A DIRECT PROOF THAT F_{n} DIVIDES $F_{m n}$ EXTENDED TO DIVISIBILITY PROPERTIES OF RELATED NUMBERS

RUSSELL EULER AND JAWAD SADEK

Abstract

A direct proof that F_{n} divides $F_{m n}$ uses the quotient of the division to derive divisibility properties for Fibonacci, Lucas, Pell, and Pell-Lucas numbers.

1. Introduction

For positive integers m and n, the standard method of proving $F_{n} \mid F_{m n}$ is by first establishing the relationship $F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1}$, then using induction. Several interesting proofs were given in [1] and [2] including one that gives the quotient of the division in terms of a Lucas sum. An "unusual" proof that involves the use of hyperbolic functions was published in [5]. In [3], a unified approach to divisibility properties for Fibonacci $\left(F_{n}\right)$, Lucas $\left(L_{n}\right)$, Pell $\left(P_{n}\right)$, and Pell-Lucas $\left(Q_{n}\right)$ numbers was given. The proofs of these properties utilized the fact that $Z[\sqrt{2}]$ and $Z[\sqrt{5}]$ are closed under addition and multiplication. This paper extends the divisibility properties in [3] to a larger family of integers and the proofs do not use the properties of $Z[\sqrt{2}]$ or $Z[\sqrt{5}]$. In addition, the quotient of the division is given explicitly in each case. Also, new divisibility properties are given. In addition, comparing a result from [1] gives rise to a new identity (Corollary 3.3).

2. Preliminary Results

For nonnegative integers n, consider the recurrence relation defined by

$$
\begin{gather*}
x_{n+2}=c x_{n+1}+x_{n} \\
x_{0}=a, x_{1}=b \tag{2.1}
\end{gather*}
$$

where a, b, and c are integers. Following the standard procedures for solving second order homogeneous recurrence relations with constant coefficients [6], the Binet formula for the integer family $\left\{x_{n}\right\}$ defined by (2.1) is

$$
\begin{equation*}
x_{n}=\frac{1}{u-v}\left([b-a v] u^{n}-[b-a u] v^{n}\right), \tag{2.2}
\end{equation*}
$$

where $u=\frac{c+\sqrt{c^{2}+4}}{2}$ and $v=\frac{c-\sqrt{c^{2}+4}}{2}$ are the roots of $\lambda^{2}-c \lambda-1=0$. These roots satisfy $u+v=c, u-v=\sqrt{c^{2}+4}$, and $u v=-1$. In particular, if $a=0$ and $b=c=1$, then $x_{n}=F_{n}$. If $a=2$ and $b=c=1$, then $x_{n}=L_{n}$. If $a=0, b=1$, and $c=2$, then $x_{n}=P_{n}$. If $a=b=c=2$, then $x_{n}=Q_{n}$. Also, for F_{n} and $L_{n}, u=\alpha=\frac{1}{2}(1+\sqrt{5})$ and $v=\beta=\frac{1}{2}(1-\sqrt{5})$. For P_{n} and $Q_{n}, u=\gamma=1+\sqrt{2}$ and $v=\delta=1-\sqrt{2}$. For the four special cases we consider, the Binet formulas are

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, L_{n}=\alpha^{n}+\beta^{n}, P_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}, \text { and } Q_{n}=\gamma^{n}+\delta^{n},
$$

for $n \geq 0$.

Lemma 2.1. $x_{n} u+x_{n-1}=(b-a v) u^{n}$ and $x_{n} v+x_{n-1}=(b-a u) v^{n}$ for $n \geq 1$.
Proof. Using the facts that $u v=-1, \frac{1+u^{2}}{u-v}=u$, and the Binet formula for x_{n} we have

$$
\begin{aligned}
x_{n} u+x_{n-1} & =\frac{1}{u-v}\left[(b-a v) u^{n}-(b-a u) v^{n}\right] u+\frac{1}{u-v}\left[(b-a v) u^{n-1}-(b-a u) v^{n-1}\right] \\
& =\frac{1}{u-v}\left[(b-a v) u^{n+1}+(b-a u) v^{n-1}+(b-a v) u^{n-1}-(b-a u) v^{n-1}\right] \\
& =\left[(b-a v) u^{n-1} \frac{\left(1+u^{2}\right)}{u-v}\right] \\
& =(b-a v) u^{n-1} u \\
& =(b-a v) u^{n} .
\end{aligned}
$$

Similarly, $x_{n} v+x_{n-1}=(b-a u) v^{n}$.

3. Divisibility Properties

Now we provide our proofs of some known results and some new divisibility properties. In the sequel, a, b, and c will always be as in (2.1).

Theorem 3.1. For a given c, let $x_{0}=a=0$ and $x_{1}=b=1$ in (2.1). Then $x_{n} \mid x_{m n}$ for all nonnegative integers m.

Proof. Since $a=0$ and $b=1,(2.2)$ gives

$$
x_{n}=\frac{1}{u-v}\left(u^{n}-v^{n}\right) .
$$

Thus, by Lemma 2.1 and the Binomial Theorem,

$$
\begin{align*}
x_{m n} & =\frac{1}{u-v}\left(u^{m n}-v^{m n}\right) \\
& =\frac{1}{u-v}\left[\left(u^{n}\right)^{m}-\left(v^{n}\right)^{m}\right] \\
& =\frac{1}{u-v}\left[\left(x_{n} u+x_{n-1}\right)^{m}-\left(x_{n} v+x_{n-1}\right)^{m}\right] \\
& =\frac{1}{u-v}\left[\sum_{i=0}^{m}\binom{m}{i}\left(x_{n} u\right)^{i} x_{n-1}^{m-i}-\sum_{i=0}^{m}\binom{m}{i}\left(x_{n} v\right)^{i} x_{n-1}^{m-i}\right] \\
& =\frac{1}{u-v}\left[\sum_{i=1}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i}\left(u^{i}-v^{i}\right)\right] \\
& =\sum_{i=1}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i} x_{i} \\
& =x_{n} \sum_{i=1}^{m}\binom{m}{i} x_{n}^{i-1} x_{n-1}^{m-i} x_{i} . \tag{3.1}
\end{align*}
$$

The result follows since $\sum_{i=1}^{m}\binom{m}{i} x_{n}^{i-1} x_{n-1}^{m-i} x_{i}$ is an integer.
Notice that (3.1) shows what the quotient would be if $x_{m n}$ is divided by x_{n}.
Corollary 3.2. Let $c=1$ in (2.1). Then $F_{n} \mid F_{m n}$.

THE FIBONACCI QUARTERLY

In [1], the authors gave several proofs that $F_{n} \mid F_{m n}$. Their first proof provided the quotient $M=L_{(m-1) n}+(-1)^{n} L_{(m-3) n}+(-1)^{2 n} L_{(m-5) n}+\cdots$, if m is even, and $M=(-1)^{\frac{(m-1) n}{2}}+$ $L_{(m-1) n}+(-1)^{n} L_{(m-3) n}+(-1)^{2 n} L_{(m-5) n}+\cdots$, if m is odd. By comparing the quotient from our proof to M, the following corollary follows.

Corollary 3.3.

$$
\begin{align*}
\sum_{i=1}^{m}\binom{m}{i} F_{n}^{i-1} F_{n-1}^{m-i} F_{i} & =L_{(m-1) n}+(-1)^{n} L_{(m-3) n}+(-1)^{2 n} L_{(m-5) n}+\cdots \\
& =\sum_{k=1}^{\frac{m}{2}}(-1)^{(k-1) n} L_{(m-[2 k-1]) n} \tag{3.2}
\end{align*}
$$

if m is even.

$$
\begin{align*}
\sum_{i=1}^{m}\binom{m}{i} F_{n}^{i-1} F_{n-1}^{m-i} F_{i} & =(-1)^{\frac{(m-1) n}{2}}+L_{(m-1) n}+(-1)^{n} L_{(m-3) n}+(-1)^{2 n} L_{(m-5) n}+\cdots \\
& =(-1)^{\frac{(m-1) n}{2}}+\sum_{k=1}^{\frac{m-1}{2}}(-1)^{(k-1) n} L_{(m-[2 k-1]) n} \tag{3.3}
\end{align*}
$$

if m is odd.
Example 3.4. If $F_{10 n}$ is divided by F_{n}, the quotient is

$$
\sum_{i=1}^{10}\binom{10}{i} F_{n}^{i-1} F_{n-1}^{10-i} F_{i}=L_{9 n}+(-1)^{n} L_{7 n}+L_{5 n}+(-1)^{n} L_{3 n}+L_{n}
$$

Example 3.5. If $F_{3 n}$ is divided by F_{n}, the quotient is

$$
\sum_{i=1}^{3}\binom{3}{i} F_{n}^{i-1} F_{n-1}^{3-i} F_{i}=(-1)^{n}+L_{2 n}
$$

Corollary 3.6. If $c=2$ in (2.1), then $P_{n} \mid P_{m n}$.
Theorem 3.7. $F_{n} \mid\left(L_{m n}-2 F_{n-1}^{m}\right)$.
Proof. Proceeding as in the proof of Theorem 3.1,

$$
\begin{equation*}
L_{m n}=\sum_{i=0}^{m}\binom{m}{i} F_{n}^{i} F_{n-1}^{m-i} L_{i}=2 F_{n-1}^{m}+\sum_{i=1}^{m}\binom{m}{i} F_{n}^{i} F_{n-1}^{m-i} L_{i} . \tag{3.4}
\end{equation*}
$$

So, $L_{m n}-2 F_{n-1}^{m}=F_{n} \sum_{i=1}^{m}\binom{m}{i} F_{n}^{i-1} F_{n-1}^{m-i} L_{i}$. The result follows since $\sum_{i=1}^{m}\binom{m}{i} F_{n}^{i-1} F_{n-1}^{m-i} L_{i}$ is an integer.

Theorem 3.8. $P_{n} \mid\left(Q_{m n}-2 P_{n-1}^{m}\right)$.
Proof. Since

$$
\begin{equation*}
Q_{m n}=\sum_{i=0}^{m}\binom{m}{i} P_{n}^{i} P_{n-1}^{m-i} Q_{i}=2 P_{n-1}^{m}+P_{n} \sum_{i=1}^{m}\binom{m}{i} P_{n}^{i-1} P_{n-1}^{m-i} Q_{i}, \tag{3.5}
\end{equation*}
$$

the result follows.
Lemma 3.9. Let $a=2$ and $b=c$ in (2.1). Then
(i) $x_{m n}=u^{m n}+v^{m n}$ and
(ii) $x_{m n}=\frac{1}{(u-v)^{m}}\left(\sum_{i=0}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i}\left[u^{i}+(-1)^{m} v^{i}\right]\right)$.

Proof. If $a=2$ and $b=c$, then simple calculations yield $b-a v=u-v$ and $b-a u=-(u-v)$. Thus,

$$
\begin{aligned}
x_{m n} & =\frac{1}{(u-v)}\left([b-a v] u^{m n}-[b-a u] v^{m n}\right) \\
& =u^{m n}+v^{m n} \\
& =\left(\frac{x_{n} u+x_{n-1}}{u-v}\right)^{m}+\left(\frac{x_{n} v+x_{n-1}}{-(u-v)}\right)^{m} \\
& =\frac{1}{(u-v)^{m}}\left(\sum_{i=0}^{m}\binom{m}{i}\left(x_{n} u\right)^{i} x_{n-1}^{m-i}+(-1)^{m} \sum_{i=0}^{m}\binom{m}{i}\left(x_{n} v\right)^{i} x_{n-1}^{m-i}\right) \\
& =\frac{1}{(u-v)^{m}}\left(\sum_{i=0}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i}\left[u^{i}+(-1)^{m} v^{i}\right]\right) .
\end{aligned}
$$

The proof of the lemma is complete.
Theorem 3.10. Let $a=2$ and $b=c=1$ in (2.1), and assume m is odd. Then $L_{n} \mid L_{m n}$.
Proof. The assumptions imply that $x_{n}=L_{n}$. Since m is odd, $m-1=2 j$, where j is a nonnegative integer. Now Lemma 2.1 yields

$$
\begin{aligned}
L_{m n} & =\frac{1}{(u-v)^{m}}\left(\sum_{i=0}^{m}\binom{m}{i} L_{n}^{i} L_{n-1}^{m-i}\left[u^{i}+(-1)^{m} v^{i}\right]\right) \\
& =\frac{1}{(u-v)^{m-1}}\left(\sum_{i=1}^{m}\binom{m}{i} L_{n}^{i} L_{n-1}^{m-i}\left[\frac{u^{i}-v^{i}}{u-v}\right]\right) \\
& =\frac{1}{(u-v)^{2 j}}\left(\sum_{i=1}^{m}\binom{m}{i} L_{n}^{i} L_{n-1}^{m-i} F_{i}\right) \\
& =\frac{1}{5^{j}}\left(\sum_{i=1}^{m}\binom{m}{i} L_{n}^{i} L_{n-1}^{m-i} F_{i}\right) .
\end{aligned}
$$

Thus, $5^{j} L_{m n}=\sum_{i=1}^{m}\binom{m}{i} L_{n}^{i} L_{n-1}^{m-i} F_{i}$. Since L_{n} divides the right-hand side and since L_{n} and 5 are relatively prime [4], $L_{n} \mid L_{m n}$.

A similar argument yields the following theorem.
Theorem 3.11. Let $a=b=c=2$ in (2.1) and assume m is odd. Then $Q_{n} \mid Q_{m n}$.

THE FIBONACCI QUARTERLY

Proof. The assumptions imply that $x_{n}=Q_{n}$. Let $m=2 j+1$, where j is a nonnegative integer. Lemma 3.9 yields

$$
\begin{aligned}
Q_{m n} & =\frac{1}{(u-v)^{m}}\left(\sum_{i=0}^{m}\binom{m}{i} Q_{n}^{i} Q_{n-1}^{m-i}\left[u^{i}+(-1)^{m} v^{i}\right]\right) \\
& =\frac{1}{(u-v)^{m-1}}\left(\sum_{i=1}^{m}\binom{m}{i} Q_{n}^{i} Q_{n-1}^{m-i}\left[\frac{u^{i}-v^{i}}{u-v}\right]\right) \\
& =\frac{1}{(u-v)^{2 j}}\left(\sum_{i=1}^{m}\binom{m}{i} Q_{n}^{i} Q_{n-1}^{m-i} P_{i}\right) \\
& =\frac{1}{8^{j}}\left(\sum_{i=1}^{m}\binom{m}{i} Q_{n}^{i} Q_{n-1}^{m-i} P_{i}\right) .
\end{aligned}
$$

Thus, $8^{j} Q_{m n}=\sum_{i=1}^{m}\binom{m}{i} Q_{n}^{i} Q_{n-1}^{m-i} P_{i}$. Induction arguments using the recurrence formula for Q_{n} show that Q_{n} is even and $\frac{1}{2} Q_{n}$ is odd. Since Q_{n} divides $\sum_{i=1}^{m}\binom{m}{i} Q_{n}^{i} Q_{n-1}^{m-i} P_{i}$ and since $\frac{1}{2} Q_{n}$ and 8 are relatively prime, $Q_{n} \mid Q_{m n}$.
Lemma 3.12. Let $a=2$ and $b=c$ in (2.1). If $m=2 j$, where j is a nonnegative integer, then $x_{n} \mid\left(\left[c^{2}+4\right]^{j} x_{2 j n}-2 x_{n-1}^{2 j}\right)$.
Proof. By Lemma 3.9,

$$
x_{m n}=\frac{1}{(u-v)^{m}}\left(\sum_{i=0}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i}\left[u^{i}+v^{i}\right]\right) .
$$

Thus,

$$
\begin{aligned}
\left(c^{2}+4\right)^{j} x_{2 j n} & =\sum_{i=0}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i} x_{i} \\
& =2 x_{n-1}^{m}+\sum_{i=1}^{m}\binom{m}{i} x_{n}^{i} x_{n-1}^{m-i} x_{i},
\end{aligned}
$$

and so

$$
\left(c^{2}+4\right)^{j} x_{2 j n}-2 x_{n-1}^{2 j}=x_{n} \sum_{i=1}^{2 j}\binom{2 j}{i} x_{n}^{i-1} x_{n-1}^{2 j-i} x_{i} .
$$

Since $\sum_{i=1}^{2 j}\binom{2 j}{i} x_{n}^{i-1} x_{n-1}^{2 j-i} x_{i}$ is an integer, the lemma follows.
Corollary 3.13. If $b=c=1$ in (2.1), then $L_{n} \mid\left(5^{j} L_{2 j n}-2 L_{n-1}^{2 j}\right)$ for $n \geq 1$ and $j \geq 0$.
Corollary 3.14. If $b=c=2$ in (2.1), then $Q_{n} \mid\left(8^{j} Q_{2 j n}-2 Q_{n-1}^{2 j}\right)$ for $n \geq 1$ and $j \geq 0$.
Remark. The definition of the Pell-Lucas numbers is not consistent in the literature. Some authors define the Pell-Lucas numbers by the recurrence relation

$$
x_{n+2}=2 x_{n+1}+x_{n}
$$

with initial conditions

$$
x_{0}=1 \quad \text { and } \quad x_{1}=1
$$

EXTENSION OF A DIRECT PROOF THAT F_{N} DIVIDES $F_{M N}$

($a=b=1$ and $c=2$). Using these values, the first seven Pell-Lucas numbers are 1, 1, 3, 7, 17, 41, 99 . Theorem 3.11 and Corollary 3.14 also hold for this sequence.

4. Acknowledgment

The authors would like to thank the anonymous referee for pointing out references [1] and [2], and for detailed comments and suggestions that improved the clarity and presentation of this paper to a great extent.

References

[1] M. Bicknell and V. E. Hoggatt, Jr., A primer for the Fibonacci numbers: part IX, The Fibonacci Quarterly, 9.5 (1971), 529-537.
[2] M. Bicknell, A primer on the Pell sequence and related sequences, The Fibonacci Quarterly, 13.4 (1975), 345-349.
[3] R. Euler and J. Sadek, Divisibility properties for Fibonacci and related numbers, The Mathematical Gazette, 97 (2013), 461-464.
[4] R. Euler and J. Sadek, Congruence relations from Binet forms, The Fibonacci Quarterly, 50.3 (2012), 246-251.
[5] T. J. Osler and A. Hilburn, An unusual proof that F_{m} divides $F_{m n}$ using hyperbolic functions, The Mathematical Gazette, 91 (2007), 510-512.
[6] M. R. Spiegel, Finite Differences and Difference Equations, Shaum's Outline Series, McGraw-Hill Book Company, 1971.

MSC2010: 11B39, 11B99
Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

E-mail address: reuler@nwmissouri.edu
Department of Mathematics and Statistics, Northwest Missouri State University, Maryville, MO 64468

E-mail address: jawads@nwmissouri.edu

