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Abstract. We will investigate Vieta and related polynomials, and bridges linking them. We
will then employ the links for extracting interesting properties of Vieta and related families.

1. Introduction

Gibonacci polynomials gn(x) are defined by the recurrence gn(x) = xgn−1(x) + gn−2(x),
where x is an arbitrary complex variable, g0(x) and g1(x) are arbitrary complex polynomials,
and n ≥ 2. When g0(x) = 0 and g1(x) = 1, gn(x) = fn(x), the nth Fibonacci polynomial ;
and when g0(x) = 2 and g1(x) = x, gn(x) = ln(x), the nth Lucas polynomial. In particular,
fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 6, 13].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. The Pell numbers Pn and Pell-Lucas numbers Qn are given by
Pn = pn(1) = fn(2) and 2Qn = qn(1) = fn(2), respectively [5, 8].

Jacobsthal polynomials Jn(x) and Jacobsthal-Lucas polynomials jn(x) satisfy the recurrence
zn(x) = zn−1(x)+xzn−2(x), where n ≥ 2. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x); and
when z0 = 2 and z1 = 1, zn(x) = jn(x) [2, 3]. Clearly, Jn(1) = Fn; and jn(1) = Ln and hence
the name Jacobsthal-Lucas polynomials for jn(x). The numbers Jn = Jn(2) and jn = jn(2)
are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively.

The Chebyshev family satisfies the recurrence zn(x) = 2xzn−1 − zn−2(x), where n ≥ 2.
When z0(x) = 1 and z1(x) = x, zn(x) = Tn(x), the nth Chebyshev polynomial of the first

kind ; and when z0(x) = 1 and z1(x) = 2x, zn(x) = Un(x), the nth Chebyshev polynomial of

the second kind [4, 8, 10].

Interestingly, the numbers ank =
(n−k−1

k

)

appear in one set of explicit formulas for fn(x),

pn(x), Jn(x), and Un(x). Likewise, the numbers bnk = n
n−k

(n−k
k

)

appear in their counterparts

for ln(x), qn(x), jn(x), and Tn(x) [1, 6, 3, 5, 8, 11]. Robbins attributes the discovery of array
(bnk) to the French mathematician François Vièta (1540–1603) [4, 11].

The numbers (−1)kank and (−1)kbnk can be used to study two additional and related classes
of polynomials: Vieta polynomials Vn(x) and Vieta-Lucas polynomials vn(x). They satisfy the
recurrence hn(x) = xhn−1(x) − hn−2(x), where n ≥ 2. When h0(x) = 0 and h1(x) = 1,
hn(x) = Vn(x); and when h0(x) = 2 and h1(x) = x, hn(x) = vn(x). E. Jacobsthal, N.
Robbins, and A. G. Shannon and A. F. Horadam studied them extensively [4, 11].

In the interest of brevity and convenience, we will omit the argument in the functional
notation, when there is no ambiguity; so gn will mean gn(x).

In this article, we will find a close relationship between Vn and fn; Vn and pn; Vn and Jn;
Vn and Un; and between vn and ln; vn and qn; vn and jn; and vn and Tn. We will then employ
them to extract interesting properties of Vieta and Vieta-Lucas polynomials.
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2. Vieta Links with Other Families

Let i =
√
−1. Clearly, in−1fn satisfies the Vieta recurrence. This, coupled with the initial

conditions V0(ix) = 0 = f0 and v1(ix) = 1 = f1, implies that Vn(ix) = in−1fn. Consequently,

Vn(x) = in−1fn(−ix). (2.1)

Likewise, we have

vn(x) = inln(−ix) (2.2)

Vn(x) = in−1pn(−ix/2) (2.3)

vn(x) = in−1qn(−ix/2) (2.4)

Vn(x) = xn−1Jn(−1/x2) (2.5)

vn(x) = xnjn(−1/x2) (2.6)

Vn(x) = Un−1(x/2) (2.7)

vn(x) = 2Tn(x/2). (2.8)

For example, since fn+1 =

bn/2c
∑

k=0

(

n− k

k

)

xn−2k, it follows by (2.1) that

Vn+1 =

bn/2c
∑

k=0

(−1)k
(

n− k

k

)

xn−2k.

2.1. Jacobsthal-Fibonacci-Lucas Links. It follows from identities (2.1) and (2.5) that

xnJn+1(−1/x2) = infn+1(−ix).

Replacing x with i/
√
x yields

Jn+1(x) = xn/2fn+1(1/
√
x). (2.9)

Likewise,

jn(x) = xn/2ln(1/
√
x). (2.10)

It follows from identity (2.9) that Jn+1(1) = Fn+1 and Jn+1 = 2n/2fn+1(1/
√
2). Similarly,

jn(1) = Ln and jn = 2n/2ln(1/
√
2).

2.2. Jacobsthal-Chebyshev Links. Identities (2.5) and (2.8) imply that

xnJn+1(−1/x2) = Un(x/2).

Consequently,

Jn+1(x) = (−i
√
x)nUn(i/2

√
x). (2.11)

Similarly,

jn(x) = 2(−i
√
x)nTn(i/2

√
x). (2.12)

It follows by identity (2.11) that Fn+1 = (−i)nUn(i/2) and Jn+1 = (−
√
2i)nUn(i/2

√
2).

Similarly, Ln = 2(−i)nTn(i/2) and jn = 2(−
√
2i)nTn(i/2

√
2).

Next we will extract a few interesting Vieta identities and their byproducts.
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3. Interesting Vieta Properties

To begin with, suppose we replace x with −ix in the well-known identity l2n − (x2 +4)f2
n =

4(−1)n. By identities (2.1) and (2.2), it then yields

v2n − (x2 − 4)V 2
n = 4. (3.1)

It follows by identity (3.1) that (vn, Vn) is a solution of the (Pell’s) equation u2−(x2−4)v2 =
4, where x is an integer ≥ 3 and is nonsquare.

The next theorem establishes links between Vn and f2n, and vn and l2n.

Theorem 3.1. Let n ≥ 0. Then

xVn(x
2 + 2) = f2n (3.2)

vn(x
2 + 2) = l2n. (3.3)

Proof. We will establish identity (3.2) using induction. Clearly, it is true when n = 0 and
n = 1.

Now assume it is true for all nonnegative integers < n. Since f2n = (x2 + 2)f2n−2 − f2n−4,
by the Vieta recurrence we have

Vn(x
2 + 2) = (x2 + 2)Vn−1(x

2 + 2)− Vn−2(x
2 + 2)

= (x2 + 2) ·
1

x
f2n−2 −

1

x
f2n−4

xVn(x
2 + 2) = f2n.

So the given result is true for n also. Thus, by induction, it is true for all n ≥ 0.
Identity (3.3) follows similarly. �

The next corollary follows from Theorem 3.1.

Corollary 1 (Shannon and Horadam, 1999). Let n ≥ 0. Then Vn(3) = F2n and vn(3) = L2n.

Theorem 3.1 also yields the following results.

Corollary 2.

p2n(x) = 2xVn(4x
2 + 2) (3.4)

q2n(x) = vn(4x
2 + 2). (3.5)

The next two results follow from Corollary 2.

Corollary 3. Let n ≥ 0. Then P2n = 2Vn(6) and 2Q2n = vn(6).

It also follows by Theorem 3.1, and identities (2.9) and (2.10) that

J2n(x) = xn−1Vn

(

2x+ 1

x

)

(3.6)

j2n(x) = xnvn

(

2x+ 1

x

)

. (3.7)

Identities (3.6) and (3.7) imply that J2n = 2n−1Vn(5/2) and j2n = 2nvn(5/2).
The next theorem presents two charming identities involving Vieta polynomials.

Theorem 3.2. Let n ≥ 0. Then

vn(x
2 − 2)− (x2 − 4)V 2

n (x) = 2 (3.8)

vn(x
2 − 2)− v2n(x) = −2. (3.9)
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Proof. We have vn(−x) = (−1)nvn(x), and Vn(x) = in−1fn(−ix). Since vn(x
2 + 2) = l2n(x),

vn(−x2 + 2) = l2n(−ix); that is, (−1)nvn(x
2 − 2) = l2n(−ix). Since l2n(u) = (u2 + 4)f2

n(u) +
2(−1)n, we then have

(−1)nvn(x
2 − 2) = −(x2 − 4)

V 2
n (x)

i2n−2
+ 2(−1)n.

This yields identity (3.8).
Identity (3.9) follows similarly. �

Horadam attributes identity (3.9) to Jacobsthal [4].
It follows from identities (3.8) and (3.9) that vn(2) = 2. It also follows from them that

Q2n = 4P 2
n + (−1)n = 2Q2

n − (−1)n.
Theorem 3.2 has interesting Pell consequences, as the next two corollaries show.

Corollary 4. Let n ≥ 0. Then

q2n(x)− 4(x2 + 1)p2n(x) = 2(−1)n (3.10)

q2n(x)− q2n(x) = 2(−1)n+1. (3.11)

Proof. We have vn(−x) = (−1)nvn(x), Vn(ix) = in−1pn(x/2), and q2n(x) = vn(4x
2 + 2). It

then follows by identity (3.8) that

vn(−x2 − 2) + (x2 + 4)V 2
n (ix) = 2

(−1)nvn(x
2 + 2) + (x2 + 4) · i2n−2p2n(x/2) = 2

q2n(x/2) − (x2 + 4)p2n(x/2) = 2(−1)n

q2n(x)− 4(x2 + 1)p2n(x) = 2(−1)n.

Identity (3.11) can be established similarly. �

The next corollary follows from identities (3.10) and (3.11).

Corollary 5. Let n ≥ 0. Then q2n − 4(x2 + 1)p2n = 4(−1)n.

This corollary has a magnificent byproduct. It follows by the corollary that Q2
n − 2P 2

n =
(−1)n. Consequently, (Qn, Pn) is a solution of the Pell’s equation u2 − 2v2 = (−1)n; its
converse is also true [8].

Theorem 3.1, coupled with Theorem 3.2, yields the next theorem; it provides a link between
f2n(x) and Jn(x), and l2n(x) and jn(x).

Theorem 3.3. Let n ≥ 0. Then

f2n(x) = x(x2 + 2)n−1Jn

(

−
1

(x2 + 2)2

)

(3.12)

l2n(x) = (x2 + 2)njn

(

−
1

(x2 + 2)2

)

. (3.13)

Theorem 3.3 has consequences to the Pell family, as the following corollary shows.

Corollary 6. Let n ≥ 0. Then

p2n(x) = 2x(4x2 + 2)n−1Jn

(

−
1

(4x2 + 2)2

)

q2n(x) = (4x2 + 2)njn

(

−
1

(4x2 + 2)2

)

.
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The next corollary follows from Theorem 3.3 and Corollary 6.

Corollary 7. Let n ≥ 0. Then

F2n = 3n−1Jn(−1/9) L2n = 3njn(−1/9)
P2n = 2 · 6n−1Jn(−1/36) 2Q2n = 6njn(−1/36).

Theorems 3.2 and 3.3 together yield the next two results. Their proofs are straightforward.

Theorem 3.4. Let n ≥ 0. Then

(x2 − 2)njn

(

−
1

(x2 − 2)2

)

− x2n−2(x2 − 4)J2
n

(

−
1

x2

)

= 2

(x2 − 2)njn

(

−
1

(x2 − 2)2

)

− x2nj2n

(

−
1

x2

)

= −2.

The next result follows from Theorem 3.4.

Corollary 8. Let n ≥ 0. Then

x2nj2n(−1/x2)− x2n−2(x2 − 4)J2
n(−1/x2) = 4. (3.14)

Identity (3.14) implies

j2n(x)− (4x+ 1)J2
n(x) = 4(−x)n.

Since jn(2) = jn and Jn(2) = Jn, identity (3.14) yields the following result, linking Jacob-
sthal and Jacobsthal-Lucas numbers.

Corollary 9. Let n ≥ 0. Then

j2n − 9J2
n = 4(−2)n. (3.15)

Identity (3.15) has a delightful byproduct. Since 3J2n = 4n − 1 and j2n = 4n + 1, it implies
that 3J2n − 2n+1 − j2n = (4n − 1) − 2n+1 − (4n + 1) is a Pythagorean triple; clearly, it is
primitive. The area of the Pythagorean triangle is 3 · 2nJ2n = 2n(4n − 1).

Next we will investigate a close relationship between Vieta and Chebyshev polynomials.

3.1. Vieta-Chebyshev Bridges. Using the links between Vieta and Chebyshev families, we
can translate Vieta identities into Chebyshev ones, and vice versa.

For example, the Vieta identity v2n − (x2 − 4)V 2
n = 4 can be translated into a Chebyshev

identity:

4T 2
n(x/2) − (x2 − 4)U2

n−1(x/2) = 4

T 2
n(x)− (x2 − 1)U2

n−1(x) = 1.

It follows by Theorem 3.1 that

f2n(x) = xUn−1

(

x2 + 2

2

)

(3.16)

l2n(x) = 2Tn

(

x2 + 2

2

)

. (3.17)

Next we will investigate some properties linking Jacobsthal and Chebyshev polynomials.
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3.2. Jacobsthal-Chebyshev Bridges. It follows by identities (2.5)–(2.7) that

2Tn(x) = (2x)njn(−1/4x2) (3.18)

Un(x) = (2x)nJn+1(−1/4x2). (3.19)

Interestingly, we can compute Jacobsthal and Jacobsthal-Lucas numbers from Chebyshev

polynomials. Letting x =
−i

2
√
2
in identity (3.18), we get

(

−2i

2
√
2

)n

jn(2) = 2Tn

(

−i

2
√
2

)

jn = 2(
√
2i)nTn

(

−i

2
√
2

)

. (3.20)

Similarly,

Jn+1 = (
√
2i)nUn

(

−i

2
√
2

)

. (3.21)

Next we will focus on a charming gibonacci identity. We will find its Vieta counterpart, and
employ it to extract the corresponding Jacobsthal, Chebyshev, and Pell identities.

4. Two Charming Vieta Identities

Consider the gibonacci identity [7]

g3n+k − (−1)klkg
3
n + (−1)kg3n−k =

{

fkf2kg3n if gi = fi

(x2 + 4)fkf2kg3n if gi = li.
(4.1)

The next theorem gives its equally beautiful counterpart for Vieta polynomials. The proof is
really short and neat, and hinges on identities (2.1) and (2.2).

Theorem 4.1.

h3n+k − vkh
3
n + h3n−k =

{

hkh2kh3n if hi = Vi

(x2 − 4)VkV2kh3n if hi = vi.
(4.2)

Proof. Suppose hi = Vi and gi = fi. By identity (4.1), we have

f3
n+k − (−1)klkf

3
n + (−1)kf3

n−k = fkf2kf3n.

Now replace x with −ix and multiply the resulting equation with i3n+3k, where i =
√
−1.

Since Vn(x) = in−1fn(−ix), this yields

−iV 3
n+k + ivkV

3
n − iV 3

n−k = −iVkV2kV3n

V 3
n+k − vkV

3
n + V 3

n−k = VkV2kV3n. (4.3)

On the other hand, let hi = vi. Again, by identity (4.1), we have

l3n+k − (−1)klkl
3
n + (−1)kl3n−k = (x2 + 4)fkf2kl3n.

Since vn(x) = inln(−ix), as before, this yields

v3n+k − vkv
3
n + v3n−k = (x2 − 4)VkV2kv3n. (4.4)

Combining identities (4.3) and (4.4), we get the desired result. �
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It follows by identity (4.2) that

h3n+1 − xh3n + h3n−1 =

{

xh3n if hi = Vi

x(x2 − 4)h3n if hi = vi.

Since xVn(x
2 + 2) = f2n and vn(x

2 + 2) = l2n, it also follows by identity (4.2) that

h32n+2 − (x2 + 2)h32n + h32n−2 =

{

x2(x2 + 2)h6n if hi = fi

x2(x2 + 2)(x2 + 4)h6n if hi = li.

Next we will extract the Jacobsthal counterparts from identity (4.2).

4.1. Jacobsthal Counterparts. We have Jn(x) = (−i
√
x)n−1Vn(i/

√
x) and

jn(x) = (−i
√
x)nvn(i/

√
x). Now replace x with i/

√
x in equation (4.2), and multiply the

resulting equation with (−i
√
x)3n+3k. We then get

z3n+k − (−x)kjk(x)z
3
n + (−1)kx3kz3n−k =

{

zkz2kz3n if zi(x) = Ji(x)

(4x+ 1)Jk(x)J2k(x)z3n if zi(x) = ji(x).
(4.5)

In particular, identity (4.5) implies that

J3
n+k − (−2)kjkJ

3
n + (−8)kJ3

n−k = JkJ2kJ3n

j3n+k − (−2)kjkj
3
n + (−8)kj3n−k = 9JkJ2kj3n.

Next we will find the Chebyshev and Pell counterparts of identity (4.2).

4.2. Chebyshev and Pell Counterparts. Since Un(x) = Vn+1(2x) and 2Tn(x) = vn(2x), it
follows from identity (4.2) that

z3n+k − 2Tkz
3
n + z3n−k =

{

zk−1z2k−1z3n+2 if zi = Ui

(x2 − 1)Uk−1U2k−1z3n if zi = Ti.
(4.6)

Likewise, we have

z3n+k − (−1)kqkz
3
n + (−1)kz3n−k =

{

zkz2kz3n if zi = pi

4(x2 + 1)pkp2kz3n if zi = qi.
(4.7)

Using these techniques, we can transform gibonacci polynomial identities to Vieta, Pell,
Jacobsthal, and Chebyshev polynomial identities. For example, we invite Fibonacci enthusiasts
to find the Vieta, Pell, Jacobsthal, and Chebyshev counterparts of the following gibonacci
identities [9]:

g2n+3 = (x2 + 1)g2n+2 + (x2 + 1)g2n+1 − g2n (4.8)

g3n+4 = (x3 + 2x)g3n+3 + (x4 + 3x2 + 2)g3n+2 − (x3 + 2x)g3n+1 − g3n (4.9)

g4n+4 = (x4 + 3x2 + 1)g4n+4 + (x6 + 5x4 + 7x2 + 2)g4n+3−

(x6 + 5x4 + 7x2 + 2)g4n+2 − (x4 + 3x2 + 1)g4n+1 + g4n. (4.10)
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