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Abstract. For integers m ≥ 0 and k ≥ 2, set αm,k :=
∞
∑

n=1

nmF
(k)
n

2n+k−1 , where F
(k)
n is the Fi-

bonacci sequence of order k or k-generalized Fibonacci sequence. It is shown that α0,k =
1, α1,k = 2k+1

− k − 1, α2,k = 2k+1(2k+2
− 4k − 3) + k2 + 2k − 1, and αm,k = 1 +

m−1
∑

r=0

(

m

r

)

k
∑

i=1

2k−iim−rαr,k, which generalize recent results on weighted Fibonacci sums by Ben-

jamin, Neer, Otero, and Sellers.

1. Introduction and Main Results

Benjamin et al. [1] investigated sums of the form

αm :=

∞∑

n=1

nmFn

2n+1
,m = 0, 1, 2, . . . , (1.1)

by probabilistic arguments. They found that

α0 = 1, α1 = 5, α2 = 47, (1.2)

and

αm = 1 +

m−1∑

r=0

(
m

r

)

(2 + 2m−r)αr, (1.3)

which implies α3 = 665, α4 = 12551, and so on (see, also, Vajda [12]). Here, and in the sequel,
u∑

j=l

fj = 0, for l > u.

Presently, we examine sums of the form

αm,k :=

∞∑

n=1

nmF
(k)
n

2n+k−1
,m = 0, 1, 2, . . . , k = 2, 3, . . . , (1.4)

where F
(k)
n is the Fibonacci sequence of order k [2,7,8,9,11] (or k-generalized Fibonacci se-

quence [4, 5, 6]).
We note first [6] that for each k = 2, 3, . . . ,

lim
n→∞

F
(k)
n+1

F
(k)
n

= rk,k
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for some rk,k in the open interval (1, 2), which implies that the series
∞∑

n=1

nmF
(k)
n

2n+k−1 converges (to

αm,k), by the ratio test, since
∞∑

n=1

nmF
(k)
n

2n+k−1 > 0 for all n and

(n+1)mF
(k)
n+1

2n+k

nmF
(k)
n

2n+k−1

=
1

2

(
n+ 1

n

)m F
(k)
n+1

F
(k)
n

→
rk,k
2

< 1.

Therefore, αm,k is well-defined.
We shall derive the following two propositions.

Proposition 1.1. Let αm,k be as in (1.4). Then, for k = 2, 3, . . . ,

(a) α0,k = 1,

(b) α1,k = 2k+1 − k − 1,

(c) α2,k = 2k+1(2k+2 − 4k − 3) + k2 + 2k − 1.

Proposition 1.2. Let αm,k be as in (1.4). Then,

αm,k = 1 +

m−1∑

r=0

(
m

r

) k∑

i=1

2k−iim−rαr,k.

The proofs of the propositions are direct consequences of two well-known results [6, 7, 8, 9,
10], which we state as lemmas for easy reference.

2. Preliminary Results

Lemma 2.1. [6, 7, 8, 9]. Let F
(k)
n be the Fibonacci sequence of order k. Then, for n ≥ 0,

F
(k)
n+1 =

∑
(
n1 + · · · + nk

n1, . . . , nk

)

,

where the sum is taken over all k-tuples of non-negative integers n1, n2, . . . , nk such that n1 +
2n2 + . . .+ knk = n.

Lemma 2.2. [8, 9, 10]. Let Nk be the waiting time until the occurrence of the kth consecutive

success in independent trials with success probability p (0 < p < 1). Then, for n ≥ k,

(a) P (Nk = n) = pn
∑

(
n1 + · · ·+ nk

n1, · · · , nk

)(
q

p

)n1+···+nk

and 0 if n < k, where the summation is taken over all k-tuples of non-negative integers

n1, n2, . . . , nk such that n1 + 2n2 + · · ·+ knk = n− k.

(b)

∞∑

n=k

P (Nk = n) = 1.

(c) µk(p) = E(Nk) =
1− pk

qpk
, and σ2

k(p) = V (Nk) =
1− (2k + 1)qpk − p2k+1

q2p2k
.

(d) P (Nk = n+ k) =
F

(k)
n+1

2n+k
, n ≥ 0, for p =

1

2
.

Part (c) was first established by Feller [3].
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3. Proof of Main Results

We proceed to show the main results.

Proof of Proposition 1.1. We have

α0,k =

∞∑

n=1

F
(k)
n

2n+k−1
=

∞∑

n=k

F
(k)
n−k+1

2n
=

∞∑

n=k

∑(
n1+···+nk

n1,...,nk

)

2n
,

where the inner sum is taken over all k-tuples of non-negative integers n1, n2, . . . , nk such that
n1 + 2n2 + · · ·+ knk = n− k, by Lemma 2.1,

=
∞∑

n=k

P (Nk = n),with p = 1/2, by Lemma 2.2(a)

= 1 by Lemma 2.2(b), and this establishes Proposition 1.1(a).

Next,

α1,k =

∞∑

n=1

nF
(k)
n

2n+k−1
=

∞∑

n=k

(n− k + 1)F
(k)
n−k+1

2n
=

∞∑

n=k

nF
(k)
n−k+1

2n
− (k − 1)

∞∑

n=k

F
(k)
n−k+1

2n

= µk(
1

2
)− (k − 1) = 2k+1 − 2− (k − 1) = 2k+1 − k − 1,

by Proposition 1.1(a) and Lemma 2.2(c), which establishes Proposition 1.1 (b).
Finally, we have, by Proposition 1.1(a) and Lemma 2.2(c),

α2,k =

∞∑

n=1

n2F
(k)
n

2n+k−1
=

∞∑

n=k

(n− k + 1)2F
(k)
n−k+1

2n

=

∞∑

n=k

n2F
(k)
n−k+1

2n
− 2(k − 1)

∞∑

n=k

nF
(k)
n−k+1

2n
+ (k − 1)2

= E(N2
k )− 2(k − 1)E(Nk) + (k − 1)2, with p =

1

2
,

= σ2
k

(
1

2

)

+ µ2
k

(
1

2

)

− 2(k − 1)µk

(
1

2

)

+ (k − 1)2

= 22k+3 − 2k+3 − (2k − 1)2k+2 − 2k+1 + k2 + 2k − 1

= 2k+1(2k+2 − 4k − 3) + k2 + 2k − 1,

and this completes the proof of Proposition 1.1.
For k = 2, Proposition 1.1 reduces to relation (1.2).
We proceed now to show our second proposition.

Proof of Proposition 1.2. Let Yk be the waiting time until the beginning of the occurrence
of the kth consecutive success in independent trials with success probability p = 1

2 . Since

Yk = Nk − (k − 1) for p = 1
2 , Lemma 2.2(d) gives

P (Yk = n) = P (Nk = n+ k − 1) =
F

(k)
n

2n+k−1
, n ≥ 1. (3.1)
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Therefore, by (3.1) and (1.4), the mth moment of Yk is

E(Y m
k ) =

∞∑

n=1

nmP (Yk = n) =
∞∑

n=1

nmF
(k)
n

2n+k−1
= αm,k. (3.2)

If we denote the trials by Ti, (i ≥ 1), success by 1, and failure by 0, it follows that
(Yk = 1) = (1 . . . 1 (k 1’s)), (Yk = 2) = (01 . . . 1 (k 1’s)), and for n ≥ 3 (Yk = n) =
(all outcomes t1 . . . tn−201 . . . 1 (k 1’s), ti = 0 or 1 (1 ≤ i ≤ n − 2) with no k consecutive 1’s
among the first n− 2 outcomes).

We define now the events A0 = no failure occurs in the first k trials, and Ai = the first
failure in the first k trials occurs at the ith trial, 1 ≤ i ≤ k, i.e.

A0 = 1 . . . 1
︸ ︷︷ ︸

k

A1 = 0 . . . tk

A2 = 10 . . . tk

...

Ak = 1 . . . 1
︸ ︷︷ ︸

k−1

0.

It follows that (Yk = n) is the union of the mutually exclusive events (Yk = n)∩Ai (0 ≤ i ≤ k),
and hence,

P (Yk = n) =

k∑

i=0

P [(Yk = n) ∩Ai] =

k∑

i=0

P [(Yk = n)|Ai]P (Ai).

Therefore,

E(Y m
k ) =

∞∑

n=1

nmP (Yk = n) =
∞∑

n=1

nm

k∑

i=0

P [(Yk = n)|Ai]P (Ai)

=
k∑

i=0

∞∑

n=1

nmP [(Yk = n)|Ai]P (Ai) =
k∑

i=0

E(Y m
k |Ai)P (Ai). (3.3)

Now, given that the event Ai (1 ≤ i ≤ k) has occurred, the beginning of the kth consecutive
success may start at the i+1 trial. Thus, E(Y m

k |Ai) = E((Yk+i)m) (1 ≤ i ≤ k). Furthermore,

Y m
k |A0 = 1, P (A0) = (12)

k and P (Ai) = (12)
i (1 ≤ i ≤ k). It follows, by (3.3),

E(Y m
k ) =

(
1

2

)k

+
k∑

i=1

(
1

2

)i

E((Yk + i)m)

=

(
1

2

)k

+

k∑

i=1

(
1

2

)i

E

(
m∑

r=0

(
m

r

)

im−rY r
k

)

=

(
1

2

)k

+

(

1−

(
1

2

)k
)

E(Y m
k ) +

k∑

i=1

(
1

2

)i

E

(
m−1∑

r=0

(
m

r

)

im−rY r
k

)

.
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Solving for E(Y m
k ), we get

E(Y m
k ) = 1 +

k∑

i=1

2k−iE

(
m−1∑

r=0

(
m

r

)

im−rY r
k

)

= 1 +

m−1∑

r=0

(
m

r

) k∑

i=1

2k−iim−rE(Y r
k ),

which, by means of (3.2), completes the proof of Proposition 1.2.
For k = 2, Proposition 1.2 reduces to relation (1.3).
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