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Abstract. In this paper, we present the results of our investigation into a two parameter Pell
Diophantine equation. With certain constraints on the two parameters, we present the positive
integer solutions of the Pell equation in question. Indeed, assuming these constraints, we
express the positive integer solutions in terms of a second order recurring sequence. For certain
values of the parameters, the Pell equation in question reduces to a classic Pell equation, whose
solutions are expressed in terms of Fibonacci and Lucas numbers.

1. Introduction

In this paper, we consider the two parameter Pell Diophantine equation

x2 −
(

b2 + a2
)

y2 = −a2, (1.1)

in which a and b are positive integers. We consider only those a and b for which
√
b2 + a2

is irrational, and for which a|(2b). The irrationality of
√
b2 + a2 is assumed throughout, and

henceforth we do not restate this condition. When the divisibility condition is assumed, we
express the positive integer solutions (which we define in the paragraph that follows) of (1.1) in
terms of a second order recurring sequence. Without the divisibility condition, we are unable
to give the positive integer solutions of (1.1).

We take an integer solution (x, y) of (1.1) to be a solution in which both x and y are integers.
We take a rational solution (x, y) of (1.1) to be a solution in which both x and y are rational.
An integer solution is a rational solution, but a rational solution is not necessarily an integer
solution. A positive solution is one where x > 0 and y > 0. Throughout this paper, we always
indicate the type of solution that we are considering. As is customary in this topic, we refer
to the solution (x, y), or to the solution x+ y

√
b2 + a2, interchangeably.

In this paper, we take the Fibonacci and Lucas numbers to have starting values (F0, F1) =
(0, 1), and (L0, L1) = (2, 1), respectively. The identity

L2
n − 5F 2

n = 4(−1)n, (1.2)

which occurs in [3, p. 56], inspires the two Pell equations

x2 − 5y2 = 4, and x2 − 5y2 = −4. (1.3)

All the positive integer solutions of the first equation in (1.3) are (L2n, F2n), n ≥ 1. All the
positive integer solutions of the second equation in (1.3) are (L2n−1, F2n−1), n ≥ 1.

Long and Jordan [6] solve the equations in (1.3) with the use of continued fractions. Later,
Lind [5] solves these equations by working in the quadratic field Q

(√
5
)

. Then, in a letter to
the editor, Ferguson [2] simultaneously solves these equations with a clever method of descent.

In [1], Euler and Sadek initiate study into the positive rational solutions of the generalized
Pell equation

x2 −
(

b2 − a2
)

y2 = a2, (1.4)
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with appropriate constraints on the positive integers a and b. When b = 3 and a = 2, (1.4)
reduces to the first of the Pell equations in (1.3), which Euler and Sadek solve. Euler and
Sadek [1, pp. 245–246], also show how the procedures outlined in their paper are used to solve
the second of the Pell equations in (1.3). In [7], we extend the results of Euler and Sadek by
giving all the positive integer solutions of (1.4), subject to the constraint a|(2b).

In this paper, our motivation for studying (1.1) is that, for b = 1 and a = 2, this equation
reduces to the second of the equations in (1.3). In Section 2, we define a second order recurring
sequence that is central to our analysis of (1.1). Indeed, in Section 3, under the assumption
that a|(2b), we express certain positive integer solutions of (1.1) in terms of this recurring
sequence. In Section 4, we exhibit all positive integer solutions of (1.1) when a|(2b), with a

even. In Section 5, we do likewise, under the assumption that a|(2b), with a odd. Finally, in
Section 6, we state our main theorem, which summarizes our findings concerning the positive
integer solutions of (1.1) when a|(2b).

2. A Second Order Recurring Sequence

Let p > 0 be a rational number. We define the sequence {Un} = {Un(p)}, for all integers n,
by

Un =
(

p2 + 2
)

Un−1 − Un−2, U0 = 0, U1 = 1. (2.1)

In the sequel, we express the solutions of (1.1) with the use of terms from the sequence
(2.1). We now show that {Un}, n ≥ 0, is a strictly increasing sequence of non-negative
rational numbers. To begin, U1 − U0 > 0 and U1 > 0. Now suppose that, for some integer
k ≥ 1, Uk − Uk−1 > 0, and Uk > 0. Then

Uk+1 − Uk =
(

p2 + 2
)

Uk − Uk−1 − Uk = Uk − Uk−1 + p2Uk. (2.2)

By induction on k, we can therefore conclude that {Un}, n ≥ 0, is indeed a strictly increasing
sequence of non-negative rational numbers.

We also require the identity

U2
n − Un−1Un+1 = 1, n ≥ 0, (2.3)

which we now prove. It is true that U2
0 − U

−1U1 = 1, and U2
1 − U0U2 = 1. Suppose, for some

integer k ≥ 1, that U2
k
− Uk−1Uk+1 = 1. Then

U2
k+1 − UkUk+2 = U2

k+1 − Uk

((

p2 + 2
)

Uk+1 − Uk

)

= U2
k + Uk+1

(

Uk+1 −
(

p2 + 2
)

Uk

)

= U2
k − Uk−1Uk+1

= 1,

and so (2.3) follows by induction.

3. The Condition a|(2b) and Positive Integer Solutions of (1.1)

In (1.1), assume that a|(2b). Also, in the sequence (2.1), let p = 2b

a
. Then, with our analysis

in Section 2 in mind, we state and prove a lemma that gives certain positive integer solutions
of (1.1) in terms of the sequence (2.1).

Lemma 3.1. Suppose a|(2b), and in the sequence (2.1), let p = 2b

a
. Then

(xn, yn) = (b (Un + Un−1) , Un − Un−1) , n ≥ 1, (3.1)

are positive integer solutions of (1.1).
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Proof. In (3.1), xn and yn are positive integers. In (1.1), transposing a2 to the left, and
substituting x = b (Un + Un−1) and y = Un − Un−1, we obtain upon expansion

2
(

a2 + 2b2
)

UnUn−1 + a2
(

1− U2
n − U2

n−1

)

. (3.2)

In (2.1), replace p by 2b

a
, then multiply through by a2 and rearrange terms to obtain

2
(

a2 + 2b2
)

Un−1 = a2 (Un + Un−2) . (3.3)

In (3.3), multiply both sides by Un, and use the result to substitute for the leftmost product
in (3.2). The expression in (3.2) then becomes

−a2
(

U2
n−1 − Un−2Un − 1

)

. (3.4)

With the use of (2.3), we see that the expression in (3.4) reduces to zero. This completes the
proof of Lemma 3.1. �

4. All Positive Integer Solutions of (1.1) When a|(2b) with a Even

Let c be a positive integer, and consider the Pell equation

x2 −
(

c2 + 4
)

y2 = −4. (4.1)

We begin with a known result that occurs as part of Theorem 3 in [4]. In [4], the authors
define (in notation adapted for the present paper) the non-negative integer sequence

rn = crn−1 + rn−2, r0 = 0, r1 = 1.

They then prove that all the positive integer solutions of (4.1) are given by

(rn+1 + rn−1, rn), n = 1, 3, 5, . . . .

The solutions given in the previous line are precisely

(r2n + r2n−2, r2n−1), n ≥ 1.

It is easy to prove by induction that r2n = cUn(c), n ≥ 1. Keeping in mind that cr2n−1 =
r2n − r2n−2, we see that the aforementioned result of Hoggatt and Bicknell [4] translates as
the following theorem.

Theorem 4.1. The only positive integer solutions of (4.1) are given by

(c (Un(c) + Un−1(c)) , Un(c) − Un−1(c)) , n ≥ 1. (4.2)

We now consider (1.1), where a|(2b) with a even. Accordingly, set a = 2m for m a positive
integer. Then a|(2b) ⇒ m|b ⇒ b = mc, for c a positive integer. Then the Pell equation (1.1)
becomes

x2 −m2
(

c2 + 4
)

y2 = −4m2. (4.3)

Our next lemma gives a connection between the solutions of (4.1) and the solutions of (4.3).

Lemma 4.2. The mapping (x, y) → (mx, y) takes positive integer solutions of (4.1) to positive
integer solutions of (4.3). The mapping (x, y) →

(

x

m
, y
)

takes positive integer solutions of (4.3)
to positive integer solutions of (4.1).

Proof. Suppose (x0, y0) is a positive integer solution of (4.1). Then x20 −
(

c2 + 4
)

y20 = −4, so

that m2x20 −m2
(

c2 + 4
)

y20 = −4m2. That is, (mx0, y0) is a positive integer solution of (4.3).

Now suppose (x0, y0) is a positive integer solution of (4.3). Then substitution gives x20 −
m2

(

c2 + 4
)

y20 = −4m2. This implies thatm2|x20, and som|x0. Therefore,
(

x0

m

)2−
(

c2 + 4
)

y20 =

−4, so that
(

x0

m
, y0

)

is a positive integer solution of (4.1). This completes the proof of Lemma
4.2. �
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The mappings in Lemma 4.2 can be represented by 2 × 2 matrices with non-vanishing
determinants. Furthermore, these matrices are inverses of one another. Therefore, based on
Lemma 4.2 and Theorem 4.1, all the positive integer solutions of (4.3) are

(mc (Un(c) + Un−1(c)) , Un(c) − Un−1(c)) , n ≥ 1. (4.4)

Expressed in terms of a and b, the solutions in (4.4) are
(

b

(

Un

(

2b

a

)

+ Un−1

(

2b

a

))

, Un

(

2b

a

)

− Un−1

(

2b

a

))

, n ≥ 1.

These solutions are of the same form as those presented in Lemma 3.1. Therefore, we can
conclude that, when a|(2b) with a even, all the positive integer solutions of (1.1) are those
given in Lemma 3.1.

5. All Positive Integer Solutions of (1.1) When a|(2b) with a Odd

Let c be a positive integer, and consider the Pell equation

x2 −
(

c2 + 1
)

y2 = −1. (5.1)

The fundamental solution (the smallest solution) of (5.1) is (c, 1), or c+
√
c2 + 1. By a theorem

in Nagell [8, Theorem 106, page 201], we then have the following lemma.

Lemma 5.1. All the positive integer solutions, xn +
√
c2 + 1yn, of (5.1) are given by

xn +
√

c2 + 1yn =
(

c+
√

c2 + 1
)2n−1

, n ≥ 1. (5.2)

Now consider (1.1), where a|(2b) with a odd. This divisibility condition implies that a|b.
Accordingly, set b = ac for c a positive integer. The equation (1.1) then becomes

x2 − a2
(

c2 + 1
)

y2 = −a2. (5.3)

Our next lemma gives a connection between the solutions of (5.1) and the solutions of (5.3).
Since the proof of this lemma follows the same lines as the proof of Lemma 4.2, we state it
without proof.

Lemma 5.2. The mapping (x, y) → (ax, y) takes positive integer solutions of (5.1) to positive
integer solutions of (5.3). The mapping (x, y) →

(

x

a
, y
)

takes positive integer solutions of (5.3)
to positive integer solutions of (5.1).

The mappings in Lemma 5.2 are of course similar in nature to the mappings in Lemma 4.2,
a fact that we soon exploit.

Next, we show that the positive integer solutions of (5.1), as given in (5.2), are precisely
those given in (3.1). That is, for the sequence {Un} = {Un(2c)}, defined by

Un =
(

4c2 + 2
)

Un−1 − Un−2, U0 = 0, U1 = 1, (5.4)

we show that, for n ≥ 1,
(

c+
√

c2 + 1
)2n−1

= c (Un + Un−1) + (Un − Un−1)
√

c2 + 1. (5.5)

That (5.5) is true for n = 1 is immediate. Now suppose that (5.5) is true for n = k ≥ 1.
Then

(

c+
√

c2 + 1
)2k+1

=
(

c+
√

c2 + 1
)2 (

c+
√

c2 + 1
)2k−1

. (5.6)
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By the induction assumption, the right side of (5.6) is
(

2c2 + 1 + 2c
√

c2 + 1
)(

c (Uk + Uk−1) + (Uk − Uk−1)
√

c2 + 1
)

=
(

4c3 + 3c
)

Uk − cUk−1 +
((

4c2 + 1
)

Uk − Uk−1

)

√

c2 + 1

= c (Uk+1 + Uk) + (Uk+1 − Uk)
√

c2 + 1.

(5.7)

We arrive at last line in the array (5.7) by using the recurrence (5.4) to replace each occurrence
of −Uk−1 by Uk+1 −

(

4c2 + 2
)

Uk. This establishes (5.5).
Now, by what we have just proved, all the positive integer solutions of (5.1) are given by

(c (Un(2c) + Un−1(2c)) , Un(2c) − Un−1(2c)) , n ≥ 1. (5.8)

By Lemma 5.2, all the positive integer solutions of (5.1), given in (5.8), are mapped onto the
positive integer solutions of (5.3). The positive integer solutions of (5.3) are therefore

(ac (Un(2c) + Un−1(2c)) , Un(2c) − Un−1(2c)) , n ≥ 1. (5.9)

Finally, in (5.9) we replace c by b

a
to obtain the positive integer solutions of (1.1), which are

(

b

(

Un

(

2b

a

)

+ Un−1

(

2b

a

))

, Un

(

2b

a

)

− Un−1

(

2b

a

))

, n ≥ 1. (5.10)

These solutions are of the same form as those presented in Lemma 3.1. Therefore, we can
conclude that, when a|(2b) with a odd, all the positive integer solutions of (1.1) are those given
in Lemma 3.1.

6. A Summary and Concluding Comments

In the theorem that follows, we summarize our conclusions concerning the positive integer
solutions of (1.1).

Theorem 6.1. Suppose a|(2b). Then, with p = 2b

a
in the sequence (2.1), all the positive

integer solutions of (1.1) are given by

(xn, yn) = (b (Un + Un−1) , Un − Un−1) , n ≥ 1. (6.1)

When a = 2 and b = 1, the sequence {Un} in Theorem 6.1 is

Un = 3Un−1 − Un−2, U0 = 0, U1 = 1. (6.2)

That is, Un = F2n, so that the solutions of (1.1), given in Theorem 6.1, become

(F2n + F2n−2, F2n − F2n−2) , n ≥ 1,

or more simply, (L2n−1, F2n−1), n ≥ 1. This coincides with what we state in the introduction.
By induction, it is easy to prove that U

−n = −Un, for all integers n. This means that if we
allow negative integer values of n, then (6.1) produces all the integer solutions of (1.1) that lie
in the first and third quadrants.
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