INFINITE SUMS OF WEIGHTED FIBONACCI NUMBERS OF ORDER k

SPIROS D. DAFNIS AND ANDREAS N. PHILIPPOU

Abstract

For integers $m \geq 0$ and $k \geq 2$, set $\alpha_{m, k}:=\sum_{n=1}^{\infty} \frac{n^{m} F_{n}^{(k)}}{2^{n+k-1}}$, where $F_{n}^{(k)}$ is the Fibonacci sequence of order k or k-generalized Fibonacci sequence. It is shown that $\alpha_{0, k}=$ $1, \alpha_{1, k}=2^{k+1}-k-1, \alpha_{2, k}=2^{k+1}\left(2^{k+2}-4 k-3\right)+k^{2}+2 k-1$, and $\alpha_{m, k}=1+$ $\sum_{r=0}^{m-1}\binom{m}{r} \sum_{i=1}^{k} 2^{k-i} i^{m-r} \alpha_{r, k}$, which generalize recent results on weighted Fibonacci sums by Benjamin, Neer, Otero, and Sellers.

1. Introduction and Main Results

Benjamin et al. [1] investigated sums of the form

$$
\begin{equation*}
\alpha_{m}:=\sum_{n=1}^{\infty} \frac{n^{m} F_{n}}{2^{n+1}}, m=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

by probabilistic arguments. They found that

$$
\begin{equation*}
\alpha_{0}=1, \alpha_{1}=5, \alpha_{2}=47 \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{m}=1+\sum_{r=0}^{m-1}\binom{m}{r}\left(2+2^{m-r}\right) \alpha_{r}, \tag{1.3}
\end{equation*}
$$

which implies $\alpha_{3}=665, \alpha_{4}=12551$, and so on (see, also, Vajda [12]). Here, and in the sequel, $\sum_{j=l}^{u} f_{j}=0$, for $l>u$.

Presently, we examine sums of the form

$$
\begin{equation*}
\alpha_{m, k}:=\sum_{n=1}^{\infty} \frac{n^{m} F_{n}^{(k)}}{2^{n+k-1}}, m=0,1,2, \ldots, k=2,3, \ldots \tag{1.4}
\end{equation*}
$$

where $F_{n}^{(k)}$ is the Fibonacci sequence of order $k[2,7,8,9,11]$ (or k-generalized Fibonacci sequence $[4,5,6])$.

We note first [6] that for each $k=2,3, \ldots$,

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}^{(k)}}{F_{n}^{(k)}}=r_{k, k}
$$

THE FIBONACCI QUARTERLY

for some $r_{k, k}$ in the open interval (1,2), which implies that the series $\sum_{n=1}^{\infty} \frac{n^{m} F_{n}^{(k)}}{2^{n+k-1}}$ converges (to $\alpha_{m, k}$), by the ratio test, since $\sum_{n=1}^{\infty} \frac{n^{m} F_{n}^{(k)}}{2^{n+k-1}}>0$ for all n and

$$
\frac{\frac{(n+1)^{m} F_{n+1}^{(k)}}{2^{n+k}}}{\frac{n^{m} F_{k}^{(k)}}{2^{n+k-1}}}=\frac{1}{2}\left(\frac{n+1}{n}\right)^{m} \frac{F_{n+1}^{(k)}}{F_{n}^{(k)}} \rightarrow \frac{r_{k, k}}{2}<1 .
$$

Therefore, $\alpha_{m, k}$ is well-defined.
We shall derive the following two propositions.
Proposition 1.1. Let $\alpha_{m, k}$ be as in (1.4). Then, for $k=2,3, \ldots$,
(a) $\alpha_{0, k}=1$,
(b) $\alpha_{1, k}=2^{k+1}-k-1$,
(c) $\alpha_{2, k}=2^{k+1}\left(2^{k+2}-4 k-3\right)+k^{2}+2 k-1$.

Proposition 1.2. Let $\alpha_{m, k}$ be as in (1.4). Then,

$$
\alpha_{m, k}=1+\sum_{r=0}^{m-1}\binom{m}{r} \sum_{i=1}^{k} 2^{k-i} i^{m-r} \alpha_{r, k} .
$$

The proofs of the propositions are direct consequences of two well-known results $[6,7,8,9$, 10], which we state as lemmas for easy reference.

2. Preliminary Results

Lemma 2.1. $[6,7,8,9]$. Let $F_{n}^{(k)}$ be the Fibonacci sequence of order k. Then, for $n \geq 0$,

$$
F_{n+1}^{(k)}=\sum\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}},
$$

where the sum is taken over all k-tuples of non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $n_{1}+$ $2 n_{2}+\ldots+k n_{k}=n$.
Lemma 2.2. $[8,9,10]$. Let N_{k} be the waiting time until the occurrence of the k th consecutive success in independent trials with success probability $p(0<p<1)$. Then, for $n \geq k$,

$$
\begin{equation*}
P\left(N_{k}=n\right)=p^{n} \sum\binom{n_{1}+\cdots+n_{k}}{n_{1}, \cdots, n_{k}}\left(\frac{q}{p}\right)^{n_{1}+\cdots+n_{k}} \tag{a}
\end{equation*}
$$

and 0 if $n<k$, where the summation is taken over all k-tuples of non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $n_{1}+2 n_{2}+\cdots+k n_{k}=n-k$.

$$
\begin{equation*}
\sum_{n=k}^{\infty} P\left(N_{k}=n\right)=1 \tag{b}
\end{equation*}
$$

(c) $\quad \mu_{k}(p)=E\left(N_{k}\right)=\frac{1-p^{k}}{q p^{k}}, \quad$ and $\quad \sigma_{k}^{2}(p)=V\left(N_{k}\right)=\frac{1-(2 k+1) q p^{k}-p^{2 k+1}}{q^{2} p^{2 k}}$.

$$
\begin{equation*}
P\left(N_{k}=n+k\right)=\frac{F_{n+1}^{(k)}}{2^{n+k}}, \quad n \geq 0, \quad \text { for } \quad p=\frac{1}{2} . \tag{d}
\end{equation*}
$$

Part (c) was first established by Feller [3].

INFINITE SUMS OF WEIGHTED FIBONACCI NUMBERS OF ORDER K

3. Proof of Main Results

We proceed to show the main results.
Proof of Proposition 1.1. We have

$$
\alpha_{0, k}=\sum_{n=1}^{\infty} \frac{F_{n}^{(k)}}{2^{n+k-1}}=\sum_{n=k}^{\infty} \frac{F_{n-k+1}^{(k)}}{2^{n}}=\sum_{n=k}^{\infty} \frac{\sum\binom{n_{1}+\cdots+n_{k}}{n_{1}, \ldots, n_{k}}}{2^{n}},
$$

where the inner sum is taken over all k-tuples of non-negative integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $n_{1}+2 n_{2}+\cdots+k n_{k}=n-k$, by Lemma 2.1,

$$
\begin{aligned}
& =\sum_{n=k}^{\infty} P\left(N_{k}=n\right), \text { with } p=1 / 2, \text { by Lemma } 2.2(\mathrm{a}) \\
& =1 \text { by Lemma 2.2(b), and this establishes Proposition 1.1(a). }
\end{aligned}
$$

Next,

$$
\begin{aligned}
\alpha_{1, k} & =\sum_{n=1}^{\infty} \frac{n F_{n}^{(k)}}{2^{n+k-1}}=\sum_{n=k}^{\infty} \frac{(n-k+1) F_{n-k+1}^{(k)}}{2^{n}}=\sum_{n=k}^{\infty} \frac{n F_{n-k+1}^{(k)}}{2^{n}}-(k-1) \sum_{n=k}^{\infty} \frac{F_{n-k+1}^{(k)}}{2^{n}} \\
& =\mu_{k}\left(\frac{1}{2}\right)-(k-1)=2^{k+1}-2-(k-1)=2^{k+1}-k-1,
\end{aligned}
$$

by Proposition 1.1(a) and Lemma 2.2(c), which establishes Proposition 1.1 (b).
Finally, we have, by Proposition 1.1(a) and Lemma 2.2(c),

$$
\begin{aligned}
\alpha_{2, k} & =\sum_{n=1}^{\infty} \frac{n^{2} F_{n}^{(k)}}{2^{n+k-1}}=\sum_{n=k}^{\infty} \frac{(n-k+1)^{2} F_{n-k+1}^{(k)}}{2^{n}} \\
& =\sum_{n=k}^{\infty} \frac{n^{2} F_{n-k+1}^{(k)}}{2^{n}}-2(k-1) \sum_{n=k}^{\infty} \frac{n F_{n-k+1}^{(k)}}{2^{n}}+(k-1)^{2} \\
& =E\left(N_{k}^{2}\right)-2(k-1) E\left(N_{k}\right)+(k-1)^{2}, \text { with } p=\frac{1}{2}, \\
& =\sigma_{k}^{2}\left(\frac{1}{2}\right)+\mu_{k}^{2}\left(\frac{1}{2}\right)-2(k-1) \mu_{k}\left(\frac{1}{2}\right)+(k-1)^{2} \\
& =2^{2 k+3}-2^{k+3}-(2 k-1) 2^{k+2}-2^{k+1}+k^{2}+2 k-1 \\
& =2^{k+1}\left(2^{k+2}-4 k-3\right)+k^{2}+2 k-1,
\end{aligned}
$$

and this completes the proof of Proposition 1.1.
For $k=2$, Proposition 1.1 reduces to relation (1.2).
We proceed now to show our second proposition.
Proof of Proposition 1.2. Let Y_{k} be the waiting time until the beginning of the occurrence of the k th consecutive success in independent trials with success probability $p=\frac{1}{2}$. Since $Y_{k}=N_{k}-(k-1)$ for $p=\frac{1}{2}$, Lemma 2.2(d) gives

$$
\begin{equation*}
P\left(Y_{k}=n\right)=P\left(N_{k}=n+k-1\right)=\frac{F_{n}^{(k)}}{2^{n+k-1}}, \quad n \geq 1 . \tag{3.1}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Therefore, by (3.1) and (1.4), the m th moment of Y_{k} is

$$
\begin{equation*}
E\left(Y_{k}^{m}\right)=\sum_{n=1}^{\infty} n^{m} P\left(Y_{k}=n\right)=\sum_{n=1}^{\infty} \frac{n^{m} F_{n}^{(k)}}{2^{n+k-1}}=\alpha_{m, k} . \tag{3.2}
\end{equation*}
$$

If we denote the trials by $T_{i},(i \geq 1)$, success by 1 , and failure by 0 , it follows that $\left(Y_{k}=1\right)=\left(1 \ldots 1\left(k 1^{\prime} s\right)\right),\left(Y_{k}=2\right)=\left(01 \ldots 1\left(k 1^{\prime} s\right)\right)$, and for $n \geq 3\left(Y_{k}=n\right)=$ (all outcomes $t_{1} \ldots t_{n-2} 01 \ldots 1$ ($k 1^{\prime}$'s), $t_{i}=0$ or $1(1 \leq i \leq n-2)$ with no k consecutive 1's among the first $n-2$ outcomes).

We define now the events $A_{0}=$ no failure occurs in the first k trials, and $A_{i}=$ the first failure in the first k trials occurs at the i th trial, $1 \leq i \leq k$, i.e.

$$
\begin{aligned}
& A_{0}=\underbrace{1 \ldots 1}_{k} \\
& A_{1}=0 \ldots t_{k} \\
& A_{2}=10 \ldots t_{k} \\
& \vdots \\
& A_{k}=\underbrace{1 \ldots 10 .}_{k-1}
\end{aligned}
$$

It follows that $\left(Y_{k}=n\right)$ is the union of the mutually exclusive events $\left(Y_{k}=n\right) \cap A_{i}(0 \leq i \leq k)$, and hence,

$$
P\left(Y_{k}=n\right)=\sum_{i=0}^{k} P\left[\left(Y_{k}=n\right) \cap A_{i}\right]=\sum_{i=0}^{k} P\left[\left(Y_{k}=n\right) \mid A_{i}\right] P\left(A_{i}\right) .
$$

Therefore,

$$
\begin{align*}
E\left(Y_{k}^{m}\right) & =\sum_{n=1}^{\infty} n^{m} P\left(Y_{k}=n\right)=\sum_{n=1}^{\infty} n^{m} \sum_{i=0}^{k} P\left[\left(Y_{k}=n\right) \mid A_{i}\right] P\left(A_{i}\right) \\
& =\sum_{i=0}^{k} \sum_{n=1}^{\infty} n^{m} P\left[\left(Y_{k}=n\right) \mid A_{i}\right] P\left(A_{i}\right)=\sum_{i=0}^{k} E\left(Y_{k}^{m} \mid A_{i}\right) P\left(A_{i}\right) . \tag{3.3}
\end{align*}
$$

Now, given that the event $A_{i}(1 \leq i \leq k)$ has occurred, the beginning of the k th consecutive success may start at the $i+1$ trial. Thus, $E\left(Y_{k}^{m} \mid A_{i}\right)=E\left(\left(Y_{k}+i\right)^{m}\right)(1 \leq i \leq k)$. Furthermore, $Y_{k}^{m} \mid A_{0}=1, P\left(A_{0}\right)=\left(\frac{1}{2}\right)^{k}$ and $P\left(A_{i}\right)=\left(\frac{1}{2}\right)^{i}(1 \leq i \leq k)$. It follows, by (3.3),

$$
\begin{aligned}
E\left(Y_{k}^{m}\right) & =\left(\frac{1}{2}\right)^{k}+\sum_{i=1}^{k}\left(\frac{1}{2}\right)^{i} E\left(\left(Y_{k}+i\right)^{m}\right) \\
& =\left(\frac{1}{2}\right)^{k}+\sum_{i=1}^{k}\left(\frac{1}{2}\right)^{i} E\left(\sum_{r=0}^{m}\binom{m}{r} i^{m-r} Y_{k}^{r}\right) \\
& =\left(\frac{1}{2}\right)^{k}+\left(1-\left(\frac{1}{2}\right)^{k}\right) E\left(Y_{k}^{m}\right)+\sum_{i=1}^{k}\left(\frac{1}{2}\right)^{i} E\left(\sum_{r=0}^{m-1}\binom{m}{r} i^{m-r} Y_{k}^{r}\right) .
\end{aligned}
$$

INFINITE SUMS OF WEIGHTED FIBONACCI NUMBERS OF ORDER K

Solving for $E\left(Y_{k}^{m}\right)$, we get

$$
\begin{aligned}
E\left(Y_{k}^{m}\right) & =1+\sum_{i=1}^{k} 2^{k-i} E\left(\sum_{r=0}^{m-1}\binom{m}{r} i^{m-r} Y_{k}^{r}\right) \\
& =1+\sum_{r=0}^{m-1}\binom{m}{r} \sum_{i=1}^{k} 2^{k-i} i^{m-r} E\left(Y_{k}^{r}\right)
\end{aligned}
$$

which, by means of (3.2), completes the proof of Proposition 1.2.
For $k=2$, Proposition 1.2 reduces to relation (1.3).

References

[1] A. T. Benjamin, J. D. Neer, D. E. Otero, and J. A. Sellers, A probabilistic view of certain weighted Fibonacci sums, The Fibonacci Quarterly, 41.4 (2003), 360-364.
[2] R. C. Bollinger, Fibonacci k-sequences, Pascal-T triangles and k-in-a-row problems, The Fibonacci Quarterly, 22.2 (1984), 146-151.
[3] W. Feller, An Introduction to Probability Theory and Its Applications, third ed., Wiley, 1968.
[4] F. T. Howard and C. Cooper, Some identities for the r-Fibonacci numbers, The Fibonacci Quarterly, 49.3 (2011), 231-243.
[5] D. Kessler and J. Schiff, A combinatoric proof of generalization of Ferguson's formula for k-generalized Fibonacci numbers, The Fibonacci Quarterly, 42.3 (2004), 266-273.
[6] E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices, American Mathematical Monthly, 67.8 (1960), 745-752.
[7] A. N. Philippou, A note on the Fibonacci sequence of order k and multinomial coefficients, The Fibonacci Quarterly, 24.2 (1983), 82-86.
[8] A. N. Philippou, Distributions and Fibonacci polynomials of order k, longest runs, and reliability of consecutive-k-out-of-n: F systems, Fibonacci Numbers and Their Applications, A. N. Philippou, G. E. Bergum, and A. F. Horadam, eds., 203-227, Reidel, Dordrecht, 1986.
[9] A. N. Philippou and A. A. Muwafi, Waiting for the kth consecutive success and the Fibonacci sequence of order k, The Fibonacci Quarterly, 20.1 (1982), 28-32.
[10] A. N. Philippou, C. Georghiou, and G. N. Philippou, A generalized geometric distribution and some of its properties, Statistics and Probability Letters, 1 (1983), 171-175.
[11] H. Prodinger, Two families of series of the generalized golden ratio, The Fibonacci Quarterly, 53.1 (2015), 74-77.
[12] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, John Wiley and Sons, New York, 1989.

MSC2010: 11B39, 40A05
Department of Mathematics, University of Patras, 265-00 Patras, Greece
E-mail address: dafnisspyros@gmail.com
Department of Mathematics, University of Patras, 265-00 Patras, Greece
E-mail address: anphilip@math.upatras.gr

