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Abstract. A direct proof that Fn divides Fmn uses the quotient of the division to derive
divisibility properties for Fibonacci, Lucas, Pell, and Pell-Lucas numbers.

1. Introduction

For positive integers m and n, the standard method of proving Fn | Fmn is by first estab-
lishing the relationship Fm+n = Fm−1Fn + FmFn+1, then using induction. Several interesting
proofs were given in [1] and [2] including one that gives the quotient of the division in terms of
a Lucas sum. An “unusual” proof that involves the use of hyperbolic functions was published
in [5]. In [3], a unified approach to divisibility properties for Fibonacci (Fn), Lucas (Ln), Pell
(Pn), and Pell-Lucas (Qn) numbers was given. The proofs of these properties utilized the

fact that Z[
√
2] and Z[

√
5] are closed under addition and multiplication. This paper extends

the divisibility properties in [3] to a larger family of integers and the proofs do not use the

properties of Z[
√
2] or Z[

√
5]. In addition, the quotient of the division is given explicitly in

each case. Also, new divisibility properties are given. In addition, comparing a result from [1]
gives rise to a new identity (Corollary 3.3).

2. Preliminary Results

For nonnegative integers n, consider the recurrence relation defined by

xn+2 = cxn+1 + xn

(2.1)

x0 = a, x1 = b

where a, b, and c are integers. Following the standard procedures for solving second order
homogeneous recurrence relations with constant coefficients [6], the Binet formula for the
integer family {xn} defined by (2.1) is

xn =
1

u− v
([b− av]un − [b− au]vn) , (2.2)

where u = c+
√

c2+4
2 and v = c−

√

c2+4
2 are the roots of λ2 − cλ − 1 = 0. These roots satisfy

u + v = c, u − v =
√
c2 + 4, and uv = −1. In particular, if a = 0 and b = c = 1, then

xn = Fn. If a = 2 and b = c = 1, then xn = Ln. If a = 0, b = 1, and c = 2, then xn = Pn. If
a = b = c = 2, then xn = Qn. Also, for Fn and Ln, u = α = 1

2(1+
√
5) and v = β = 1

2 (1−
√
5).

For Pn and Qn, u = γ = 1 +
√
2 and v = δ = 1 −

√
2. For the four special cases we consider,

the Binet formulas are

Fn =
αn − βn

α− β
, Ln = αn + βn, Pn =

γn − δn

γ − δ
, and Qn = γn + δn,

for n ≥ 0.
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Lemma 2.1. xnu+ xn−1 = (b− av)un and xnv + xn−1 = (b− au)vn for n ≥ 1.

Proof. Using the facts that uv = −1, 1+u2

u−v
= u, and the Binet formula for xn we have

xnu+ xn−1 =
1

u− v
[(b− av)un − (b− au)vn]u+

1

u− v

[

(b− av)un−1 − (b− au)vn−1
]

=
1

u− v

[

(b− av)un+1 + (b− au)vn−1 + (b− av)un−1 − (b− au)vn−1
]

=

[

(b− av)un−1 (1 + u2)

u− v

]

= (b− av)un−1u

= (b− av)un.

Similarly, xnv + xn−1 = (b− au)vn. �

3. Divisibility Properties

Now we provide our proofs of some known results and some new divisibility properties. In
the sequel, a, b, and c will always be as in (2.1).

Theorem 3.1. For a given c, let x0 = a = 0 and x1 = b = 1 in (2.1). Then xn | xmn for all

nonnegative integers m.

Proof. Since a = 0 and b = 1, (2.2) gives

xn =
1

u− v
(un − vn) .

Thus, by Lemma 2.1 and the Binomial Theorem,

xmn =
1

u− v
(umn − vmn)

=
1

u− v
[(un)m − (vn)m]

=
1

u− v
[(xnu+ xn−1)

m − (xnv + xn−1)
m]

=
1

u− v

[

m
∑

i=0

(

m

i

)

(xnu)
ixm−i

n−1 −
m
∑

i=0

(

m

i

)

(xnv)
ixm−i

n−1

]

=
1

u− v

[

m
∑

i=1

(

m

i

)

xinx
m−i
n−1 (u

i − vi)

]

=
m
∑

i=1

(

m

i

)

xinx
m−i
n−1xi

= xn

m
∑

i=1

(

m

i

)

xi−1
n xm−i

n−1xi. (3.1)

The result follows since
∑m

i=1

(

m
i

)

xi−1
n xm−i

n−1xi is an integer. �

Notice that (3.1) shows what the quotient would be if xmn is divided by xn.

Corollary 3.2. Let c = 1 in (2.1). Then Fn | Fmn.
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In [1], the authors gave several proofs that Fn | Fmn. Their first proof provided the quotient

M = L(m−1)n + (−1)nL(m−3)n + (−1)2nL(m−5)n + · · · , if m is even, and M = (−1)
(m−1)n

2 +

L(m−1)n +(−1)nL(m−3)n + (−1)2nL(m−5)n + · · · , if m is odd. By comparing the quotient from
our proof to M , the following corollary follows.

Corollary 3.3.

m
∑

i=1

(

m

i

)

F i−1
n Fm−i

n−1 Fi = L(m−1)n + (−1)nL(m−3)n + (−1)2nL(m−5)n + · · ·

=

m

2
∑

k=1

(−1)(k−1)nL(m−[2k−1])n, (3.2)

if m is even.

m
∑

i=1

(

m

i

)

F i−1
n Fm−i

n−1 Fi = (−1)
(m−1)n

2 + L(m−1)n + (−1)nL(m−3)n + (−1)2nL(m−5)n + · · ·

= (−1)
(m−1)n

2 +

m−1
2
∑

k=1

(−1)(k−1)nL(m−[2k−1])n, (3.3)

if m is odd.

Example 3.4. If F10n is divided by Fn, the quotient is

10
∑

i=1

(

10

i

)

F i−1
n F 10−i

n−1 Fi = L9n + (−1)nL7n + L5n + (−1)nL3n + Ln.

Example 3.5. If F3n is divided by Fn, the quotient is

3
∑

i=1

(

3

i

)

F i−1
n F 3−i

n−1Fi = (−1)n + L2n.

Corollary 3.6. If c = 2 in (2.1), then Pn | Pmn.

Theorem 3.7. Fn |
(

Lmn − 2Fm
n−1

)

.

Proof. Proceeding as in the proof of Theorem 3.1,

Lmn =
m
∑

i=0

(

m

i

)

F i
nF

m−i
n−1 Li = 2Fm

n−1 +
m
∑

i=1

(

m

i

)

F i
nF

m−i
n−1 Li. (3.4)

So, Lmn − 2Fm
n−1 = Fn

∑m
i=1

(

m
i

)

F i−1
n Fm−i

n−1 Li. The result follows since
∑m

i=1

(

m
i

)

F i−1
n Fm−i

n−1 Li

is an integer. �

Theorem 3.8. Pn |
(

Qmn − 2Pm
n−1

)

.

Proof. Since

Qmn =

m
∑

i=0

(

m

i

)

P i
nP

m−i
n−1 Qi = 2Pm

n−1 + Pn

m
∑

i=1

(

m

i

)

P i−1
n Pm−i

n−1 Qi, (3.5)

the result follows. �

Lemma 3.9. Let a = 2 and b = c in (2.1). Then

162 VOLUME 54, NUMBER 2



EXTENSION OF A DIRECT PROOF THAT FN DIVIDES FMN

(i) xmn = umn + vmn and

(ii) xmn = 1
(u−v)m

(
∑m

i=0

(

m
i

)

xinx
m−i
n−1 [u

i + (−1)mvi]
)

.

Proof. If a = 2 and b = c, then simple calculations yield b−av = u− v and b−au = −(u− v).
Thus,

xmn =
1

(u− v)
([b− av]umn − [b− au]vmn)

= umn + vmn

=

(

xnu+ xn−1

u− v

)m

+

(

xnv + xn−1

−(u− v)

)m

=
1

(u− v)m

(

m
∑

i=0

(

m

i

)

(xnu)
ixm−i

n−1 + (−1)m
m
∑

i=0

(

m

i

)

(xnv)
ixm−i

n−1

)

=
1

(u− v)m

(

m
∑

i=0

(

m

i

)

xinx
m−i
n−1 [u

i + (−1)mvi]

)

.

The proof of the lemma is complete. �

Theorem 3.10. Let a = 2 and b = c = 1 in (2.1), and assume m is odd. Then Ln | Lmn.

Proof. The assumptions imply that xn = Ln. Since m is odd, m − 1 = 2j, where j is a
nonnegative integer. Now Lemma 2.1 yields

Lmn =
1

(u− v)m

(

m
∑

i=0

(

m

i

)

Li
nL

m−i
n−1 [u

i + (−1)mvi]

)

=
1

(u− v)m−1

(

m
∑

i=1

(

m

i

)

Li
nL

m−i
n−1

[

ui − vi

u− v

]

)

=
1

(u− v)2j

(

m
∑

i=1

(

m

i

)

Li
nL

m−i
n−1Fi

)

=
1

5j

(

m
∑

i=1

(

m

i

)

Li
nL

m−i
n−1Fi

)

.

Thus, 5jLmn =
∑m

i=1

(

m
i

)

Li
nL

m−i
n−1Fi. Since Ln divides the right-hand side and since Ln and 5

are relatively prime [4], Ln | Lmn. �

A similar argument yields the following theorem.

Theorem 3.11. Let a = b = c = 2 in (2.1) and assume m is odd. Then Qn | Qmn.
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Proof. The assumptions imply that xn = Qn. Let m = 2j+1, where j is a nonnegative integer.
Lemma 3.9 yields

Qmn =
1

(u− v)m

(

m
∑

i=0

(

m

i

)

Qi
nQ

m−i
n−1 [u

i + (−1)mvi]

)

=
1

(u− v)m−1

(

m
∑

i=1

(

m

i

)

Qi
nQ

m−i
n−1

[

ui − vi

u− v

]

)

=
1

(u− v)2j

(

m
∑

i=1

(

m

i

)

Qi
nQ

m−i
n−1Pi

)

=
1

8j

(

m
∑

i=1

(

m

i

)

Qi
nQ

m−i
n−1Pi

)

.

Thus, 8jQmn =
∑m

i=1

(

m
i

)

Qi
nQ

m−i
n−1Pi. Induction arguments using the recurrence formula for

Qn show that Qn is even and 1
2Qn is odd. Since Qn divides

∑m
i=1

(

m
i

)

Qi
nQ

m−i
n−1Pi and since

1
2Qn and 8 are relatively prime, Qn | Qmn. �

Lemma 3.12. Let a = 2 and b = c in (2.1). If m = 2j, where j is a nonnegative integer,

then xn
∣

∣

(

[c2 + 4]jx2jn − 2x2jn−1

)

.

Proof. By Lemma 3.9,

xmn =
1

(u− v)m

(

m
∑

i=0

(

m

i

)

xinx
m−i
n−1 [u

i + vi]

)

.

Thus,

(c2 + 4)jx2jn =
m
∑

i=0

(

m

i

)

xinx
m−i
n−1xi

= 2xmn−1 +

m
∑

i=1

(

m

i

)

xinx
m−i
n−1xi,

and so

(c2 + 4)jx2jn − 2x2jn−1 = xn

2j
∑

i=1

(

2j

i

)

xi−1
n x

2j−i
n−1 xi.

Since
∑2j

i=1

(2j
i

)

xi−1
n x

2j−i
n−1 xi is an integer, the lemma follows. �

Corollary 3.13. If b = c = 1 in (2.1), then Ln

∣

∣

(

5jL2jn − 2L2j
n−1

)

for n ≥ 1 and j ≥ 0.

Corollary 3.14. If b = c = 2 in (2.1), then Qn

∣

∣

(

8jQ2jn − 2Q2j
n−1

)

for n ≥ 1 and j ≥ 0.

Remark. The definition of the Pell-Lucas numbers is not consistent in the literature. Some
authors define the Pell-Lucas numbers by the recurrence relation

xn+2 = 2xn+1 + xn

with initial conditions
x0 = 1 and x1 = 1
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(a = b = 1 and c = 2). Using these values, the first seven Pell-Lucas numbers are 1, 1, 3, 7, 17, 41, 99.
Theorem 3.11 and Corollary 3.14 also hold for this sequence.
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