DETERMINANTS CONTAINING RISING POWERS OF FIBONACCI NUMBERS

HELMUT PRODINGER

Abstract

A matrix containing rising powers of Fibonacci numbers is investigated. The $L U$-decomposition is guessed and proved; this leads to a formula for the determinant. Similar results are also obtained for a matrix of Lucas numbers.

1. Introduction

Carlitz [1], motivated by earlier writings computed the determinant

$$
\left|\begin{array}{ccccc}
F_{n}^{r} & F_{n+1}^{r} & F_{n+2}^{r} & \cdots & \\
F_{n+1}^{r} & F_{n+2}^{r} & F_{n}^{r}+3 & \cdots & \\
F_{n+2}^{r} & F_{n+3}^{r} & F_{n+4}^{r} & \cdots & \\
\cdots & \cdots & \cdots & \ddots & \\
& & & & F_{n+2 r}^{r}
\end{array}\right|,
$$

with the result

$$
(-1)^{\binom{r+1}{2}(n+1)} \prod_{j=0}^{r}\binom{r}{j} \cdot\left(F_{1}^{r} F_{2}^{r-1} \ldots F_{r}\right)^{2} ;
$$

F_{i} are Fibonacci numbers as usual, and r and n are non-negative integers.
In the present note we consider the rising powers analogue

$$
M=\left(\begin{array}{ccccc}
F_{n}^{\langle r\rangle} & F_{n+1}^{\langle r\rangle} & F_{n+2}^{\langle r\rangle} & \cdots & \\
F_{n+1}^{\langle\gamma\rangle} & F_{n+2}^{\langle r\rangle} & F_{n+3}^{\langle r\rangle} & \cdots & \\
F_{n+2}^{\langle r\rangle} & F_{n+3}^{\langle r\rangle} & F_{n+4}^{\langle r\rangle} & \cdots & \\
\cdots & \cdots & \cdots & \ddots & \\
& & & & F_{n+2 r}^{\langle r\rangle}
\end{array}\right) .
$$

This is an $(r+1) \times(r+1)$ matrix, and we assume that the indices i and j of $M_{i, j}$ run from $0, \ldots, r$. The rising products are defined as follows:

$$
F_{m}^{\langle r\rangle}:=F_{m} F_{m+1} \cdots F_{m+r-1} .
$$

Although this definition looks more complicated than the one used by Carlitz, it is actually nicer, since we are able to compute (first guessing, then proving) the $L U$-decomposition of $M=L U$, from which the determinant is an easy corollary, via $\operatorname{det}(M)=U_{0,0} U_{1,1} \ldots U_{r, r}$.

The author was supported by an incentive grant of the National Research Foundation of South Africa.

THE FIBONACCI QUARTERLY

2. The $L U$-Decomposition of M

We start from the Binet form

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1} \frac{1-q^{n}}{1-q}
$$

with

$$
\alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2}, \quad q=\frac{\beta}{\alpha}=-\frac{1}{\alpha^{2}},
$$

so that $\alpha=\mathrm{i} q^{-1 / 2}$. We write further

$$
F_{n+j}=y \alpha^{j-1} \frac{1-x q^{j}}{1-q},
$$

with

$$
y=\alpha^{n} \quad \text { and } \quad x=q^{n} .
$$

Thus,

$$
M_{i, j}=F_{n+i+j}^{\langle r\rangle}=\frac{y^{r}}{(1-q)^{r}} \alpha^{(i+j-1) r+\binom{r}{2}}\left(x q^{i+j} ; q\right)_{r} .
$$

Here, we use standard q-notation: $(x ; q)_{m}:=(1-x)(1-x q) \cdots\left(1-x q^{m-1}\right)$.
This is the form that we use to guess (and then prove) the $L U$-decomposition. It holds for general variables x, y, q, α. However, for our application, we will then specialize. For these specializations, we need the notation of a Fibonacci-factorial:

$$
n!_{F}:=F_{1} F_{2} \ldots F_{n} .
$$

Theorem 2.1. For $0 \leq i \leq j \leq r$,

$$
U_{i, j}=\frac{x^{i} y^{r}}{(1-q)^{r}} \alpha^{r(i+j)+\frac{r(r-3)}{2}} q^{\frac{3(i-1) i}{2}}(-1)^{i} \frac{(x ; q)_{j+r}(x ; q)_{i-1}(q ; q)_{j}(q ; q)_{r}}{(x ; q)_{i+j}(x ; q)_{2 i-1}(q ; q)_{r-i}(q ; q)_{j-i}} .
$$

For $0 \leq j \leq i \leq r$,

$$
L_{i, j}=\frac{(x ; q)_{i+r}(q ; q)_{i}(x ; q)_{2 j}}{(x ; q)_{j+r}(x ; q)_{i+j}(q ; q)_{j}(q ; q)_{i-j}} \alpha^{r(i-j)} .
$$

Corollary 1. The specialized versions (Fibonacci numbers) are as follows:

$$
\begin{gathered}
U_{i, j}=\frac{(n+j+r-1)!_{F}(n+i-2)!_{F} j!_{F} r!_{F}}{(n+i+j-1)!_{F}(n+2 i-2)!_{F}(r-i)!_{F}(j-i)!_{F}}(-1)^{\frac{i(i+1)}{2}+n i}, \\
L_{i, j}=\frac{(n+i+r-1)!_{F}(n+2 j-1)!_{F} i!_{F}}{(n+j+r-1)!_{F}(n+i+j-1)!_{F} j!_{F}(i-j)!_{F}} .
\end{gathered}
$$

Theorem 2.2. The determinant of the matrix M is given by

$$
\begin{aligned}
\operatorname{det}(M) & =\prod_{i=0}^{r} U_{i, i}=(-1)^{\binom{r+2}{3}+n\binom{r+1}{2}}\left(r!_{F}\right)^{r+1} \prod_{i=0}^{r} \frac{(n+i+r-1)!_{F}(n+i-2)!_{F}}{(n+2 i-1)!_{F}(n+2 i-2)!_{F}} \\
& =(-1)^{\binom{r+2}{3}+n\binom{r+1}{2}}\left(r!_{F}\right)^{r+1} .
\end{aligned}
$$

Although it is not necessary for our determinant calculation, we briefly mention two additional results (first general, then specialized).

DETERMINANTS CONTAINING RISING POWERS OF FIBONACCI NUMBERS

Theorem 2.3.

$$
\begin{aligned}
U_{i, j}^{-1}= & \frac{(q ; q)_{2 j}(q ; q)_{r-j}(x ; q)_{i+j-1}}{(q ; q)_{i}(q ; q)_{r}(q ; q)_{j-i}(x ; q)_{j-1}(x ; q)_{i+r}} \\
& \times q^{-j(j-1)-i j+\frac{(i+1) i}{2}}(-1)^{i}(1-q)^{r} \alpha^{-r(i+j)-\frac{r(r-3)}{2}} x^{-j} y^{-r}, \\
L_{i, j}^{-1}= & \frac{(x ; q)_{i+r}(x ; q)_{i+j-1}(q ; q)_{i}}{(x ; q)_{j+r}(x ; q)_{2 i-1}(q ; q)_{j}(q ; q)_{i-j}} q^{\frac{i(i-1)}{2}-i j+\frac{(j+1) j}{2}} \alpha^{r(i-j)}(-1)^{i-j}, \\
U_{i, j}^{-1}= & \frac{(n+2 j-1)!_{F}(n+i+j-2)!_{F}(r-j)!_{F}}{(n+j-2)!_{F}(n+i+r-1)!_{F} r!_{F}(j-i)!_{F} i!_{F}}(-1)^{i j+\frac{i(i-1)}{2}+r j}, \\
L_{i, j}^{-1}= & \frac{(n+i+r-1)!_{F}(n+i+j-2)!_{F} i!_{F}}{(n+j+r-1)!_{F}(n+2 i-2)!_{F} j!_{F}(i-j)!_{F}}(-1)^{\frac{i(i-1)}{2}+i j+\frac{j(j+1)}{2}} .
\end{aligned}
$$

3. Sketch of Proof

To check that $M=L \cdot U$, we consider an arbitrary element $(L \cdot U)_{i, k}$.
We must simplify the following sum:

$$
\begin{aligned}
\sum_{j} L_{i, j} U_{j, k}= & \sum_{j} \frac{(x ; q)_{i+r}(q ; q)_{i}(x ; q)_{2 j}}{(x ; q)_{j+r}(x ; q)_{i+j}(q ; q)_{j}(q ; q)_{i-j}} \alpha^{r(i-j)} \\
& \times \frac{x^{j} y^{r}}{(1-q)^{r}} \alpha^{r(j+k)+\frac{r(r-3)}{2}} q^{\frac{3(j-1) j}{2}}(-1)^{j} \\
& \times \frac{(x ; q)_{k+r}(x ; q)_{j-1}(q ; q)_{k}(q ; q)_{r}}{(x ; q)_{j+k}(x ; q)_{2 j-1}(q ; q)_{r-j}(q ; q)_{k-j}} .
\end{aligned}
$$

Apart from constant factors, we are left to compute

$$
\begin{aligned}
& \sum_{j=0}^{\min \{i, k\}} x^{j}(-1)^{j} q^{\frac{3(j-1) j}{2}} \\
& \quad \times \frac{(x ; q)_{2 j}(x ; q)_{j-1}}{(x ; q)_{j+r}(x ; q)_{i+j}(x ; q)_{j+k}(x ; q)_{2 j-1}(q ; q)_{j}(q ; q)_{i-j}(q ; q)_{r-j}(q ; q)_{k-j}} .
\end{aligned}
$$

Zeilberger's algorithm [2] (the q-version of it) readily evaluates this as

$$
\frac{(x ; q)_{i+k+r}}{(x ; q)_{i+r}(x ; q)_{k+r}(x ; q)_{i+k}(q ; q)_{r}(q ; q)_{i}(q ; q)_{k}} .
$$

Putting this together with the constant factors proves that $L U=M$.
There now exist many implementations of this important algorithm, notably by Zeilberger himself, based on the computer algebra system Maple. It is freely available from Zeilberger's homepage. This was the program of our choice.

4. The Lucas Matrix

We briefly discuss the case of the matrix \mathcal{M}, where each F_{i} is replaced by the Lucas number L_{i}. We also need the notation $m!_{L}:=L_{1} L_{2} \ldots L_{m}$.

We write $L_{m}=\alpha^{m}+\beta^{m}=\alpha^{m}\left(1+q^{m}\right)$ and $L_{n+j}=y \alpha^{j}\left(1+x q^{j}\right)$, with $y=\alpha^{n}$ and $x=q^{n}$, when it comes to specializations.

THE FIBONACCI QUARTERLY

Theorem 4.1. The $L U$-decomposition $\mathcal{M}=\mathcal{L U}$ is given by:

$$
\begin{aligned}
\mathcal{U}_{i, j}= & \frac{(-x ; q)_{j+r}(-x ; q)_{i-1}(q ; q)_{j}(q ; q)_{r}}{(q ; q)_{j-i}(-x ; q)_{i+j}(q ; q)_{r-i}(-x ; q)_{2 i-1}} x^{i} y^{r} q^{\frac{3 i(i-1)}{2}} \alpha^{r(i+j)+\frac{r(r-1)}{2}}, \\
\mathcal{L}_{i, j}= & \frac{(-x ; q)_{i+r}(-x ; q)_{2 j}(q ; q)_{i}}{(-x ; q)_{j+r}(-x ; q)_{i+j}(q ; q)_{j}(q ; q)_{i-j}} \alpha^{r(i-j)}, \\
\mathcal{U}_{i, j}^{-1}= & \frac{(-x ; q)_{2 j}(-x ; q)_{i+j-1}(q ; q)_{r-j}}{(-x ; q)_{j-1}(-x ; q)_{i+r}(q ; q)_{r}(q ; q)_{i}(q ; q)_{j-i}} \\
& \times x^{-j} y^{-r} q^{-j(j-1)-i j+\frac{i(i+1)}{2}} \alpha^{-r(i+j)+\frac{r(r-9)}{2}}(-1)^{i-j}, \\
\mathcal{L}_{i, j}^{-1}= & \frac{(-x ; q)_{i+r}(-x ; q)_{i+j-1}(q ; q)_{i}}{(-x ; q)_{j+r}(-x ; q)_{2 i-1}(q ; q)_{j}(q ; q)_{i-j}} q^{\frac{i(i-1)}{2}-i j+\frac{j(j+1)}{2}} \alpha^{r(i-j)}(-1)^{i-j} .
\end{aligned}
$$

Theorem 4.2. The specialized (Fibonacci/Lucas) forms are:

$$
\begin{aligned}
\mathcal{U}_{i, j} & =\frac{(n+j+r-1)!_{L}(n+i-2)!_{L} j!_{F} r!_{F}}{(n+i+j-1)!_{L}(n+2 i-2)!_{L}(j-i)!_{F}(r-i)!_{F}} 5^{i}(-1)^{\frac{i(i-1)}{2}+n i}, \\
\mathcal{L}_{i, j} & =\frac{(n+i+r-1)!_{L}(n+2 j-1)!_{L} i!_{F}}{(n+j+r-1)!_{L}(n+i+j-1)!_{L} j!_{F}(i-j)!_{F}}, \\
\mathcal{U}_{i, j}^{-1} & =\frac{(n+2 j-1)!_{L}(n+i+j-2)!_{L}(r-j)!_{F}}{(n+j-2)!_{L}(n+i+r-1)!_{L} r!_{F}(j-i)!_{F} i!_{F}} 5^{-j}(-1)^{i j+\frac{i(i-1)}{2}+(n+1) j}, \\
\mathcal{L}_{i, j}^{-1} & =\frac{(n+i+r-1)!_{L}(n+i+j-2)!_{L} i!_{F}}{(n+j+r-1)!_{L}(n+2 i-2)!_{L} j!_{F}(i-j)!_{F}}(-1)^{\frac{i(i+1)}{2}+j i+\frac{j(j-1)}{2}} .
\end{aligned}
$$

Theorem 4.3. The determinant of the matrix \mathcal{M} is given by

$$
\begin{aligned}
\operatorname{det}(\mathcal{M}) & =\prod_{i=0}^{r} U_{i, i}=\prod_{i=0}^{r} \frac{(n+i+r-1)!_{L}(n+i-2)!_{L} i!_{F} r!_{F}}{(n+2 i-1)!_{L}(n+2 i-2)!_{L}(r-i)!_{F}} 5^{i}(-1)^{\frac{i(i-1)}{2}+n i} \\
& =\left(r!_{F}\right)^{r+1} 5\binom{\binom{+1}{2}}{(-1)^{\binom{r+1}{3}+n\binom{r+1}{2} .}}
\end{aligned}
$$

References

[1] L. Carlitz, Some determinants containing powers of Fibonacci numbers, The Fibonacci Quarterly, 4.2 (1966), 129-134.
[2] M. Petkovšek, H. Wilf, and D. Zeilberger, $A=B$, A. K. Peters, Ltd., Wellesley, MA, 1996.
MSC2010: 11B39; 11C20; 15B36
Department of Mathematics, University of Stellenbosch 7602, Stellenbosch, South Africa E-mail address: hproding@sun.ac.za

