =
−1 and h3 = hu′′(p) has a maximal value of (p + 1)/2. Thus, by Theorem 3.3 (ii) and
Theorem 3.2, the restricted period h3 = hv′′(p) of v′′(a3,−1) modulo p is equal to (p + 1)/2
also, and v′′(a3,−1) has the same discriminant D3 as u′′(a3,−1). By Theorem 3.20 (ii),
there exist exactly (p − 1)/4 distinct discriminants a2 + 4 of LSSK’s v(a,−1) modulo p for

which
(

a2+4
p

)

= −1. We further observe by (3.4) that if i and j are odd integers such that

1 ≤ i < j < h3/2 = (p + 1)/2, then

v′′i (a3,−1) 6≡ v′′j (a3,−1) (mod p). (4.14)

Taking into account Theorem 3.11, we now consider all the LSSK’s

v̂(v′′2m−1(a3,−1), (−1)2m−1) = v̂(v′′2m−1(a3,−1),−1) = {v′′(2m−1)n(a3,−1)}∞n=0, (4.15)

where 1 ≤ m ≤ (p− 1)/4. By (4.14) and (4.5), these (p − 1)/4 LSSK’s all have discriminants
which are distinct modulo p and which are quadratic nonresidues modulo p. Thus, both
v̂(ε1a1,−1) and ṽ(ε2a2,−1) appear among the (p − 1)/4 LSSK’s in (4.15), where ε1 and ε2
are elements of {−1, 1}. We also note that by Lemma 3.18 (ii), v(a,−1) and v′(−a,−1) are
identically distributed modulo p for all integers a. The rest of the proof is similar to that of
the proof of Case 1 of Theorem 2.1.

Case 2: p ≡ 1 (mod 4), (D1/p) = (D2/p) = 1, and hv(p) is odd.

Proof of Theorem 2.2 for Case 2. Let p− 1 = 2γm, where γ ≥ 2 and m is odd. By Theorem
3.15 (iii) and Theorem 3.16 (iv),

h1 = h2 ≡ 1 (mod 2), h1 | (p + 1)/2, h1 > 1, Ev(p) = Ev′(p) = 4, and λ1 = λ2 = 4h1.
(4.16)

By Theorem 3.20 (i), there exist exactly (p − 1)/4 = 2γ−2m distinct discriminants a2 + 4 of

LSSK’s v(a,−1) modulo p for which
(

a2+4
p

)

= −1. By Theorem 3.19 (i), Theorem 3.3 (ii), and

Theorem 3.2, it follows that if 0 ≤ i ≤ γ − 1 and it is not the case that i = 0 and m = 1, then
there exists a LSSK v′′(a3,−1) with discriminant D3 such that (D3/p) = 1 and h3 = hv′′(p) =
2im. We also note by (3.3) that if 1 ≤ i ≤ γ − 1 and 1 ≤ 2k − 1 < 2` − 1 ≤ h3/2 = 2i−1m,
then

v′′2k−1(a3,−1) 6≡ ±v′′2`−1(a3,−1) (mod p). (4.17)

Moreover, by (3.4), (4.17) also holds if i = 0, m > 1, and 1 ≤ 2k−1 < 2`−1 ≤ h3−1 = 2im−1.
Further, by Theorem 3.3 (ii), Theorem 3.2, and the argument given in the proof of Case 4 of
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Theorem 2.1, we see that there are exactly (p− 1)/4 = 2γ−2m LSSK’s of the form

v̂(v′′2j−1(a3,−1),−1), (4.18)

where 1 ≤ 2j − 1 ≤ 2i−1m if 1 ≤ i ≤ γ − 1 and 1 ≤ 2j − 1 ≤ m − 2 if i = 0 and m >
1. Additionally, the discriminants of those (p − 1)/4 LSSK’s are distinct nonzero quadratic
residues modulo p, since

(v′′2j−1(a3,−1))2 + 4 = D3(u
′′

2j−1(a3,−1))2

by Proposition 3.10 (iii). We also note by Theorem 3.3 (ii), Theorem 3.2, and the argument
given in the proof of Case 4 of Theorem 2.1 that for the LSSK v̂(v′′2j−1(a3,−1),−1) given in

(4.18), we have that
ν2(hv′′(p)) = ν2(2

im) = i.

The remainder of the proof now follows from arguments similar to those given in the proofs
of Case 1 of Theorem 2.1 and Case 1 of this theorem.

The proof of Theorem 2.2 is now complete. �

5. Corollaries of the Main Theorems

Corollary 5.1 follows from Theorem 2.1 upon application of Theorems 3.6 and 3.2.

Corollary 5.1. Let p be a fixed prime. Let w(a1,−1) and w′(a2,−1) be recurrences with

discriminants D1 = a21 + 4 and D2 = a22 + 4, respectively, such that p - D1D2 and (D1/p) =
(D2/p). Suppose that w(a1,−1) is p-equivalent to u(a1,−1) and w′(a2,−1) is p-equivalent to
u′(a2,−1). Suppose further that hw(p) = hw′(p). This occurs if and only if λw(p) = λw′(p).
Then w(a1,−1) and w′(a2,−1) are identically distributed modulo p.

The above statement remains valid and follows from Theorem 2.2 if we replace u by v and

u′ by v′.

Corollary 5.2. Let p be a fixed prime. Let v(a1,−1) and v′(a2,−1) be LSSK’s with discrim-

inants D1 and D2 such that p - D1D2 and (D1/p) = (D2/p). Suppose that hv(p) = hv′(p)
is even. Then v(a1,−1), u(a1,−1), v′(a2,−1), and u′(a2,−1) are all identically distributed

modulo p.

Proof. By Theorem 3.14 (i), v(a1,−1) is p-equivalent to u(a1,−1) and v′(a2,−1) is p-equivalent
to u′(a2,−1). The result now follows from Corollary 5.1. �

Corollary 5.3. Let p ≡ 3 (mod 4) be a fixed prime and let ε ∈ {−1, 1}. Then there exists a

LSFK u(a,−1) with discriminant D such that (D/p) = ε and hu(p) = p− (D/p).
Let w′(a1,−1) be any p-regular recurrence with discriminant D1 such that (D1/p) = ε and

hw′(p) = p− (D/p). Then w′(a1,−1) and u(a,−1) are identically distributed modulo p.

Proof. By Theorem 3.19 (ii) and (iv), there exists a LSFK u(a,−1) with discriminant D such
that (D/p) = ε and hu(p) = p − (D/p). We note that u(a,−1) is p-regular by Theorem 3.3
(i). By Theorem 3.21, w′(a1,−1) is p-equivalent to u′(a1,−1). Since hw′(p) = p − (D/p), we
have that hu′(p) = p − (D/p). By Theorem 3.6 (ii), w′(a1,−1) and u′(a1,−1) are identically
distributed modulo p. By Theorem 2.1, u′(a1,−1) and u(a,−1) are identically distributed
modulo p. Thus, w′(a1,−1) and u(a,−1) are identically distributed modulo p. �

Corollary 5.4. Let p ≡ 1 (mod 4) be a fixed prime. Then there exists a LSFK u(a,−1) with
discriminant D such that (D/p) = −1 and hu(p) = (p+ 1)/2.

Let w′(a1,−1) be any p-regular recurrence with discriminant D1 such that (D1/p) = −1 and

hw′(p) = (p + 1)/2. Then w′(a1,−1) is p-equivalent to either u′(a1,−1) or v′(a1,−1).
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If w′(a1,−1) is p-equivalent to u′(a1,−1), then w′(a1,−1) is identically distributed modulo p
to u(a,−1). If w′(a1,−1) is p-equivalent to v′(a1,−1), then w′(a1,−1) is identically distributed

modulo p to v(a,−1).

Proof. By Theorem 3.19 (iii), there exists a LSFK u(a,−1) with discriminant D such that
(D/p) = −1 and hu(p) = (p + 1)/2. We note that both u(a,−1) and v(a,−1) are p-regular
by Theorem 3.3 (i) and (ii). By Theorem 3.14 (i), v(a,−1) is not p-equivalent to u(a,−1),
and v′(a1,−1) is not p-equivalent to u′(a1,−1). By Theorem 3.21, there are exactly two
equivalence classes of p-regular and p-equivalent recurrences modulo p given that w′(a1,−1)
has discriminant D1 such that (D1/p) = −1 and hw′(p) = (p + 1)/2. It thus follows that
w′(a1,−1) is p-equivalent to either u′(a1,−1) or v′(a1,−1). By Theorem 3.6 (ii) w′(a1,−1) is
identically distributed modulo p to u′(a1,−1) if w′(a1,−1) is p-equivalent to u′(a1,−1) and
w′(a1,−1) is identically distributed to v′(a1,−1) if w′(a1,−1) is p-equivalent to v′(a1,−1).
By Theorems 2.1 and 2.2, u(a,−1) and u′(a1,−1) are identically distributed modulo p, and
v(a,−1) and v′(a1,−1) are identically distributed modulo p. The result now follows. �

Primes q such that 2q+1 is prime are called Sophie Germain primes of the first kind, while
primes q for which 2q − 1 is prime are called Sophie Germain primes of the second kind. The
prime p is a Mersenne prime if p = 2q − 1 for some q, where q must be a prime.

Corollaries 5.5–5.7 restrict Theorems 2.1 and 2.2 to the cases in which the prime p has
a special form, namely, p = 2q + 1, where q is a Sophie Germain prime of the first kind,
p = 2q − 1, where q is a Sophie Germain prime of the second kind, or p is a Mersenne prime.

By inspection, we see that the first few Sophie Germain primes of the first kind are

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, . . .

while the few Sophie Germain primes of the second kind are

2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, . . . .

According to [3], the largest known Sophie Germain prime of the first kind is

18543637900515 · 2666667 − 1

with 200701 digits, while we find from [4] that the largest known Sophie Germain prime of the
second kind is

1579755 · 2158712 + 1

with 47784 digits. We note that if q is an odd Sophie Germain prime of the first kind, then
2q+1 ≡ 3 (mod 4), whereas if q is a Sophie Germain prime of the second kind, then 2q−1 ≡ 1
(mod 4).

There are 48 known Mersenne primes (see [2]) with the largest of these being

257885161 − 1

with 17425170 digits. If p is a Mersenne prime, then clearly p ≡ 3 (mod 4).

Corollary 5.5. Let p be a prime such that (p − 1)/2 is an odd Sophie Germain prime of the

first kind. Then p ≡ 3 (mod 4).
Let w′(a1,−1) and w′′(a2,−1) be p-regular recurrences with discriminants D1 and D2, re-

spectively, such that p - a1a2 and (D1/p) = (D2/p) = 1. Then hw′(p) = hw′′(p) = p − 1, and
w′(a1,−1) and w′′(a2,−1) are identically distributed modulo p.
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Proof. Let q = (p− 1)/2. Since q is odd, it follows that p = 2q+1 ≡ 3 (mod 4). Let w(a,−1)
be any p-regular recurrence with restricted period h = hw(p) and discriminant D such that
a 6≡ 0 (mod p) and (D/p) = 1. By Theorem 3.15 (i) and (iii),

h | p− 1 and h - (p− 1)/2. (5.1)

Since p−1 = 2q, it follows from (5.1) that h = 2 or h = 2q = p−1. As u(a,−1) is p-regular by
Theorem 3.3 (i), it follows from Theorem 3.2 that hu(p) = h. If hu(p) = 2, then clearly a ≡ 0
(mod p), since u0(a,−1) = 0 and u2(a,−1) = a. However, a 6≡ 0 (mod p) by assumption.
Thus,

hw′(p) = hw′′(p) = p− 1.

The result now follows from Corollary 5.3. �

Corollary 5.6. Let p be a prime such that (p + 1)/2 is an odd Sophie Germain prime of the

second kind. Then p ≡ 1 (mod 4).
Let u(a,−1) and v(a2,−1) be Lucas sequences of the first kind and second kind, respectively,

with the same discriminant D such that (D/p) = −1. Let w′(a1,−1) be any p-regular recur-

rence with discriminant D1 such that (D1/p) = −1. Then hw′(p) = hu(p) = hv(p) = (p+1)/2,
and w′(a1,−1) is either p-equivalent to u′(a1,−1) or v′(a1,−1). If w′(a1,−1) is p-equivalent
to u′(a1,−1), then w′(a1,−1) is p-equivalent to u(a,−1). If w′(a1,−1) is p-equivalent to

v′(a1,−1), then w′(a1,−1) is p-equivalent to v(a,−1).

Proof. Let q = (p+1)/2. Since q is odd, it follows that p = 2q−1 ≡ 1 (mod 4). Let w′(a,−1)
be any p-regular recurrence with restricted period h = hw′(p) and discriminant D such that
(D/p) = −1. By Theorem 3.15 (iii),

h | (p+ 1)/2 and h 6= 1. (5.2)

Since (p+ 1)/2 = q, it follows from (5.2) that h = q. Thus,

hw′(p) = hu(p) = hv(p) = (p+ 1)/2.

The result now follows from Corollary 5.4. �

Corollary 5.7. Let p be a Mersenne prime. Let w′(a1,−1) and w′′(a2,−1) be p-regular
recurrences with discriminants D1 and D2, respectively, such that (D1/p) = (D2/p) = −1.
Then hw′(p) = hw′′(p) = p + 1, and w′(a1,−1) and w′′(a2,−1) are identically distributed

modulo p.

Proof. Let p = 2q − 1 for some prime q. Then clearly, p ≡ 3 (mod 4). Let w(a,−1) be a p-
regular recurrence with restricted period h = hw(p) and discriminant D such that (D/p) = −1.
By Theorem 3.15 (i) and (iii),

h | p+ 1 and h - (p+ 1)/2. (5.3)

Since p+ 1 = 2q, it follows from (5.3) that h = p+ 1 = 2q. Thus,

hw′(p) = hw′′(p) = p+ 1.

The result now follows from Corollary 5.3. �
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6. Recurrences Whose Distribution of Residues Are Completely Determined

Modulo p

We will sharpen Theorems 2.1 and 2.2 for certain recurrences. Theorem 2.1 shows that the
LSFK’s u(a1,−1) and u′(a2,−1) with the same restricted periods modulo p, (or equivalently
the same periods modulo p) are identically distributed modulo p if their discriminants have
the same quadratic character modulo p. An analogous result was obtained in Theorem 2.2 for
the LSSK’s v(a1,−1) and v′(a2,−1). However, these theorems do not necessarily explicitly
describe the actual distribution of residues modulo p. For certain recurrences (w) we will be
able to explicitly determine Sw(p), Nw(p), and Bw(i) for i ≥ 0 given only the period of (w)
modulo p and also possibly the quadratic character of the discriminants of these recurrences
modulo p.

In some instances, we will consider the kth-order linear recurrence w(a1, a2, . . . , ak), where
k ≥ 1, defined by the recursion relation

wn+k = a1wn+k−1 − a2wn+k−2 + · · · + (−1)k+1akwk. (6.1)

We suppose from here on that p - ak. Then w(a1, . . . , ak) is purely periodic modulo p by [7,
pp. 344–345]. We distinguish the kth-order unit sequence u(a1, a2, . . . , ak) satisfying (6.1) and
having the initial terms u0 = u1 = · · · = uk−2 = 0, uk−1 = 1. Our definitions for λw(p), hw(p),
Ew(p), Aw(d), Sw(p), Nw(p), and Bw(i) will all carry over naturally from the case in which
k = 2 to general k.

Before presenting our results on recurrences for which the distribution of residues modulo
p is completely determined, we will need the following refinement of Theorem 1.1.

Theorem 6.1. Let p be a fixed prime and consider the recurrence w(a, b). Let d be a fixed

residue modulo p such that 0 ≤ d ≤ p− 1. Let g = ordpb.

(i) If w(a, b) is not p-equivalent to u(a, b), v(a, b), or t(a, b), then

A(d) ≤ g. (6.2)

(ii) If w(a, b) is p-equivalent to u(a, b), v(a, b), or t(a, b), then

A(0) ≤ Ew(p) ≤ min(p − 1, 2g) (6.3)

and

A(d) ≤ min(g + Ew(p), 2g, p) (6.4)

if d 6= 0.
(iii) Suppose that w(a, b) is p-equivalent to u(a, b), and g and Ew(p) are both odd. Then

A(d) ≤ g. (6.5)

(iv) Suppose that w(a, b) is p-equivalent to t(a, b) and that g is even. Then

A(d) ≤ g. (6.6)

This is proved in Theorem 2 of [19].
Theorems 6.2–6.6 and Theorems 6.8–6.9 show that the distribution of residues of the p-

regular recurrence w(a, 1) is completely determined modulo p given the value of λu(p) when
p - D.

Theorem 6.2. Let p be a fixed prime. Suppose that w(a, 1) is p-equivalent to u(a, 1), λw(p)
is odd, and p - D. Then

Ew(p) = 1, hw(p) | (p− (D/p))/2, and hw(p) 6= 1.
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Moreover,

Sw(p) = {0, 1}, Nw(p) = λw(p) = hw(p), Bw(0) = p− λw(p), and Bw(1) = λw(p).

This follows from Theorems 4 and 7 of [17] and from Theorem 3.6 of this paper.

Theorem 6.3. Let p be a fixed prime. Suppose that w(a, 1) is p-equivalent to u(a, 1), λw(p) ≡ 2
(mod 4), and p - D. Then

Ew(p) = 2, hw(p) ≡ 1 (mod 2), hw(p) | (p− (D/p))/2, and hw(p) 6= 1.

Furthermore,

Sw(p) = {0, 2}, Nw(p) = hw(p) =
1
2λw(p), Bw(0) = p− hw(p), and Bw(2) = hw(p).

This follows from Theorems 5 and 7 of [16] and from Theorem 3.6 of this paper.

Theorem 6.4. Let p be a fixed prime. Suppose that w(a, 1) is p-equivalent to u(a, 1), λw(p) ≡ 0
(mod 4), and p - D. Then

Ew(p) = 2, hw(p) ≡ 0 (mod 2), hw(p) | (p − (D/p))/2, and hw(p) 6= 1.

Moreover,

Sw(p) = {0, 1, 2}, Nw(p) = hw(p) + 1 = 1
2λw(p) + 1,

Bw(0) = p− hw(p)− 1, Bw(1) = 2, and Bw(2) = hw(p)− 1.

This follows from Theorems 6 and 7 of [17] and from Theorem 3.6 of this paper.

Theorem 6.5. Let p be a fixed prime. Suppose that w(a, 1) is p-equivalent to v(a, 1), where
λw(p) is odd and p - D. Then

Ew(p) = 1, hw(p) ≡ 1 (mod 2), hw(p) | (p − (D/p))/2, and hw(p) 6= 1.

Additionally,

Sw(p) = {0, 1, 2}, Nw(p) =
λw(p) + 1

2
,

Bw(0) = p− λw(p) + 1

2
, Bw(1) = 1, and Bw(2) =

λw(p)− 1

2
.

This follows from Theorem 10 of [20] and from Theorem 3.6 of this paper.

Theorem 6.6. Let p be a fixed prime. Suppose that w(a, 1) is p-equivalent to v(a, 1), where
λw(p) ≡ 2 (mod 4) and p - D. Then

Ew(p) = 2, hw(p) ≡ 1 (mod 2), and hw(p) | (p− (D/p))/2.

Moreover,

Sw(p) = {0, 1, 2}, Nw(p) = hw(p) + 1 =
1

2
λw(p) + 1,

Bw(0) = p− hw(p)− 1, Bw(1) = 2, and Bw(2) = hw(p)− 1.

This follows from Theorem 11 of [20] and from Theorem 3.6 of this paper.

Remark 6.7. It follows from Theorem 3.14 (i) that v(a, 1) is p-equivalent to u(a, 1) if hu(p)
is even. This case is treated in Theorem 6.4.
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Theorem 6.8. Let p be a fixed prime. Suppose that t(a, 1) is defined and w(a, 1) is p-equivalent
to t(a, 1), where p - D. Then

Ew(p) = 2, hw(p) ≡ 0 (mod 2), and hw(p) | (p− (D/p))/2.

Further,

Sw(p) = {0, 2}, Nw(p) = hw(p) = λw(p)/2,

Bw(0) = p− hw(p), and Bw(2) = hw(p).

This is proved in Theorem 3.8 (b) of [21].

Theorem 6.9. Let p be a fixed prime. Suppose that w(a, 1) is p-regular and that w(a, 1) is

not p-equivalent to u(a, 1), v(a, 1), or t(a, 1). Then

hw(p) ≤ (p− (D/p))/4, hw(p) | (p− (D/p))/2, and λw(p) ≤ (p − (D/p))/2. (6.7)

Moreover,

Sw(p) = {0, 1}, Nw(p) = λw(p), Bw(0) = p− λw(p), and Bw(1) = λw(p). (6.8)

Proof. We note that (6.7) follows from Theorems 3.15 (ii), 3.14 (i) and (ii), and Theorem 3.21.
Moreover, (6.8) follows from the fact that Aw(d) = 0 or 1 for 0 ≤ d ≤ p − 1 by Theorem 6.1
(i). �

Theorems 6.10–6.14 consider more general recurrences than the recurrences w(a, 1) treated
in Theorems 6.2–6.6, 6.8, and 6.9. In these theorems, as contrasted to our previous assumption,
we allow the possibility that p = 2.

Theorem 6.10. Let p be a fixed prime, possibly even. Let the recurrence (w) be either the first-
order recurrence w(a1) defined by wn+1 = a1w1, where p - a1 or the p-irregular second-order

recurrence w(a, b). Then

Sw(p) = {0, 1}, Nw(p) = λw(p), Bw(0) = p− λw(p), and Bw(1) = λw(p).

Proof. This follows from the facts that hw(p) = 1 and Aw(0) = 0 if w0 6≡ 0 (mod p). �

Theorem 6.11. Let p be a fixed prime, possibly even. Consider the p-regular second-order

recurrence w(a, b) with discriminant D such that p | D. Then

hw(p) = p, Sw(p) =

{

λw(p)

p

}

, Nw(p) = p, and Bw

(

λw(p)

p

)

= p.

This is proved in [1] and [23].

Theorem 6.12. Let p be a fixed prime, possibly even. Let w(a1, . . . , ak) be p-equivalent to

the kth-order unit sequence u(a1, . . . , ak), where k ≥ 2, a1 = a2 = · · · = ak−1 = 0, ak =
(−1)k+1M , and p - M . Then

hw(p) = k, Mu(p) ≡ M (mod p), and Ew(p) = ordpM =
λw(p)

k
.

Moreover, the following hold:

(i) If k = 2 and M ≡ 1 (mod p), then

Nw(p) = 2,

Sw(p) = {1} if p = 2,

Sw(p) = {0, 1} if p > 2,

Bw(0) = p−Nw(p), and Bw(1) = 2.
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(ii) If it is not the case that k = 2 and M ≡ 1 (mod p), then

Nw(p) =
λw(p)

k
+ 1,

Sw(p) =

{

0, 1,
(k − 1)λw(p)

k

}

if Nw(p) < p,

Sw(p) =

{

1,
(k − 1)λw(p)

k

}

if Nw(p) = p,

Bw(0) = p−Nw(p), Bw(1) =
λw(p)

k
, and Bw

(

(k − 1)λw(p)

k

)

= 1.

Proof. By Theorem 3.6 (i), generalized to kth-order recurrences, it suffices to consider the case
in which w(a1, . . . , ak) is the kth-order unit sequence u(a1, . . . , ak). By inspection, one sees
that un ≡ M i−1 (mod p) if n = ki− 1 for i ≥ 1 and un ≡ 0 (mod p) if n 6≡ −1 (mod k). The
theorem now follows immediately. �

Theorem 6.13. Let p be a fixed prime, possibly even. Let w(a1, . . . , ak) be p-equivalent to the

kth-order unit sequence u(a1, . . . , ak), where k ≥ 2 and ai = (−1)i for i ∈ {1, 2, . . . , k}. Then

hw(p) = k + 1, Mw(p) ≡ 1 (mod p), and Ew(p) = 1.

Moreover, the following hold:

(i) If p = 2, then

Nw(p) = 2,

Sw(p) = {k − 1, 2},
Bw(2) = 2 if k = 3

Bw(k − 1) = Bw(2) = 1 if k 6= 3.

(ii) If p ≥ 3, then

Nw(p) = 3,

Sw(p) = {1, k − 1} if p = 3,

Sw(p) = {0, 1, k − 1} if p > 3,

Bw(0) = p− 3 and Bw(1) = 3 if k = 2,

Bw(0) = p− 3, Bw(1) = 2 and Bw(k − 1) = 1 if k ≥ 3.

Proof. It suffices to consider the case in which w(a1, . . . , ak) is the kth-order unit sequence
u(a1, . . . , ak) . By inspection, one sees that u(a1, . . . , ak) is purely periodic with a period of
k + 1 and that u0 = u1 = · · · = uk−2 = 0, uk−1 = 1, and uk = −1. The result now follows
immediately. �

Theorem 6.14. Let p be a fixed prime, possibly even. Let w(a1, . . . , ak) be a recurrence such

that k ≥ 2, p - ak, and λw(p) = pk − 1. Then

hw(p) =
pk − 1

p− 1
, Ew(p) = p− 1,

Aw(0) = pk−1 − 1, and Aw(d) = pk−1 if d 6≡ 0 (mod p).

Moreover,

Sw(p) = {pk−1 − 1, pk−1}, Nw(p) = p,

Bw(p
k−1 − 1) = 1, and Bw(p

k−1) = p− 1.
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This is proved in [9, p. 449].
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