
DETERMINANTS CONTAINING RISING POWERS OF

FIBONACCI NUMBERS

HELMUT PRODINGER

Abstract. A matrix containing rising powers of Fibonacci numbers is investigated. The
LU -decomposition is guessed and proved; this leads to a formula for the determinant. Similar
results are also obtained for a matrix of Lucas numbers.

1. Introduction

Carlitz [1], motivated by earlier writings computed the determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F r
n F r

n+1 F r
n+2 . . .

F r
n+1 F r

n+2 F r
n+3 . . .

F r
n+2 F r

n+3 F r
n+4 . . .

. . . . . . . . .
. . .

F r
n+2r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

with the result

(−1)(
r+1
2 )(n+1)

r
∏

j=0

(

r

j

)

· (F r
1F

r−1
2 . . . Fr)

2;

Fi are Fibonacci numbers as usual, and r and n are non-negative integers.
In the present note we consider the rising powers analogue
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This is an (r + 1) × (r + 1) matrix, and we assume that the indices i and j of Mi,j run from
0, . . . , r. The rising products are defined as follows:

F 〈r〉
m := FmFm+1 · · ·Fm+r−1.

Although this definition looks more complicated than the one used by Carlitz, it is actually
nicer, since we are able to compute (first guessing, then proving) the LU -decomposition of
M = LU , from which the determinant is an easy corollary, via det(M) = U0,0U1,1 . . . Ur,r.
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2. The LU-Decomposition of M

We start from the Binet form

Fn =
αn − βn

α− β
= αn−1 1− qn

1− q
,

with

α =
1 +

√
5

2
, β =

1−
√
5

2
, q =

β

α
= − 1

α2
,

so that α = iq−1/2. We write further

Fn+j = yαj−1 1− xqj

1− q
,

with

y = αn and x = qn.

Thus,

Mi,j = F
〈r〉
n+i+j =

yr

(1− q)r
α(i+j−1)r+(r2)(xqi+j ; q)r.

Here, we use standard q-notation: (x; q)m := (1− x)(1− xq) · · · (1− xqm−1).
This is the form that we use to guess (and then prove) the LU -decomposition. It holds for

general variables x, y, q, α. However, for our application, we will then specialize. For these
specializations, we need the notation of a Fibonacci-factorial:

n!F := F1F2 . . . Fn.

Theorem 2.1. For 0 ≤ i ≤ j ≤ r,

Ui,j =
xiyr

(1− q)r
αr(i+j)+

r(r−3)
2 q

3(i−1)i
2 (−1)i

(x; q)j+r(x; q)i−1(q; q)j(q; q)r
(x; q)i+j(x; q)2i−1(q; q)r−i(q; q)j−i

.

For 0 ≤ j ≤ i ≤ r,

Li,j =
(x; q)i+r(q; q)i(x; q)2j

(x; q)j+r(x; q)i+j(q; q)j(q; q)i−j
αr(i−j).

Corollary 1. The specialized versions (Fibonacci numbers) are as follows:

Ui,j =
(n+ j + r − 1)!F (n+ i− 2)!F j!F r!F

(n+ i+ j − 1)!F (n+ 2i− 2)!F (r − i)!F (j − i)!F
(−1)

i(i+1)
2

+ni,

Li,j =
(n + i+ r − 1)!F (n+ 2j − 1)!F i!F

(n+ j + r − 1)!F (n + i+ j − 1)!F j!F (i− j)!F
.

Theorem 2.2. The determinant of the matrix M is given by

det(M) =

r
∏

i=0

Ui,i = (−1)(
r+2
3 )+n(r+1

2 )(r!F )
r+1

r
∏

i=0

(n+ i+ r − 1)!F (n+ i− 2)!F
(n+ 2i− 1)!F (n+ 2i− 2)!F

= (−1)(
r+2
3 )+n(r+1

2 )(r!F )
r+1.

Although it is not necessary for our determinant calculation, we briefly mention two addi-
tional results (first general, then specialized).
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Theorem 2.3.

U−1
i,j =

(q; q)2j(q; q)r−j(x; q)i+j−1

(q; q)i(q; q)r(q; q)j−i(x; q)j−1(x; q)i+r

× q−j(j−1)−ij+ (i+1)i
2 (−1)i(1− q)rα−r(i+j)− r(r−3)

2 x−jy−r,
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(x; q)i+r(x; q)i+j−1(q; q)i
(x; q)j+r(x; q)2i−1(q; q)j(q; q)i−j

q
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2
−ij+ (j+1)j

2 αr(i−j)(−1)i−j ,

U−1
i,j =

(n+ 2j − 1)!F (n+ i+ j − 2)!F (r − j)!F
(n+ j − 2)!F (n+ i+ r − 1)!F r!F (j − i)!F i!F

(−1)ij+
i(i−1)

2
+rj,

L−1
i,j =

(n+ i+ r − 1)!F (n+ i+ j − 2)!F i!F
(n+ j + r − 1)!F (n+ 2i− 2)!F j!F (i− j)!F

(−1)
i(i−1)

2
+ij+ j(j+1)

2 .

3. Sketch of Proof

To check that M = L · U , we consider an arbitrary element (L · U)i,k.
We must simplify the following sum:

∑

j

Li,jUj,k =
∑

j

(x; q)i+r(q; q)i(x; q)2j
(x; q)j+r(x; q)i+j(q; q)j(q; q)i−j

αr(i−j)

× xjyr

(1− q)r
αr(j+k)+ r(r−3)

2 q
3(j−1)j

2 (−1)j

× (x; q)k+r(x; q)j−1(q; q)k(q; q)r
(x; q)j+k(x; q)2j−1(q; q)r−j(q; q)k−j

.

Apart from constant factors, we are left to compute

min{i,k}
∑

j=0

xj(−1)jq
3(j−1)j

2

× (x; q)2j(x; q)j−1

(x; q)j+r(x; q)i+j(x; q)j+k(x; q)2j−1(q; q)j(q; q)i−j(q; q)r−j(q; q)k−j
.

Zeilberger’s algorithm [2] (the q-version of it) readily evaluates this as

(x; q)i+k+r

(x; q)i+r(x; q)k+r(x; q)i+k(q; q)r(q; q)i(q; q)k
.

Putting this together with the constant factors proves that LU = M .
There now exist many implementations of this important algorithm, notably by Zeilberger

himself, based on the computer algebra system Maple. It is freely available from Zeilberger’s
homepage. This was the program of our choice.

4. The Lucas Matrix

We briefly discuss the case of the matrix M, where each Fi is replaced by the Lucas number
Li. We also need the notation m!L := L1L2 . . . Lm.

We write Lm = αm + βm = αm(1+ qm) and Ln+j = yαj(1+ xqj), with y = αn and x = qn,
when it comes to specializations.
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Theorem 4.1. The LU-decomposition M = LU is given by:

Ui,j =
(−x; q)j+r(−x; q)i−1(q; q)j(q; q)r

(q; q)j−i(−x; q)i+j(q; q)r−i(−x; q)2i−1
xiyrq

3i(i−1)
2 αr(i+j)+

r(r−1)
2 ,

Li,j =
(−x; q)i+r(−x; q)2j(q; q)i

(−x; q)j+r(−x; q)i+j(q; q)j(q; q)i−j
αr(i−j),

U−1
i,j =

(−x; q)2j(−x; q)i+j−1(q; q)r−j

(−x; q)j−1(−x; q)i+r(q; q)r(q; q)i(q; q)j−i

× x−jy−rq−j(j−1)−ij+
i(i+1)

2 α−r(i+j)+
r(r−9)

2 (−1)i−j ,

L−1
i,j =
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q
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Theorem 4.2. The specialized (Fibonacci/Lucas) forms are:

Ui,j =
(n+ j + r − 1)!L (n+ i− 2)!L j!F r!F

(n+ i+ j − 1)!L (n+ 2i− 2)!L (j − i)!F (r − i)!F
5i(−1)
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2

+ni,

Li,j =
(n+ i+ r − 1)!L (n+ 2j − 1)!L i!F

(n+ j + r − 1)!L (n+ i+ j − 1)!L j!F (i− j)!F
,

U−1
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(n+ j − 2)!L (n+ i+ r − 1)!L r!F (j − i)!F i!F
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2
+(n+1)j ,

L−1
i,j =
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(n+ j + r − 1)!L (n+ 2i− 2)!L j!F (i− j)!F

(−1)
i(i+1)

2
+ji+

j(j−1)
2 .

Theorem 4.3. The determinant of the matrix M is given by

det(M) =

r
∏

i=0

Ui,i =

r
∏

i=0

(n+ i+ r − 1)!L (n + i− 2)!L i!F r!F
(n + 2i− 1)!L (n+ 2i− 2)!L (r − i)!F

5i(−1)
i(i−1)

2
+ni

= (r!F )
r+15(

r+1
2 )(−1)(

r+1
3 )+n(r+1

2 ). �
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