A DIRECT PROOF THAT F_n DIVIDES F_{mn} EXTENDED TO DIVISIBILITY PROPERTIES OF RELATED NUMBERS

RUSSELL EULER AND JAWAD SADEK

ABSTRACT. A direct proof that F_n divides F_{mn} uses the quotient of the division to derive divisibility properties for Fibonacci, Lucas, Pell, and Pell-Lucas numbers.

1. INTRODUCTION

For positive integers m and n, the standard method of proving $F_n | F_{mn}$ is by first establishing the relationship $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$, then using induction. Several interesting proofs were given in [1] and [2] including one that gives the quotient of the division in terms of a Lucas sum. An "unusual" proof that involves the use of hyperbolic functions was published in [5]. In [3], a unified approach to divisibility properties for Fibonacci (F_n) , Lucas (L_n) , Pell (P_n) , and Pell-Lucas (Q_n) numbers was given. The proofs of these properties utilized the fact that $Z[\sqrt{2}]$ and $Z[\sqrt{5}]$ are closed under addition and multiplication. This paper extends the divisibility properties in [3] to a larger family of integers and the proofs do not use the properties of $Z[\sqrt{2}]$ or $Z[\sqrt{5}]$. In addition, the quotient of the division is given explicitly in each case. Also, new divisibility properties are given. In addition, comparing a result from [1] gives rise to a new identity (Corollary 3.3).

2. Preliminary Results

For nonnegative integers n, consider the recurrence relation defined by

$$x_{n+2} = cx_{n+1} + x_n$$
(2.1)
$$x_0 = a, x_1 = b$$

where a, b, and c are integers. Following the standard procedures for solving second order homogeneous recurrence relations with constant coefficients [6], the Binet formula for the integer family $\{x_n\}$ defined by (2.1) is

$$x_n = \frac{1}{u - v} \left([b - av] u^n - [b - au] v^n \right),$$
(2.2)

where $u = \frac{c+\sqrt{c^2+4}}{2}$ and $v = \frac{c-\sqrt{c^2+4}}{2}$ are the roots of $\lambda^2 - c\lambda - 1 = 0$. These roots satisfy u + v = c, $u - v = \sqrt{c^2 + 4}$, and uv = -1. In particular, if a = 0 and b = c = 1, then $x_n = F_n$. If a = 2 and b = c = 1, then $x_n = L_n$. If a = 0, b = 1, and c = 2, then $x_n = P_n$. If a = b = c = 2, then $x_n = Q_n$. Also, for F_n and L_n , $u = \alpha = \frac{1}{2}(1 + \sqrt{5})$ and $v = \beta = \frac{1}{2}(1 - \sqrt{5})$. For P_n and Q_n , $u = \gamma = 1 + \sqrt{2}$ and $v = \delta = 1 - \sqrt{2}$. For the four special cases we consider, the Binet formulas are

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \ L_n = \alpha^n + \beta^n, P_n = \frac{\gamma^n - \delta^n}{\gamma - \delta}, \ \text{and} \ Q_n = \gamma^n + \delta^n,$$

for $n \ge 0$.

VOLUME 54, NUMBER 2

Lemma 2.1. $x_n u + x_{n-1} = (b - av)u^n$ and $x_n v + x_{n-1} = (b - au)v^n$ for $n \ge 1$.

Proof. Using the facts that uv = -1, $\frac{1+u^2}{u-v} = u$, and the Binet formula for x_n we have

$$\begin{aligned} x_n u + x_{n-1} &= \frac{1}{u-v} \left[(b-av)u^n - (b-au)v^n \right] u + \frac{1}{u-v} \left[(b-av)u^{n-1} - (b-au)v^{n-1} \right] \\ &= \frac{1}{u-v} \left[(b-av)u^{n+1} + (b-au)v^{n-1} + (b-av)u^{n-1} - (b-au)v^{n-1} \right] \\ &= \left[(b-av)u^{n-1} \frac{(1+u^2)}{u-v} \right] \\ &= (b-av)u^{n-1}u \\ &= (b-av)u^n. \end{aligned}$$

Similarly, $x_n v + x_{n-1} = (b - au)v^n$.

3. Divisibility Properties

Now we provide our proofs of some known results and some new divisibility properties. In the sequel, a, b, and c will always be as in (2.1).

Theorem 3.1. For a given c, let $x_0 = a = 0$ and $x_1 = b = 1$ in (2.1). Then $x_n \mid x_{mn}$ for all nonnegative integers m.

Proof. Since a = 0 and b = 1, (2.2) gives

$$x_n = \frac{1}{u - v} \left(u^n - v^n \right).$$

Thus, by Lemma 2.1 and the Binomial Theorem,

$$\begin{aligned} x_{mn} &= \frac{1}{u - v} \left(u^{mn} - v^{mn} \right) \\ &= \frac{1}{u - v} \left[(u^n)^m - (v^n)^m \right] \\ &= \frac{1}{u - v} \left[(x_n u + x_{n-1})^m - (x_n v + x_{n-1})^m \right] \\ &= \frac{1}{u - v} \left[\sum_{i=0}^m \binom{m}{i} (x_n u)^i x_{n-1}^{m-i} - \sum_{i=0}^m \binom{m}{i} (x_n v)^i x_{n-1}^{m-i} \right] \\ &= \frac{1}{u - v} \left[\sum_{i=1}^m \binom{m}{i} x_n^i x_{n-1}^{m-i} (u^i - v^i) \right] \\ &= \sum_{i=1}^m \binom{m}{i} x_n^i x_{n-1}^{m-i} x_i \\ &= x_n \sum_{i=1}^m \binom{m}{i} x_n^{i-1} x_{n-1}^{m-i} x_i. \end{aligned}$$
(3.1)

The result follows since $\sum_{i=1}^{m} {m \choose i} x_n^{i-1} x_{n-1}^{m-i} x_i$ is an integer.

Notice that (3.1) shows what the quotient would be if x_{mn} is divided by x_n . Corollary 3.2. Let c = 1 in (2.1). Then $F_n | F_{mn}$.

MAY 2016

161

THE FIBONACCI QUARTERLY

In [1], the authors gave several proofs that $F_n | F_{mn}$. Their first proof provided the quotient $M = L_{(m-1)n} + (-1)^n L_{(m-3)n} + (-1)^{2n} L_{(m-5)n} + \cdots$, if *m* is even, and $M = (-1)^{\frac{(m-1)n}{2}} + L_{(m-1)n} + (-1)^n L_{(m-3)n} + (-1)^{2n} L_{(m-5)n} + \cdots$, if *m* is odd. By comparing the quotient from our proof to *M*, the following corollary follows.

Corollary 3.3.

$$\sum_{i=1}^{m} {m \choose i} F_n^{i-1} F_{n-1}^{m-i} F_i = L_{(m-1)n} + (-1)^n L_{(m-3)n} + (-1)^{2n} L_{(m-5)n} + \cdots$$
$$= \sum_{k=1}^{\frac{m}{2}} (-1)^{(k-1)n} L_{(m-[2k-1])n}, \tag{3.2}$$

if m is even.

$$\sum_{i=1}^{m} {m \choose i} F_n^{i-1} F_{n-1}^{m-i} F_i = (-1)^{\frac{(m-1)n}{2}} + L_{(m-1)n} + (-1)^n L_{(m-3)n} + (-1)^{2n} L_{(m-5)n} + \cdots$$
$$= (-1)^{\frac{(m-1)n}{2}} + \sum_{k=1}^{\frac{m-1}{2}} (-1)^{(k-1)n} L_{(m-[2k-1])n}, \tag{3.3}$$

if m is odd.

Example 3.4. If F_{10n} is divided by F_n , the quotient is

$$\sum_{i=1}^{10} {10 \choose i} F_n^{i-1} F_{n-1}^{10-i} F_i = L_{9n} + (-1)^n L_{7n} + L_{5n} + (-1)^n L_{3n} + L_n.$$

Example 3.5. If F_{3n} is divided by F_n , the quotient is

$$\sum_{i=1}^{3} \binom{3}{i} F_{n}^{i-1} F_{n-1}^{3-i} F_{i} = (-1)^{n} + L_{2n}.$$

Corollary 3.6. If c = 2 in (2.1), then $P_n \mid P_{mn}$.

Theorem 3.7. $F_n \mid (L_{mn} - 2F_{n-1}^m).$

Proof. Proceeding as in the proof of Theorem 3.1,

$$L_{mn} = \sum_{i=0}^{m} \binom{m}{i} F_n^i F_{n-1}^{m-i} L_i = 2F_{n-1}^m + \sum_{i=1}^{m} \binom{m}{i} F_n^i F_{n-1}^{m-i} L_i.$$
(3.4)

So, $L_{mn} - 2F_{n-1}^m = F_n \sum_{i=1}^m {m \choose i} F_n^{i-1} F_{n-1}^{m-i} L_i$. The result follows since $\sum_{i=1}^m {m \choose i} F_n^{i-1} F_{n-1}^{m-i} L_i$ is an integer.

Theorem 3.8. $P_n \mid (Q_{mn} - 2P_{n-1}^m).$

Proof. Since

$$Q_{mn} = \sum_{i=0}^{m} \binom{m}{i} P_n^i P_{n-1}^{m-i} Q_i = 2P_{n-1}^m + P_n \sum_{i=1}^{m} \binom{m}{i} P_n^{i-1} P_{n-1}^{m-i} Q_i, \qquad (3.5)$$

ws.

the result follows.

Lemma 3.9. Let a = 2 and b = c in (2.1). Then

VOLUME 54, NUMBER 2

(i)
$$x_{mn} = u^{mn} + v^{mn}$$
 and

(ii)
$$x_{mn} = \frac{1}{(u-v)^m} \left(\sum_{i=0}^m \binom{m}{i} x_n^i x_{n-1}^{m-i} [u^i + (-1)^m v^i] \right).$$

Proof. If a = 2 and b = c, then simple calculations yield b - av = u - v and b - au = -(u - v). Thus,

$$\begin{aligned} x_{mn} &= \frac{1}{(u-v)} \left([b-av] u^{mn} - [b-au] v^{mn} \right) \\ &= u^{mn} + v^{mn} \\ &= \left(\frac{x_n u + x_{n-1}}{u-v} \right)^m + \left(\frac{x_n v + x_{n-1}}{-(u-v)} \right)^m \\ &= \frac{1}{(u-v)^m} \left(\sum_{i=0}^m \binom{m}{i} (x_n u)^i x_{n-1}^{m-i} + (-1)^m \sum_{i=0}^m \binom{m}{i} (x_n v)^i x_{n-1}^{m-i} \right) \\ &= \frac{1}{(u-v)^m} \left(\sum_{i=0}^m \binom{m}{i} x_n^i x_{n-1}^{m-i} [u^i + (-1)^m v^i] \right). \end{aligned}$$

The proof of the lemma is complete.

Theorem 3.10. Let a = 2 and b = c = 1 in (2.1), and assume m is odd. Then $L_n \mid L_{mn}$.

Proof. The assumptions imply that $x_n = L_n$. Since m is odd, m - 1 = 2j, where j is a nonnegative integer. Now Lemma 2.1 yields

$$\begin{split} L_{mn} &= \frac{1}{(u-v)^m} \left(\sum_{i=0}^m \binom{m}{i} L_n^i L_{n-1}^{m-i} [u^i + (-1)^m v^i] \right) \\ &= \frac{1}{(u-v)^{m-1}} \left(\sum_{i=1}^m \binom{m}{i} L_n^i L_{n-1}^{m-i} \left[\frac{u^i - v^i}{u-v} \right] \right) \\ &= \frac{1}{(u-v)^{2j}} \left(\sum_{i=1}^m \binom{m}{i} L_n^i L_{n-1}^{m-i} F_i \right) \\ &= \frac{1}{5^j} \left(\sum_{i=1}^m \binom{m}{i} L_n^i L_{n-1}^{m-i} F_i \right). \end{split}$$

Thus, $5^{j}L_{mn} = \sum_{i=1}^{m} {m \choose i} L_{n}^{i} L_{n-1}^{m-i} F_{i}$. Since L_{n} divides the right-hand side and since L_{n} and 5 are relatively prime [4], $L_{n} \mid L_{mn}$.

A similar argument yields the following theorem.

Theorem 3.11. Let a = b = c = 2 in (2.1) and assume m is odd. Then $Q_n \mid Q_{mn}$.

MAY 2016

THE FIBONACCI QUARTERLY

Proof. The assumptions imply that $x_n = Q_n$. Let m = 2j+1, where j is a nonnegative integer. Lemma 3.9 yields

$$\begin{aligned} Q_{mn} &= \frac{1}{(u-v)^m} \left(\sum_{i=0}^m \binom{m}{i} Q_n^i Q_{n-1}^{m-i} [u^i + (-1)^m v^i] \right) \\ &= \frac{1}{(u-v)^{m-1}} \left(\sum_{i=1}^m \binom{m}{i} Q_n^i Q_{n-1}^{m-i} \left[\frac{u^i - v^i}{u-v} \right] \right) \\ &= \frac{1}{(u-v)^{2j}} \left(\sum_{i=1}^m \binom{m}{i} Q_n^i Q_{n-1}^{m-i} P_i \right) \\ &= \frac{1}{8^j} \left(\sum_{i=1}^m \binom{m}{i} Q_n^i Q_{n-1}^{m-i} P_i \right). \end{aligned}$$

Thus, $8^{j}Q_{mn} = \sum_{i=1}^{m} {m \choose i} Q_{n}^{i} Q_{n-1}^{m-i} P_{i}$. Induction arguments using the recurrence formula for Q_{n} show that Q_{n} is even and $\frac{1}{2}Q_{n}$ is odd. Since Q_{n} divides $\sum_{i=1}^{m} {m \choose i} Q_{n}^{i} Q_{n-1}^{m-i} P_{i}$ and since $\frac{1}{2}Q_{n}$ and 8 are relatively prime, $Q_{n} \mid Q_{mn}$.

Lemma 3.12. Let a = 2 and b = c in (2.1). If m = 2j, where j is a nonnegative integer, then $x_n | ([c^2 + 4]^j x_{2jn} - 2x_{n-1}^{2j}).$

Proof. By Lemma 3.9,

$$x_{mn} = \frac{1}{(u-v)^m} \left(\sum_{i=0}^m \binom{m}{i} x_n^i x_{n-1}^{m-i} [u^i + v^i] \right).$$

Thus,

$$(c^{2}+4)^{j}x_{2jn} = \sum_{i=0}^{m} \binom{m}{i} x_{n}^{i} x_{n-1}^{m-i} x_{i}$$
$$= 2x_{n-1}^{m} + \sum_{i=1}^{m} \binom{m}{i} x_{n}^{i} x_{n-1}^{m-i} x_{i}$$

and so

$$(c^{2}+4)^{j}x_{2jn} - 2x_{n-1}^{2j} = x_{n}\sum_{i=1}^{2j} \binom{2j}{i} x_{n}^{i-1}x_{n-1}^{2j-i}x_{i}.$$

Since $\sum_{i=1}^{2j} {2j \choose i} x_n^{i-1} x_{n-1}^{2j-i} x_i$ is an integer, the lemma follows.

Corollary 3.13. If
$$b = c = 1$$
 in (2.1), then $L_n | \left(5^j L_{2jn} - 2L_{n-1}^{2j} \right)$ for $n \ge 1$ and $j \ge 0$.
Corollary 3.14. If $b = c = 2$ in (2.1), then $Q_n | \left(8^j Q_{2jn} - 2Q_{n-1}^{2j} \right)$ for $n \ge 1$ and $j \ge 0$.

Remark. The definition of the Pell-Lucas numbers is not consistent in the literature. Some authors define the Pell-Lucas numbers by the recurrence relation

$$x_{n+2} = 2x_{n+1} + x_n$$

with initial conditions

$$x_0 = 1 \quad \text{and} \quad x_1 = 1$$

VOLUME 54, NUMBER 2

EXTENSION OF A DIRECT PROOF THAT F_N DIVIDES F_{MN}

(a = b = 1 and c = 2). Using these values, the first seven Pell-Lucas numbers are 1, 1, 3, 7, 17, 41, 99. Theorem 3.11 and Corollary 3.14 also hold for this sequence.

4. Acknowledgment

The authors would like to thank the anonymous referee for pointing out references [1] and [2], and for detailed comments and suggestions that improved the clarity and presentation of this paper to a great extent.

References

- M. Bicknell and V. E. Hoggatt, Jr., A primer for the Fibonacci numbers: part IX, The Fibonacci Quarterly, 9.5 (1971), 529–537.
- [2] M. Bicknell, A primer on the Pell sequence and related sequences, The Fibonacci Quarterly, 13.4 (1975), 345–349.
- [3] R. Euler and J. Sadek, Divisibility properties for Fibonacci and related numbers, The Mathematical Gazette, 97 (2013), 461–464.
- [4] R. Euler and J. Sadek, Congruence relations from Binet forms, The Fibonacci Quarterly, 50.3 (2012), 246–251.
- [5] T. J. Osler and A. Hilburn, An unusual proof that F_m divides F_{mn} using hyperbolic functions, The Mathematical Gazette, **91** (2007), 510–512.
- [6] M. R. Spiegel, *Finite Differences and Difference Equations*, Shaum's Outline Series, McGraw-Hill Book Company, 1971.

MSC2010: 11B39, 11B99

DEPARTMENT OF MATHEMATICS AND STATISTICS, NORTHWEST MISSOURI STATE UNIVERSITY, MARYVILLE, MO 64468

E-mail address: reuler@nwmissouri.edu

Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

E-mail address: jawads@nwmissouri.edu