EXTENDING SOME FIBONACCI-LUCAS RELATIONS

TOM EDGAR

Abstract. We give a generalization of two recently proven Fibonacci-Lucas identities.

In three recent issues of The American Mathematical Monthly (see [1, 2, 3]), two FibonacciLucas relations were demonstrated:

$$
2^{m+1} F_{m+1}=\sum_{i=0}^{m} 2^{i} L_{i} \quad \text { and } \quad 3^{m+1} F_{m+1}=\sum_{i=0}^{m} 3^{i} L_{i}+\sum_{i=0}^{m+1} 3^{i-1} F_{i} .
$$

We show these two formulas are part of a family of such identities obtained by replacing 2 and 3 , respectively, by any integer $k \geq 1$. Using our formulation, the proof is elementary.

Theorem 1. For all integers $m \geq 1$ and $k \geq 1$, we have

$$
k^{m+1} F_{m+1}=\sum_{i=0}^{m} k^{i} L_{i}+(k-2) \sum_{i=0}^{m+1} k^{i-1} F_{i} .
$$

Proof. It is well-known that $L_{i}+F_{i}=F_{i-1}+F_{i+1}+F_{i}=2 F_{i+1}$ so that, after rearranging sums, we get

$$
\begin{aligned}
\sum_{i=0}^{m} k^{i} L_{i}+(k-2) \sum_{i=0}^{m+1} k^{i-1} F_{i} & =\sum_{i=0}^{m} k^{i}\left(L_{i}+F_{i}\right)+k^{m+1} F_{m+1}-2 \sum_{i=0}^{m+1} k^{i-1} F_{i} \\
& =2 \sum_{i=0}^{m} k^{i} F_{i+1}+k^{m+1} F_{m+1}-2 \sum_{i=0}^{m+1} k^{i-1} F_{i} \\
& =k^{m+1} F_{m+1}
\end{aligned}
$$

as required (since $F_{0}=0$).

References

[1] H. Kwong, An alternate proof of Sury's Fibonacci-Lucas relation, Amer. Math. Monthly, 121.6 (2014), 514.
[2] D. Marques, A new Fibonacci-Lucas relation, Amer. Math. Monthly, 122.7 (2015), 683.
[3] B. Sury, A polynomial parent to a Fibonacci-Lucas relation, Amer. Math. Monthly, 121.3 (2014), 236.
MSC2010: 11B39
Department of Mathematics, Pacific Lutheran University, Tacoma, WA
E-mail address: edgartj@plu.edu

