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Abstract. Using matrix methods several identities and binomial summation formulas are
obtained for a variety of recursive second and third order sequences. Some well-known sum-
mation identities will be extended to identities with negative subscripts.

1. Introduction

Several papers have used matrices to develop (primarily) summation identities for second
order sequences and polynomials. The procedure is as follows.

Begin with a seed matrix, squaring in some cases, use the Cayley-Hamilton Theorem on
the characteristic equation, completing the square and apply the binomial expansion to obtain
summation identities.

The use of matrices to develop binomial summation identities first appeared in The Fibonacci

Quarterly [7, 8] where several were obtained for the Fibonacci and Lucas numbers. In [7]
they began with the first five rows of Pascal’s Triangle and in [8] they used the matrices
[

3 1
−1 0

]

;

[

2 1
−1 −1

]

;

[

L2k 1
−1 −1

]

;

[

F2n+2k F2nk

−F2nk −F2n−2k

]

, concluding with matrices for

Chebyshev and Fibonacci polynomials, suggesting possibilities for further identities.
Matrices for the Pell and Pell-Lucas polynomial identities were developed in [18] and several

binomial summation identities were obtained. If x is set equal to one in these Pell polyno-
mial formulas, several Pell numbers binomial summation identities analogous to those for the
Fibonacci numbers in [8] are obtained.

Many other papers have used the matrix method to develop identities but do not address
the types of identities emphasized in this paper. For example the interested reader can find
the seed matrices used for these sequences in the cited references listed in this paper.

Some Pell and Pell-Lucas number identities were developed in [5]. In addition to these,
also covered in [3], the modified Pell numbers were considered where it was noted that these
numbers were easily transferable to Pell-Lucas numbers. The Pell recurrence was generalized
to higher dimension and matrices were used in [13] to obtain various relationships but the
binomial sums considered in this paper were not considered there. However some forward and
backward binomial summation identities were explored in [14].

The matrix method for generating identities for the Jacobsthal numbers can be found, for
example, in [3, 15] and for the Jacobsthal-Lucas numbers in [16] but again, the identities
obtained are not those considered in this work.

In addition, binomial identities abound in the literature. For example, several involving
Fibonacci and Lucas numbers can be found in [17, 21]. Note that the Sloane numbers, as they
appear in [19], will be indicated where appropriate throughout this paper.
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2. The General kth Order Binomial Identity

Consider a general kth order sequence where a0, a1, . . . , ak−1 are constants with a0 6= 0 and
for any n ≥ 0

an+k =
k−1
∑

i=0

pian+i. (2.1)

A linear system of equations can be generated from (2.1) by






















an+k = pk−1an+k−1 + pk−2an+k−2 + · · ·+ p1a1 + p0an

an+k−1 = an+k−1

...

an+1 = an+1.

Let

vn =















an+k−1

an+k−2

an+k−3
...
an















,S =















pk−1 pk−2 . . . p1 p0
1 0 . . . 0 0
0 1 . . . 0 0

...
0 0 . . . 1 0















,v0 =















ak−1

ak−2

ak−3
...
a0















.

It is easy to see the inverse of S is given by

S−1 =















0 1 0 . . . 0
0 0 1 . . . 0

...
0 0 0 . . . 1
1
p0

−pk−1

p0
−pk−2

p0
. . . −p1

p0















.

It follows by induction that for any integer n

vn = Sn · v0.

Let R = Sm for some positive integer m. By the Cayley-Hamilton Theorem R satisfies its
characteristic equation

Rk + bk−1R
k−1 + · · ·+ b1R+ b0I = 0. (2.2)

Suppose that by adding γRj for some constant γ that the left side of

Rk + bk−1R
k−1 + · · · + b1R+ b0I+ γRj = γRj (2.3)

is a binomial expansion. That is, (2.3) differs from a perfect power by a single term and we
have completed the power so that (2.3) can be written in one of the forms

{

(R+ βI)k = γRj, if j < k

(αR+ βI)k−1 = Rk or (αR+ βI)k = γRk, if j = k.

If this is the case then (2.3) can then be written as one of two types (αR+ βI)k−1 = γRj for

j < k or (αR+ βI)k = γRj for j ≤ k for some constants α, β, γ.
If n is any non-negative integer then the binomial expansions of the two forms above are

kn
∑

i=0

(

kn

i

)

αiβkn−iSmi = γnSmjn or

(k−1)n
∑

i=0

(

(k − 1)n

i

)

αiβ(k−1)n−iSmi = γnSmjn.
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Multiplying each side above by a SK for some fixed integer K and then by v0 results in

kn
∑

i=0

(

kn

i

)

αiβkn−iSmi+Kv0 = γnSmjn+Kv0

or
(k−1)n
∑

i=0

(

(k − 1)n

i

)

αiβ(k−1)n−iSmi+Kv0 = γnSmjn+Kv0.

Which implies for any nonnegative integer n and any integer K that

kn
∑

i=0

(

kn

i

)

αiβkn−iami+K = γnamjn+K or

(k−1)n
∑

i=0

(

(k − 1)n

i

)

αiβ(k−1)n−iami+K = γnamjn+K .

(2.4)

In either case (2.4) yields a binomial identity for every choice of K. We also note that (2.3)
may not be unique. For example, R2 + 4R+ I = 0 can be rewritten either as (R+ 2I)2 = 3I
or (R + I)2 = −2I, so it may be possible to complete the power in any number of different
ways thereby yielding various binomial identities using (2.4).

3. Second Order Sequences

Consider a second order linear sequence with initial conditions a0 = a, a1 = b, and

an+2 = pan+1 + qan, for n ≥ 0. (3.1)

Let

S =

[

p q

1 0

]

,S−1 = −1

q

[

0 −q

−1 p

]

,vn =

[

an+1

an

]

, and v0 =

[

a1
a0

]

, (3.2)

so that for any integer n, Snv0 = vn.
In [24] the matrix S in (3.2) is investigated in some detail and various identities have been

obtained but none of those is considered in this paper.
The following proposition shows that it is always possible to find an eigenvalue equation for

even powers of S from (3.2) which allows for the completing of a square in a natural way thus
enabling binomial summation identities to be determined.

Proposition 3.1. For a second order linear recursion, any integer i, and any positive integers

m,n we have






















n
∑

k=0

(−1)k
(

n

k

)

tr(Sm)n−kam(n+k)+i = qmnai,

n
∑

k=0

(−1)n−k

(

n

k

)

qm(n−k)tr(Sm)kamk+i = a2mn+i,

for any even m.























n
∑

k=0

(−1)n−k

(

n

k

)

tr(Sm)n−kam(n+k)+i = qmnai,

n
∑

k=0

(

n

k

)

qm(n−k)tr(Sm)kamk+i = a2mn+i,

for any odd m.
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Proof. Let R = Sm for some positive integer m. The characteristic equation of R satisfies
λ2−tr(R)λ+det(R) = 0. Now det(R) = det(Sm) = (−q)m and soR satisfies R(R−tr(R)I) =
−(−1)mqmI. Thus we have Rn(R− tr(R)I)n = (−1)n(−1)mnqmnI and so

n
∑

k=0

(−1)n−k

(

n

k

)

tr(R)n−kRn+kSi = (−1)n(−1)mnqmnSi.

So,
n
∑

k=0

(−1)n−k

(

n

k

)

tr(Sm)n−kSm(n+k)+iv0 = (−1)n(−1)mnqmnSiv0

and thus,
n
∑

k=0

(−1)n−k

(

n

k

)

tr(Sm)n−kam(n+k)+i = (−1)n(−1)mnqmnai.

Note that if m is odd then (−1)mn = (−1)n so (−1)2n = 1. If m is even then (−1)mn = 1
and (−1)n−k = (−1)n+k so there is a common factor of (−1)n in the even case. This proves
two of the identities. To prove the remaining two identities, note that R also satisfies R2 =
tr(R)R − (−q)mI thus, (tr(R)R − (−q)mI)n = R2n and so

n
∑

k=0

(−1)(m+1)(n−k)

(

n

k

)

qm(n−k)tr(R)kRkSi = R2nSi.

So,
n
∑

k=0

(−1)(m+1)(n−k)

(

n

k

)

qm(n−k)tr(Sm)kSmk+iv0 = S2mn+iv0

and thus,
n
∑

k=0

(−1)(m+1)(n−k)

(

n

k

)

qm(n−k)tr(Sm)kamk+i = a2mn+i.

�

Note that 3.1 is valid for any choice of integer i and so holds true for negative subscripts as
well. A more readable form for negative subscripts is the following.

Proposition 3.2. For a second order linear recursion, any integer i, and any positive integers

m,n we have






















n
∑

k=0

(−1)k
(

n

k

)

tr(Sm)n−kqmka
−m(n+k)−i = a

−i,

n
∑

k=0

(−1)n−k

(

n

k

)

tr(Sm)ka
−mk−i = qmna

−2mn−i,

for any even m.























n
∑

k=0

(

n

k

)

tr(Sm)n−kqmka
−m(n+k)−i = a

−i,

n
∑

k=0

(−1)k
(

n

k

)

tr(Sm)ka
−mk−i = qmna

−2mn−i,

for any odd m.
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Proof. Since R2− tr(R)R+(−q)mI = 0 then I− tr(R)R−1+(−q)mR−2 = 0 so I = (tr(R)I−
(−q)mR−1)R−1 and (tr(R)R−1 − I) = (−q)mR−2. Hence, it follows that S−i = (tr(R)I −
(−q)mR−1)nR−nS−i and (tr(R)R−1 − I)nS−i = (−q)mnR−2nS−i. Thus,

n
∑

k=0

(−1)(m+1)k

(

n

k

)

tr(Sm)n−kqmkS−m(k+n)−i = S−i

and
n
∑

k=0

(−1)n−k

(

n

k

)

tr(Sm)kS−mk−i = (−1)mnqmnS−2mn−i

and the proposition now follows. �

Corollary 3.3. If m = 1 then

n
∑

k=0

(−1)n−k

(

n

k

)

pn−kan+k+i = qnai

n
∑

k=0

(

n

k

)

qn−kpkak+i = a2n+i

n
∑

k=0

(

n

k

)

pn−kqka
−n−k−i = a

−i

n
∑

k=0

(−1)k
(

n

k

)

pka
−k−i = qna

−2mn−i

for a second order linear recursion.

Corollary 3.4. If a0 = 0 then

n
∑

k=0

(−1)k
(

n

k

)

tr(Sm)n−kam(n+k) = 0

n
∑

k=0

(−1)k
(

n

k

)

pn−kan+k = 0

for a second order linear recursion.

Corollary 3.5. For the Fibonacci numbers we have






















n
∑

k=0

(−1)k
(

n

k

)

Ln−k
m Fm(n+k)+i = Fi,

n
∑

k=0

(−1)n−k

(

n

k

)

Lk
mFmk+i = F2mn+i,

for any even m.























n
∑

k=0

(−1)n−k

(

n

k

)

Ln−k
m Fm(n+k)+i = Fi,

n
∑

k=0

(

n

k

)

Lk
mamk+i = F2mn+i,

for any odd m.
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where Lm is the mth Lucas number.

n
∑

k=0

(−1)n−k

(

n

k

)

Fn+k+i = Fi,

n
∑

k=0

(−1)k
(

n

k

)

Fn+k = 0,

n
∑

k=0

(

n

k

)

Fk+i = F2n+i,

n
∑

k=0

(

n

k

)

Fk = F2n.

Proof. For the Fibonacci numbers we have for any m that tr(Sm) = Fm+1 + Fm−1 = Lm and
so the corollary follows. �

The next proposition shows that for S2m, i.e., even powers of S that −2qm occurs naturally
as a term in the trace of S2m and so there is a natural way to complete the square in the
characteristic polynomial of Sm.

Proposition 3.6. If S is the matrix of (3.2) then the characteristic equation of S2m satisfies

λ2 + (−tr(Sm)2 − 2qm)λ+ q2m = 0, if m is odd.

λ2 + (−tr(Sm)2 + 2qm)λ+ q2m = 0, if m is even.

Proof. For any even positive integer 2m we have that the characteristic equation of S2m satisfies
λ2 − tr(S2m)λ+ q2m = 0. Let γ =

√
λ so that det(S2m − λI) = det(Sm − γI) det(Sm + γI). If

m is odd then

0 = det(Sm − γI) det(Sm + γI) = (γ2 − tr(Sm)γ − qm)(γ2 + tr(Sm)γ − qm)

= γ4 + (−tr(Sm)2 − 2qm)γ2 + q2m.

If m is even then

0 = det(Sm − γI) det(Sm + γI) = (γ2 − tr(Sm)γ + qm)(γ2 + tr(Sm)γ + qm)

= γ4 + (−tr(Sm)2 + 2qm)γ2 + q2m.

�

It follows that there are at least two ways to complete the square using the middle term
for any even power of the matrix S generated by a second order recursion relation by using
the q2m constant term and the 2qm coefficient. That is by the Cayley-Hamilton Theorem:
S4m + (−tr(Sm)2 ± 2qm)S2m + q2mI = 0 implies

(S2m − qmI)2 = tr(Sm)2S2m and (S2m + qmI)2 = (tr(Sm)2 + 4qm)S2m if m is odd,

(S2m + qmI)2 = tr(Sm)2S2m and (S2m − qmI)2 = (tr(Sm)2 − 4qm)S2m if m is even.

In particular for S2 we have (S2 − qI)2 = p2S2 and (S2 + qI)2 = (p2 + 4q)S2.
Similarly S4m + (−tr(Sm)2 ± 2qm)S2m + q2mI = 0 implies I + (−tr(Sm)2 ± 2qm)S−2m +

q2mS−4m = 0 so

(qS−2 − I)2 = p2S−2 and (qS−2 + I)2 = (p2 + 4q)S−2.
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Proposition 3.7. For any whole number i the following identities hold for a second order

recursion an+2 = pan=1 + qan, a0 = a, a1 = b

2n
∑

k=0

(−1)k
(

2n

k

)

q2n−ka2k+i = p2na2n+i,

2n
∑

k=0

(

2n

k

)

q2n−ka2k+i = (p2 + 4q)na2n+i.

Proof. We have (S2 − qI)2n = (p2S2)n and (S2 + qI)2n = ((p2 + 4q)S2)n so by the binomial
theorem we have

2n
∑

k=0

(−1)k
(

2n

k

)

q2n−kS2k = p2nS2n and

2n
∑

k=0

(

2n

k

)

q2n−kS2k = (p2 + 4q)nS2n.

Multiplying all sides above by Si for any whole number i we have

2n
∑

k=0

(−1)k
(

2n

k

)

q2n−kS2k+i = p2nS2n+i and

2n
∑

k=0

(

2n

k

)

q2n−kS2k+i = (p2 + 4q)nS2n+i.

Hence,
2n
∑

k=0

(−1)k
(

2n

k

)

q2n−kS2k+i

[

a1
a0

]

= p2nS2n+i

[

a1
a0

]

and
2n
∑

k=0

(

2n

k

)

q2n−kS2k+i

[

a1
a0

]

= (p2 + 4q)nS2n+i

[

a1
a0

]

.

From (3.2) it follows that for any whole number i

2n
∑

k=0

(−1)k
(

2n

k

)

q2n−ka2k+i = p2na2n+i

and
2n
∑

k=0

(

2n

k

)

q2n−ka2k+i = (p2 + 4q)na2n+i.

�

For negative subscripts we have the following proposition.

Proposition 3.8. For any whole number i the following identities hold for a second order

recursion an =
1

q
an+2 −

p

q
an+1, a0 = a, a1 = b

2n
∑

k=0

(−1)k
(

2n

k

)

qka
−2k−i = p2na

−2n−i,

2n
∑

k=0

(

2n

k

)

qka
−2k−i = (p2 + 4q)na

−2n−i.
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Proof. We have (qS−2 − I)2n = (p2S−2)n and (qS−2 + I)2n = ((p2 + 4q)S−2)n so again by the
binomial theorem and by multiplying all sides (S−1)i for any positive integer i we have

2n
∑

k=0

(−1)k
(

2n

k

)

qkS−2k−i

[

a0
a
−1

]

= p2nS−2n−i

[

a0
a
−1

]

and
2n
∑

k=0

(

2n

k

)

qkS−2k+i

[

a0
a
−1

]

= (p2 + 4q)nS−2n+i

[

a0
a
−1

]

.

Thus it follows that for any whole number i

2n
∑

k=0

(−1)k
(

2n

k

)

qka
−2k−i = p2na

−2n−i

and
2n
∑

k=0

(

2n

k

)

qka
−2k−i = (p2 + 4q)na

−2n−i.

�

By way of examples we present the following binomial sums.

3.1. Fibonacci Sequence. Fn, (p = 1, q = 1). Here S =

[

1 1
1 0

]

, S2 =

[

2 1
1 1

]

, and

S−2 =

[

1 −1
−1 2

]

. By Proposition 3.8 we have

2n
∑

k=0

(−1)k
(

2n

k

)

F
−2k−i = F

−2n−i and
2n
∑

k=0

(

2n

k

)

F
−2k−i = 5nF

−2n−i.

3.2. Pell Sequence. Pn, (p = 2, q = 1), [1, 3]. Here S =

[

2 1
1 0

]

, S2 =

[

5 2
2 1

]

, and

S−2 =

[

1 −2
−2 5

]

. Using Proposition 3.7 yields the following identities that vary slightly

with those obtained from [18]

2n
∑

k=0

(−1)k
(

2n

k

)

P2k+i = 4nP2n+i and

2n
∑

k=0

(

2n

k

)

P2k+i = 8nP2n+i.

By Proposition 3.8 for negative subscripts we have

2n
∑

k=0

(−1)k
(

2n

k

)

P
−2k−i = 4nP

−2n−i and

2n
∑

k=0

(

2n

k

)

P
−2k−i = 8nP

−2n−i.
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3.3. Jacobsthal Sequence. Jn, (p = 1, q = 2), [4]. Here S =

[

1 2
1 0

]

, S2 =

[

3 2
1 2

]

, and

S−2 =

[

1 −2
−2 5

]

. Using Proposition 3.7 yields the following identities

2n
∑

k=0

(−1)k
(

2n

k

)

22n−kJ2k+i = J2n+i and
2n
∑

k=0

(

2n

k

)

22n−kJ2k+i = 9nJ2n+i.

By Proposition 3.8 for negative subscripts we have

2n
∑

k=0

(−1)k
(

2n

k

)

2kJ
−2k−i = J

−2n−i and
2n
∑

k=0

(

2n

k

)

2kJ
−2k−i = 9nJ

−2n−i.

Next we consider polynomials associated with the classical Chebyshev polynomials described
by the recurrence An+2(x) = 2xAn+1(x)−An(x).

In [12] associated Chebyshev polynomials of the second kind An = Un with U0 = 1 and
U1 = 2x; were investigated and in [10] associated Chebyshev polynomials of the first kind
An = Tn with T0 = 2 and T1 = 2x were analogously considered.

Furthermore Horadam described Fermat polynomials of the first kind, Fn(x), and the second
kind, fn(x), in [9] as follows. Both satisfy the recurrence Fn+2(x) = 3xFn+1(x)− 2Fn(x) with
initial conditions, respectively as F0(x) = 0,F1(x) = 1; and f0(x) = 2, f1(x) = 3x. He called
the second kind Fermat-Lucas polynomials.

The Fermat numbers (not to be confused with the classical Fermat numbers Fn) are ob-
tained by letting x = 1. He called F(1) = φn yielding the sequence {φn} = {0, 1, 3, 7, 15, . . .}
with Sloane number A000225 sometimes called Mersenne numbers (2n − 1 as opposed to
the classical Mersenne numbers where n is prime) and fn(1) = θn yielding the sequence
{θn} = {2, 3, 5, 9, 17, . . .} = {2n + 1} with Sloane number A000051, sometimes referred to
as the Pisot sequence L(2, 3). Both sequences satisfy the recurrence An+2 = 3An+1 − 2An.

Further investigation of these and other polynomial sequences leading to the second order
sequential numbers considered in this paper has also been explored in [11].

3.4. Chebyshev Numbers. x = 1, An+2 = 2An+1 −An.
Setting x = 1 in the Chebyshev polynomials yields the common recurrence

An+2 = 2An+1 −An

for Chebyshev numbers. In this case it follows by induction that Sn =

[

n+ 1 −n

n 1− n

]

and

that the characteristic equation for any power of S is

det(Sn − λI) = λ2 − 2λ+ 1 = (λ− 1)2.

For n = 1 this implies
∑2n

k=0(−1)k
(2n
k

)

Sk = 0 so that

2n
∑

k=0

(−1)k
(

2n

k

)

ak+1 = 0 and

2n
∑

k=0

(−1)k
(

2n

k

)

ak = 0.

At first glance this relationship might seem less interesting than the previous ones. However
when the arbitrary initial conditions, a0 and a1 are assigned values a0 = 0 and a1 = 1, the
Chebyshev numbers of the first kind become {1, 1, 1, 1, . . . , 1, . . .} while a0 = 1 and a1 = 2,
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the Chebyshev numbers of the first kind become {1, 2, 3, 4, . . . , n, . . .}. These initial conditions
yield the identities

2n
∑

k=0

(−1)k
(

2n

k

)

= 0 and

2n
∑

k=0

(−1)k
(

2n

k

)

k = 0

which normally require a proof by induction.

3.5. Fermat Numbers. These Fermat numbers are not the classical ones. For these Fermat
numbers, p = 3 and q = −2. Using Proposition 3.7 we get the following identities:

2n
∑

k=0

(−1)k
(

2n

k

)

(−2)2n−ka2k+i =

2n
∑

k=0

(

2n

k

)

22n−ka2k+i = 9na2n+i

2n
∑

k=0

(

2n

k

)

(−2)2n−ka2k+i =
2n
∑

k=0

(−1)k
(

2n

k

)

22n−ka2k+i = a2n+i,

when aj = φj = 2j − 1, aj = θj = 2j + 1 then we have

2n
∑

k=0

(

2n

k

)

22n−k(22k+i − 1) = 9n(22n+i − 1) and

2n
∑

k=0

(

2n

k

)

22n−k(22k+i + 1) = 9n(22n+i + 1)

2n
∑

k=0

(−1)k
(

2n

k

)

22n−k(22k+i − 1) = 22n+i − 1 and

2n
∑

k=0

(−1)k
(

2n

k

)

22n−k(22k+i + 1) = 22n+i + 1.

This results in the identities:
∑2n

k=0

(

2n
k

)

22n+k+i = 9n22n+i,
∑2n

k=0

(

2n
k

)

22n−k = 9n and
∑2n

k=0(−1)k
(2n
k

)

22n+k+i = 22n+i,
∑2n

k=0(−1)k
(2n
k

)

22n−k = 1. This reduces to

2n
∑

k=0

(

2n

k

)

2k = 9n,
2n
∑

k=0

(

2n

k

)

22n−k = 9n,

and
2n
∑

k=0

(−1)k
(

2n

k

)

2k = 1,
2n
∑

k=0

(−1)k
(

2n

k

)

22n−k = 1.

3.6. Sloane A001109. an+2 = 6an+1 − an, a0 = 0, a1 = 1, p = 6, q = 1 (a2n is a Triangular
number).

Here S2 − 6S+ I = 0 so (3S − I)2 = 8S2, (S − 3I)2 = 8I, (S− I)2 = 4S, (S + I)2 = 8S and
for any integer i ≥ 0

2n
∑

k=0

(−1)k3kak+i = 8na2n+i and

2n
∑

k=0

(−1)k32n−kak+i = 8nan+i.

4. Third Order Sequences

The matrix technique introduced in [8] has been extended to third order sequences for spe-
cific sequences in [20, 22] and some identities were provided, with suggestions for further de-
velopment. The general case analogous to (3.2) was considered in [23] where some summation
identities not involving binomial coefficients were obtained for some specific cases. Additional
algorithmic techniques were provided in [2] but the matrix method was not employed.

Investigating several powers of the basic matrix using MAPLE suggests that a useful eigen-
value equation analogous to that determined in Proposition 3.6 for the second order case may
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not be obtainable. However some of the more well-known cases yield summation identities.
These are illustrated here.

We consider third order linear sequences with initial conditions a0 = a, a1 = b, a2 = c and

an+3 = pan+2 + qan+1 + ran, (4.1)

for n ≥ 0. Let

S =





p q r

1 0 0
0 1 0



 , so that





an+2

an+1

an



 =





p q r

1 0 0
0 1 0





n 



a2
a1
a0



 . (4.2)

4.1. The Tribonacci Sequence. Here p = 1, q = 1, r = 1. S2 satisfies its characteristic
equation λ3 − 3λ2 − λ− 1 = 0 so we have S6 − 3S4 − S2 − I = 0 so (S2 − I)3 = 4S2 and so

3n
∑

k=0

(−1)3n−k

(

3n

k

)

S2k+i = 4nS2n+i.

Thus for any i ≥ 0
3n
∑

k=0

(−1)3n−k

(

3n

k

)

a2k+i = 4na2n+i. (4.3)

Using MAPLE to investigate lower powers of S are fruitless until S8 where S8 satisfies the
equation λ3−131λ2+3λ−1 = 0 and so S24−131S16+3S8−I = 0 we have (S8−I)3 = 128S16

and so
3n
∑

k=0

(−1)3n−k

(

3n

k

)

S8k+i = 128nS16n+i.

So for any positive integer i ≥ 0

3n
∑

k=0

(−1)3n−k

(

3n

k

)

a8k+i = (128)na16n+i. (4.4)

4.2. The Perrin-Padovan Sequences [25, 26]. Here p = 0, q = 1, r = 1 in (4.1) and S3

satisfies its characteristic equation λ3 − 3λ2 + 2λ− 1 = 0. So S9 − 3S6 + 2S3 − I = 0 and so
(S3 − I)3 = S3. Thus,

3n
∑

k=0

(−1)3n−k

(

3n

k

)

S3k+i = S3n+i

and so for any positive integer i ≥ 0

3n
∑

k=0

(−1)3n−k

(

3n

k

)

a3k+i = a3n+i. (4.5)

4.3. The Narayana’s Cows Sequence. Here p = 1, q = 0, r = 1. S3 satisfies the equation
λ3 − 4λ2 + 3λ− 1 = 0. So S9 − 4S6 + 3S3 − I = 0 and (S3 − I)3 = S6 and so for any positive
integer i ≥ 0 that

3n
∑

k=0

(−1)3n−k

(

3n

k

)

a3k+i = a6n+i. (4.6)

An interesting presentation on the Narayana–Cows Problem and the resulting sequence
{2, 3, 4, 6, 9, . . .} with Sloane number A000930 can be found in [6].

214 VOLUME 54, NUMBER 3



USING MATRICES TO DERIVE IDENTITIES FOR RECURSIVE SEQUENCES

4.4. Sloane A0002478 and Sloane A108122. Here p = 1, q = 2, and r = 1 so that
an+3 = an+2 + 2an+1 + an. S satisfies S3 = (S+ I)2 and so

2n
∑

k=0

(

2n

k

)

Sk+i = S3n+i

and thus for any integer i ≥ 0
2n
∑

k=0

(

2n

k

)

ak+i = a3n+i.
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