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Abstract. In 1972, Alfred Brousseau, a founding editor of The Fibonacci Quarterly, pub-
lished an entertaining account of how geometric tilings can be used to generate identities
involving Fibonacci numbers. In this article, we explain how there is a hidden formula in
each of his tilings, discoverable by consideration of the tiling’s centroid. To demonstrate the
utility of this approach, we provide a simple derivation of a new formula for the sum of cubes
of the first n Fibonacci numbers.

1. Introduction

The Fibonacci numbers are defined by the recurrence relation Fn = Fn−1 + Fn−2 where
F0 = 0 and F1 = 1. It is well-known that rectangular tiles whose side lengths are Fibonacci
numbers can be carefully arranged to demonstrate relationships between Fibonacci numbers.
Alfred Brousseau gives a range of examples in [3]. For instance, in Figure 1 we compare the
total area to the sum of its parts to find that

F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1.
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Figure 1

By considering the centroid of such figures we can obtain a second hidden identity. And by
applying this general approach to various tilings we find a new formula for the sum of the first
n cubes of Fibonacci numbers.

2. The Centroid

We provide a cursory summary of the required theory. The centroid of a planar figure
X ⊂ R

2 with area A is the mean position (x, y) of all the points in X, defined by the integrals

x =

∫∫

X
x dxdy

A
and y =

∫∫

X
y dxdy

A
.
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If {Xi} is a partition of X then its centroid can be found by first finding the centroid (xi, yi)
and area Ai of each part and then computing

x =

∑

i Aixi

A
and y =

∑

iAiyi
A

.

That is, the centroid of a figure is well behaved with respect to decomposition, in the sense
that it can be found as a weighted average of its constituent parts. The proof follows at once
from the definition of the centroid and the calculation,

x =

∫∫

X
x dxdy

A
=

∑

i

∫∫

Xi

x dxdy

A
=

∑

iAixi

A
.

In the work that follows, we will only be finding the x-component of the centroid. We will call
this the x-mean. We outline how it will be employed in the subsequent section.

3. The Method

We have already seen how geometric diagrams can illustrate algebraic identities. Perhaps
the simplest such example is a demonstration of the fact that for non-negative real numbers
a, b and c,

c(a+ b) = ca+ cb. (3.1)

a b

c 1 2

a b

1

O a+b
2

a+ b

Figure 2. This figure can demonstrate identities (3.1) and (3.2).

It may be surprising that lurking in that same simple diagram one can also find that

(a+ b)2 = a2 + 2ab+ b2. (3.2)

To see this, we let c = 1 and then construct perpendicular axes along the left and lower edges
of the rectangle. As the rectangle is symmetric, its x-mean is located at

x =
a+ b

2
. (3.3)

Now decompose the figure into two parts, as indicated on Figure 2. Here, and later, we let

xi and Ai be the x-mean and area of the rectangle i , respectively. We can also locate the
x-mean of the outer rectangle by taking a weighted average of these two parts. Since c = 1,

x =
x1A1 + x2A2

A1 +A2

=
a
2
a+ (a+ b

2
)b

(a+ b)
. (3.4)

Equating (3.3) and (3.4) gives identity (3.1). Likewise, Figure 3 below is ordinarily used to
demonstrate the truth of (3.2). However, it can also be leveraged to demonstrate that

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3. (3.5)
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Figure 3. The above picture demonstrates both identities (3.2) and (3.5).

Once again, the x-mean is located at

x =
a+ b

2
(3.6)

and alternatively,

x =
x1A1 + x2A2 + x3A3 + x4A4

A1 +A2 +A3 +A4

=
a
2
a2 + (a+ b

2
)ab+ a

2
ab+ (a+ b

2
)b2

(a+ b)2
. (3.7)

Equating (3.6) and (3.7) clearly gives identity (3.5).
Of course, we don’t give these examples because they are new or profound. However, they

do indicate a novel way of generating identities from figures with vertical symmetry. The
procedure is simple. Take any such figure and then

(1) locate the x-mean along the line of symmetry then,
(2) locate the x-mean by dividing the figure into parts then,
(3) equate the two results.

As rectangles whose side lengths are Fibonacci numbers can be carefully arranged into larger
vertically symmetric rectangles, this procedure is particularly fruitful when applied to such
figures. With scarce effort we will be able to establish geometrically, that

n
∑

j=1

FjFj+1Fj+2 =
F 3
n + F 3

n+1 + F 3
n+2 + Fn−1FnFn+1 − 2

4
. (3.8)

We also obtain a new formula for the sum of cubes of the first n Fibonacci numbers. Notably,
we make no appeal to the Binet formula, which features prominently in most works of this
nature. In the work that follows, we will state results true for Fibonacci numbers. Some of our
results generalize in obvious directions to other Fibonacci-like numbers. However our purpose
is to illustrate a new technique, not exhaustively capture the full breadth of its consequences.

4. A Simple Fibonacci Tiling

To illustrate the ease and utility of this technique we begin with the simple Fibonacci tiling
depicted in Figure 4 below.
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Figure 4. A simple Fibonacci tiling.

Superficially, the tiling demonstrates that Fn+2Fn+1 = F 2
n+1 + FnFn+1. Consideration of

the rectangle’s x-mean reveals a further identity. First, the x-mean is located at

x =
Fn+1 + Fn

2
=

Fn+2

2
. (4.1)

Now by considering a weighted average of its parts we also see that

x =
x1A1 + x2A2

A1 +A2

=
Fn+1

2
· F 2

n+1 + (Fn+1 +
Fn

2
) · Fn+1Fn

Fn+1(Fn+1 + Fn)

=
F 2
n+1 + (2Fn+1 + Fn) · Fn

2Fn+2

=
F 2
n+1 + Fn+3Fn

2Fn+2

. (4.2)

Equating (4.1) and (4.2) gives the identity,

F 2
n+2 − F 2

n+1 = FnFn+3. (4.3)

No doubt equation (4.3) is a trivial result, and algebraically obvious from the factorization
of F 2

n+2 − F 2
n+1. Nonetheless, this example serves to demonstrate the technique that we will

deploy in our subsequent work, where more complicated configurations of rectangles lead to
more interesting results.

5. A Preliminary Result

However, before considering further tilings, we remind the reader of an elementary but
remarkable result first observed by Block in [2]. We will call upon this formula in the following
section. We provide the proof as it warrants a few subsequent remarks.

Proposition 5.1.

n
∑

j=1

F 2
j Fj+1 =

1

2
FnFn+1Fn+2. (5.1)
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Proof. This is a simple proof by induction. The base case is obvious, and for the inductive
step,

2

k+1
∑

j=1

F 2
j Fj+1 = 2

k
∑

j=1

F 2
j Fj+1 + 2F 2

k+1Fk+2

= FkFk+1Fk+2 + 2F 2
k+1Fk+2

= Fk+1Fk+2(Fk + 2Fk+1)

= Fk+1Fk+2Fk+3.

�

We note that Proposition 5.1 is as geometrically impressive as it algebraically impressive.
For if we take two copies of each of the boxes with dimensions

(F 2
1 × F2), (F

2
2 × F3), . . . , (F

2
n × Fn+1)

then these 2n boxes can be packed into a box of dimensions Fn×Fn+1×Fn+2. This fact is not
implied by formula (5.1), but by the preceding calculation that demonstrates its truth. Indeed,
assume that the first 2k boxes can be packed into a box of dimensions Fk × Fk+1 × Fk+2. We
take this box along with two boxes of dimensions F 2

k+1
×Fk+2 and pack them into a box with

dimensions Fk+1 × Fk+2 × Fk+3. This is shown in Figure 5 below.

+ + =

Fk+1 Fk+1 Fk Fk+3

Fk+1 Fk+1 Fk+1 Fk+1

Fk+2

Figure 5. Packing the first 2k boxes inductively.

6. Sums of Products of Three Consecutive Fibonacci Numbers

Our second example considers Figure 6 below, depicted by Brousseau in [3]. It shows four
rectangles with sides Fn+1 and Fn arranged into the corners of a square of side length Fn+2.
At the square’s center is a smaller square of side length Fn+1 − Fn = Fn−1. Brousseau notes
that the diagram provides a one-glance demonstration of the identity

F 2
n+2 = 4FnFn+1 + F 2

n−1. (6.1)
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Figure 6. A spiral of tiles yields two formulas.

Before considering the x-mean, we first note that equation (6.1) and a telescoping sum can be
used to find a formula for the sum of the products of two consecutive Fibonacci numbers,

n
∑

j=1

FjFj+1 =
1

4

n
∑

j=1

(

F 2
j+2 − F 2

j−1

)

=
F 2
n+2 + F 2

n+1 + F 2
n − 2

4
.

Surprisingly, the same diagram can be used to find a formula for the sum of products of three
consecutive Fibonacci numbers. To this end, we first note that the x-mean is located at

x =
Fn+2

2
. (6.2)

As before, this can also be found by considering a weighted average of its parts. Foregoing the
algebraic details, we can show that

x =
x1A1 + x2A2 + x3A3 + x4A4 + x5A5

A1 +A2 +A3 +A4 +A5

=
F 3
n−1 + 2F 2

n−1Fn + 4FnFn+1Fn+2

2F 2
n+2

. (6.3)

As before, we equate (6.2) and (6.3) to discover a far-from-obvious identity,

2F 2
n−1Fn + 4FnFn+1Fn+2 = F 3

n+2 − F 3
n−1. (6.4)

Now with the aid of a telescoping sum we obtain,

2

n
∑

j=1

F 2
j−1Fj + 4

n
∑

j=1

FjFj+1Fj+2 = F 3
n + F 3

n+1 + F 3
n+2 − 2. (6.5)

And finally, equations (6.5) and (5.1) together yield a delightful formula for the sum of products
of three consecutive Fibonacci numbers.

Proposition 6.1.

n
∑

j=1

FjFj+1Fj+2 =
F 3
n + F 3

n+1 + F 3
n+2 − Fn−1FnFn+1 − 2

4
. (6.6)

Armed with this result, we find a formula for the sum of consecutive cubes.
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7. Sums of Cubes of Consecutive Fibonacci Numbers

For this we now consider the tiling shown in Figure 7 below.

Fn Fn+1

Fn+1

Fn 1 2

3 4

Fn Fn+1

Fn

Fn+1

O Fn+2

2
Fn+2

Figure 7. The above picture also demonstrates two identities.

The x-mean is located at

x =
Fn+2

2
. (7.1)

Considering a weighted average of its parts, a minor calculation shows that

x =
x1A1 + x2A2 + x3A3 + x4A4

A1 +A2 +A3 +A4

=
F 3
n + F 3

n+1 + 3FnFn+1Fn+2

2F 2
n+2

. (7.2)

By equating (7.1) and (7.2) we’ve established that

F 3
n + 3FnFn+1Fn+2 = F 3

n+2 − F 3
n+1. (7.3)

Using equation (7.3), it follows in the now customary fashion that

n
∑

j=1

F 3
j + 3

n
∑

j=1

FjFj+1Fj+2 =

n
∑

j=1

(

F 3
j+2 − F 3

j+1

)

= F 3
n+2 − 1. (7.4)

Finally, equations (7.4) and (6.6) together yield a closed formula for the sum of consecutive
cubes of Fibonacci numbers,

n
∑

j=1

F 3
j =

F 3
n+2 − 3F 3

n+1 − 3F 3
n + 3Fn−1FnFn+1 + 2

4
. (7.5)

A cleaner expression is obtained by substituting Fn+2 = Fn+1 + Fn and Fn−1 = Fn+1 − Fn

into equation (7.5). We obtain the following result.

Proposition 7.1.

n
∑

j=1

F 3
j =

3F 2
n+1Fn − F 3

n+1 − F 3
n + 1

2
. (7.6)
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Certainly, equation (7.6) isn’t as impressive as the closed and factored expression found
in [4], However, the grace of the geometrical argument perhaps offsets its ungainly answer.
Interestingly, the formula is comparable to that obtained in [1] using a combinatorial argument,
which is equivalent to the identity

n
∑

j=1

F 3
j =

Fn+1F
2
n+2 + (−1)nFn − 2F 3

n

2
.

The reader is invited to discover further identities using this approach, perhaps beginning with
Figure 1 in the introduction.
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