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Abstract. In this note, we show that

S(n, r) :=

nX
k=0

k

k + r

 
n

k

!
is not an integer for any positive integer n and r ∈ {1, 2, 3, 4, 5, 6} and for n ≤ r − 1. This
gives a partial answer to a conjecture of [3].

Marcel Chirita [1] asked to show that

n∑
k=0

k

k + 1

(
n

k

)
6∈ Z (1.1)

for any integer n ≥ 1. The first author [3] proved that

n∑
k=0

k

k + r

(
n

k

)

is not an integer for positive integers n and r ∈ {2, 3, 4} and asked if the above sum is ever an
integer for some positive integers n and r. Plainly, since

n∑
k=0

(
n

k

)
= 2n

is an integer, the question is equivalent to whether

S(n, r) :=
n∑

k=0

r

k + r

(
n

k

)
(1.2)

is ever an integer for some positive integers n and r. For n = 1, we have S(n, r) = 1+r/(r+1),
which is not an integer because it lies inside the interval (1, 2); so we may assume that n ≥ 2.
Trying out small values of r we find the formulas:
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S(n, 1) =
2n+1 − 1

n + 1
;

S(n, 2) = (−2)
(

2n+1 − 1
n + 1

)
+ 2

(
2n+2 − 1

n + 2

)
;

S(n, 3) = 3
(

2n+1 − 1
n + 1

)
− 6

(
2n+2 − 1

n + 2

)
+ 3

(
2n+3 − 1

n + 3

)
;

S(n, 4) = (−4)
(
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n + 1

)
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(
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)
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(
2n+3 − 1
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)
+ 4

(
2n+4 − 1
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)
;

S(n, 5) = 5
(
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)
− 20

(
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)
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(
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)
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(
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)
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(
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)
;

S(n, 6) = (−6)
(
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)
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)
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(
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n + 3

)
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(
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)
−
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(

2n+5 − 1
n + 5

)
+ 6

(
2n+6 − 1

n + 6

)
. (1.3)

At this point we recall the well-known fact that n never divides 2n − 1 for any n ≥ 2 (see,
for example, problem A14 in [4]).

In particular, (2n+1−1)/(n+1) is not an integer which by the first relation (1.3) deals with
the case r = 1.

For r = 2, one of n + 1 and n + 2 is odd. We assume that n + 1 is odd, since the case when
n + 2 is odd is similar. Then, 2(2n+1 − 1)/(n + 1) is a rational number which, in its simplest
form, has an odd prime divisor p in its denominator. Since n + 1 and n + 2 are coprime, we
get that p does not divide n+2, so p divides the denominator of S(n, 2). Hence, S(n, 2) is not
an integer.

For r = 3, suppose first that n + 1 is odd. Then so is n + 3 and one of n + 1, n + 3 is not a
multiple of 3. Assume n + 1 is not a multiple of 3, and the case when n + 3 is not a multiple
of 3 can be dealt with similarly. Then 3(2n+1 − 1)/(n + 1) is a rational number which, in its
simplest form, has a prime factor p ≥ 5 in its denominator. Clearly, p does not divide either
one of n + 2, n + 3, so p divides the denominator of S(n, 3). Hence, S(n, 3) is not an integer.
Assume now that n + 1 is even. In this case, one of n + 1, n + 3 is a multiple of 4, and the
other is congruent to 2 (mod 4), and plainly n + 2 is odd. The third formula (1.3) now shows
easily that S(n, 3) is not a 2-adic integer in this case. In fact, its denominator as a rational
number is a multiple of 4. This takes care of the case r = 3.

For r = 4, either n + 1 or n + 4 is odd. We assume that n + 1 is odd since the case when
n + 4 is odd can be dealt with similarly. Then n + 1 and n + 3 are both odd and at most one
of them is a multiple of 3. Thus, there exists i ∈ {1, 3} such that n + i is coprime to 6. Then
ci(2n+i− 1)/(n+ i) is a rational number, which in its simplest form, has a prime divisor p ≥ 5
in its denominator. Here, ci = 4 if i = 1 and ci = 12 if i = 3. This prime p cannot divide n+ j
for any j 6= i, j ∈ {1, 2, 3, 4}, therefore p divides the denominator of S(n, 4).

For r = 5, consider first the case when n + 1 is odd. Then n + 1, n + 3, n + 5 are all odd.
Of these three numbers, at most one is a multiple of 3 and at most one is a multiple of 5.
Hence, there is i ∈ {1, 3, 5} such that n + i is coprime to 30. Then ci(2n+i − 1)/(n + i) is
a rational number which, in its simplest form, has a prime factor p ≥ 7 in its denominator.
Here, ci = 5, 30, 5, for i = 1, 3, 5, respectively. The prime p cannot divide n + j for any j 6= i,
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j ∈ {1, 2, 3, 4, 5}, so S(n, 5) is not an integer. Assume now that n + 1 is even. If n + 1 ≡ 2
(mod 4), then n + 3 ≡ 0 (mod 4) and n + 5 ≡ 2 (mod 4). Hence,

5
(

2n+1 − 1
n + 1

)
+ 30

(
2n+3 − 1

n + 3

)
+ 5

(
2n+5 − 1

n + 5

)
is a rational number which, in its simplest form, has an even denominator. Since n + 2, n + 4
are odd, it follows that S(n, 5) is a rational number with an even denominator. Finally, when
n + 1 ≡ 0 (mod 4), then n + 3 ≡ 2 (mod 4) and n + 5 ≡ 0 (mod 4). Since n + 1, n + 5 are
both multiples of 4 whose difference is 4, it follows that one of them is congruent to 4 (mod 8)
and the other is a multiple of 8. It now follows that the denominator of S(n, 5) is even, and
in fact, is a multiple of 8. Hence, S(n, 5) is not an integer either.

For r = 6, one of n+1 to n+6 is odd. We consider only the case when n+1 is odd since the
case when n+6 is odd is similar. Then n+1, n+3, n+5 are all odd and at most one of them
is a multiple of 3 and at most one of them is a multiple of 5. Hence, there is i ∈ {1, 3, 5} such
that n + i is coprime to 30, so, in particular, ci(2n+i − 1)/(n + i) is a rational number which,
in its simplest form, has a prime factor p ≥ 7 in its denominator. Here, ci = 6, 60, 30, for
i = 1, 3, 5, respectively. Clearly, p cannot divide n + j for j 6= i, j ∈ {1, 2, 3, 4, 5, 6}, therefore
S(n, 6) is a rational number whose denominator is a multiple of p.

So far, we reproved the main result from [3] and even proved the cases r = 5 and r = 6. In
order to extend our argument to cover all r, we need two ingredients:

(i) A general formula of the shape of (1.3) valid for n and r;
(ii) A statement about prime factors of consecutive integers, namely that under some mild

hypothesis, out of every r consecutive integers there is one of them divisible by a prime
larger than r.

The next statement takes care of (i) and, in particular, justifies formulas (1.3).

Lemma 1. We have

S(n, r) =
r−1∑
j=0

(−1)r−1−jr

(
r − 1

j

)(
2n+j+1 − 1
n + j + 1

)
. (1.4)

Proof.

S(n, r) = r
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)
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= r
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∫ 1

0

(
n∑

k=0

(
n

k

)
xk+r−1

)
dx = r

∫ 1

0

(
n∑

k=0

(
n

k

)
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)
xr−1dx

= r

∫ 1

0
(1 + x)nxr−1dx = r

∫ 1

0
(1 + x)n(1 + x− 1)r−1dx

= r

∫ 1

0
(1 + x)n

r−1∑
j=0

(−1)r−1−j

(
r − 1

j

)
(1 + x)j

 dx

=
∫ 1

0

r−1∑
j=0

(−1)r−1−jr

(
r − 1

j

)
(1 + x)n+j

 dx
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=
r−1∑
j=0

(−1)r−1−jr

(
r − 1

j

)∫ 1

0
(1 + x)n+jdx

=
r−1∑
j=0

(−1)r−1−jr

(
r − 1

j

)(
2n+j+1 − 1
n + j + 1

)
.

�

For (ii), let us recall Sylvester’s extension of Bertrand’s postulate (see [2]).

Theorem 2. If n ≥ r ≥ 2, then one of the numbers n + 1, n + 2, . . . , n + r is divisible by a
prime larger than r.

However, Sylvester’s Theorem is not enough to prove that S(n, r) is not an integer for any
n and r, even when n ≥ r, because although we infer that there exists i ∈ {1, 2, . . . , r} such
that p | n + i for some prime p > r, and n + i does not divide 2n+i − 1, it is still possible that
ci(2n+i−1)/(n+ i) is a rational number whose denominator is not divisible by p, and therefore
we cannot infer that p divides the denominator of S(n, r). However, Sylvester’s Theorem is
enough to deal with the case n ≤ r−1. Namely, in this case, we work directly with the original
representation of (1.2), which is

S(n, r) = 1 +
n∑

j=1

r

r + j

(
n

j

)
.

If r + 1 > n, then, again by Sylvester’s Theorem, one of the numbers r + 1, r + 2, . . . , r + n is
divisible by a prime p > n. Such a prime does not divide

(
n
j

)
for any j ∈ {1, . . . , n}, and does

not divide r either (otherwise, it divides both r and r + j for some j ∈ {1, . . . , n}, so it divides
their difference, which is a number less than or equal to n, a contradiction). So, it remains to
deal with r = n + 1. In this case, we apply Bertrand’s postulate, to conclude that there is a
prime p ∈ ((n + 1), 2n + 1]. This prime divides neither n + 1 nor

(
n
j

)
for j ∈ {1, . . . , n}, so p

divides the denominator of S(n, n + 1).
To summarize, in this note we proved, in addition to formula (1.4), the following partial

results towards the conjecture that S(n, r) is not an integer for any positive integers n and r:

Theorem 3.
(1) S(n, r) is not an integer for any r ∈ {1, 2, 3, 4, 5, 6} and n ≥ 2;
(2) S(n, r) is not an integer for 1 ≤ n ≤ r − 1.
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