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Abstract. In this paper, we present closed forms for certain finite sums. In each case,
the denominator of the summand is a product of sine or cosine functions. Furthermore, in
each case, the arguments of the trigonometric functions in the denominator of the summand
increase in arithmetic progression.

1. Introduction

In a sequence of recent papers, we present closed forms for finite sums where, in each case,
the denominator of the summand is a product of terms from generalized Fibonacci sequences.
Such finite sums can therefore be specialized to the Fibonacci sequence. For instance, as a
by-product of this work, we have

n−1
∑

i=1

1

FiFi+1Fi+2Fi+3

=
7

4
−

1

2

(

Fn−1

Fn

+
3Fn

Fn+1

+
Fn+1

Fn+2

)

, (1.1)

which is given in [1]. Reference [1] contains references to some of the papers mentioned above.
A search of the literature revealed nothing analogous to (1.1) for the sine or cosine functions.

This prompted us to begin the research that led to the present paper. In each of the sums
that we consider in this paper, the denominator of the summand is a product of sine or cosine
functions. Furthermore, the arguments of the functions in the denominator of each summand
increase in arithmetic progression. Each finite sum that we present is categorized according
to the number of distinct terms in the denominator of its summand. Accordingly, we use

the notation S
j
k
(n, d) to denote a finite sum with k distinct terms in the denominator of its

summand. For instance, in Section 3, each of S0
2 = S0

2(n, d) and S1
2 = S1

2(n, d) has two distinct
terms in the denominator of its summand.

At the outset, we set the constraints on the parameters n and d that occur in the previous

paragraph, and henceforth we do not restate these constraints. In any sum S
j
k = S

j
k(n, d),

n ≥ 2 and d ≥ 1, are assumed to be integers.
We limit the scope of this paper so that each finite sum that we consider has at most

five distinct factors in the denominator of its summand, guaranteeing that our results do not
become too unwieldy. In order to keep the presentation to a reasonable length, we give the
closed forms for only a selection of the sums that we define.

In Section 2, we define two finite sums, Φ and Ψ, in terms of which we express all our
results. We present our main results in Sections 3, 4, 5, and 6, and demonstrate the method
of proof that can be used to prove each of these results in Section 5.
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2. The Finite Sums Φ and Ψ

There are two finite sums that we use to express the closed forms for all the sums that occur
in this paper. For integers 0 ≤ l1 < l2, these finite sums are

Φ(n, l1, l2) =

l2−1
∑

i=l1

1

sin(i+ 2) sin(i+ n)
,

Ψ(n, l1, l2) =

l2−1
∑

i=l1

1

cos(i+ 2) cos(i+ n)
.

In Lemma 2.1, we give identities for Φ and Ψ that are required for the proofs of all the
theorems in this paper. We prove only the identity for Φ, since the proof of the analogous
identity for Ψ proceeds along similar lines.

In order to prove the identity for Φ, we require certain identities from elementary trigonom-
etry. Two of these identities are

sinα sin β =
cos(α− β)− cos(α+ β)

2
, (2.1)

cosα− cos β = −2 sin

(

α+ β

2

)

sin

(

α− β

2

)

. (2.2)

We require also identities (2.3) and (2.4), each of which can be proved by the application of
(2.1) to each product on the left, followed by the use of (2.2).

sin(α − β) sin(n+ α+ 1) + sin 1 sin(n+ β) = sin(α− β + 1) sin(n+ α), (2.3)

sin(n− 1) sin(i+ n)− sin(n− 2) sin(i+ n+ 1) = sin 1 sin(i+ 2). (2.4)

Finally, for integers 0 ≤ l1 < l2, we require the sum

l2−1
∑

i=l1

1

sin(i+ n) sin(i+ n+ 1)
=

sin(l2 − l1)

sin 1 sin(n+ l1) sin(n + l2)
, (2.5)

which can be proved by straightforward induction on l2. Here, one makes use of (2.3) in the
inductive step. We leave the details to the interested reader.

Lemma 2.1, which follows, gives the identities for Φ and Ψ to which we refer in the second
paragraph of this section.

Lemma 2.1. With Φ and Ψ as defined at the beginning of this section,

sin(n− 1)Φ(n + 1, l1, l2)− sin(n− 2)Φ(n, l1, l2) =
sin(l2 − l1)

sin(n+ l1) sin(n+ l2)
, (2.6)

sin(n− 1)Ψ(n + 1, l1, l2)− sin(n− 2)Ψ(n, l1, l2) =
sin(l2 − l1)

cos(n+ l1) cos(n + l2)
. (2.7)
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Proof. Set D(n, l1, l2) = sin(n− 1)Φ(n+ 1, l1, l2)− sin(n− 2)Φ(n, l1, l2). Then

D(n, l1, l2) =

l2−1
∑

i=l1

1

sin(i+ 2)

(

sin(n− 1) sin(i+ n)− sin(n− 2) sin(i+ n+ 1)

sin(i+ n) sin(i+ n+ 1)

)

=

l2−1
∑

i=l1

sin 1

sin(i+ n) sin(i+ n+ 1)
, by (2.4)

=
sin(l2 − l1)

sin(n+ l1) sin(n+ l2)
, by (2.5).

This completes the proof of (2.6). The proof of (2.7) is similar. �

3. The Summand has Two Distinct Factors in the Denominator

The reader should recall the constraints upon the parameters n and d that we state in the
introduction, and that apply throughout this paper. In this section, we give closed forms for
the finite sums

S0
2(n, d) =

n−1
∑

i=1

1

sin i sin(i+ d)
,

S1
2(n, d) =

n−1
∑

i=1

1

cos i cos(i+ d)
.

We present the closed forms for S0
2 and S1

2 in the following theorem.

Theorem 3.1. With S0
2 and S1

2 as defined above,

sin d
(

S0
2(n, d)− S0

2(2, d)
)

= sin(n− 2)Φ(n, 0, d), (3.1)

sin d
(

S1
2(n, d)− S1

2(2, d)
)

= sin(n− 2)Ψ(n, 0, d). (3.2)

For d = 1, formulas (3.1) and (3.2) yield, respectively,

n−1
∑

i=1

1

sin i sin(i+ 1)
= csc 1(cot 1− cot n),

n−1
∑

i=1

1

cos i cos(i+ 1)
= csc 1 tan n− sec 1.

We remark that S0
2 and S1

2 are the only finite sums, with two distinct terms in the denom-
inator of the summand, whose closed forms we have been able to find.

4. The Summand has Three Distinct Factors in the Denominator

In this section, we present only the closed forms for S0
3 and S1

3 , defined below. Define

S0
3(n, d) =

n−1
∑

i=1

cos(i+ d)

sin i sin(i+ d) sin(i+ 2d)
,

S1
3(n, d) =

n−1
∑

i=1

sin(i+ d)

cos i cos(i+ d) cos(i+ 2d)
.
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There are further similar finite sums, with three distinct terms in the denominator of the
summand, whose closed forms we have been able to find. In the summand of S0

3 , replace
the numerator by cos i and also by cos(i + 2d). Likewise, in the summand of S1

3 , replace
the numerator by sin i and also by sin(i + 2d). Then we have found the closed forms for the
corresponding four finite sums.

We present the closed forms for S0
3 and S1

3 in the theorem that follows.

Theorem 4.1. With S0
3 and S1

3 as defined above,

2 sin2 d
(

S0
3(n, d)− S0

3(2, d)
)

= sin(n− 2) (Φ(n, 0, d) − Φ(n, d, 2d)) , (4.1)

−2 sin2 d
(

S1
3(n, d)− S1

3(2, d)
)

= sin(n− 2) (Ψ(n, 0, d) −Ψ(n, d, 2d)) . (4.2)

For d = 1, formulas (4.1) and (4.2) yield, respectively,

n−1
∑

i=1

cos(i+ 1)

sin i sin(i+ 1) sin(i+ 2)
=

(2 cos 2 + 1) (cos 3− cos(2n + 1))

4 sin 1 sin 2 sin 3 sin n sin(n+ 1)
,

n−1
∑

i=1

sin(i+ 1)

cos i cos(i+ 1) cos(i+ 2)
=

cos 3− cos(2n + 1)

sin 4 cos n cos(n+ 1)
.

As we state at the end of the introduction, in the next section we demonstrate a method of
proof that can be used to prove each result in this paper.

5. The Summand has Four Distinct Factors in the Denominator

We have found that, as the number of factors in the denominator increases, the number of
finite sums for which we can write down closed forms also increases. Accordingly, we have
discovered closed forms for the eight finite sums that we define below. Define

S0
4(n, d) =

n−1
∑

i=1

1

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d)
,

S1
4(n, d) =

n−1
∑

i=1

cos(i+ d) cos(i+ 2d)

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d)
,

S2
4(n, d) =

n−1
∑

i=1

sin(2i+ 3d)

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d)
,

S3
4(n, d) =

n−1
∑

i=1

cos(2i+ 3d)

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d)
.
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Define also

S4
4(n, d) =

n−1
∑

i=1

1

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d)
,

S5
4(n, d) =

n−1
∑

i=1

sin(i+ d) sin(i+ 2d)

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d)
,

S6
4(n, d) =

n−1
∑

i=1

sin(2i+ 3d)

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d)
,

S7
4(n, d) =

n−1
∑

i=1

cos(2i+ 3d)

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d)
.

In order to keep the presentation to a reasonable length, we give the closed forms for only
a selection of the sums defined above.

We present the closed forms for S0
4 and S4

4 together, since the results are similar. Further-
more, we demonstrate our method of proof by proving the first of these. For brevity, put
c = c(d) = sin d sin(2d) sin(3d). We then have the following theorem.

Theorem 5.1. With S0
4 and S4

4 as defined above,

c
(

S0
4(n, d)− S0

4(2, d)
)

= sin(n− 2) (Φ(n, 0, d) − 2 cos(2d)Φ(n, d, 2d) + Φ(n, 2d, 3d)) , (5.1)

c
(

S4
4(n, d)− S4

4(2, d)
)

= sin(n− 2) (Ψ(n, 0, d) − 2 cos(2d)Ψ(n, d, 2d) + Ψ(n, 2d, 3d)) . (5.2)

Proof. What follows is a proof of (5.1). Denote the quantities on the left and right sides of
(5.1) by L(n, d) and R(n, d), respectively. It is immediate that

L(n+ 1, d) − L(n, d) =
sin d sin(2d) sin(3d)

sinn sin(n+ d) sin(n + 2d) sin(n+ 3d)
. (5.3)

With the use of (2.6), we see that

R(n+ 1, d)−R(n, d) =
sin d

sinn sin(n+ d)
−

2 sin d cos(2d)

sin(n+ d) sin(n+ 2d)

+
sin d

sin(n+ 2d) sin(n+ 3d)
.

(5.4)

Our aim is to prove that

L(n+ 1, d) − L(n, d) = R(n+ 1, d) −R(n, d). (5.5)

To this end, we express the right side of (5.4) with the same denominator as the right side of
(5.3). This shows that to prove (5.5) we are required to prove that

sin(2d) sin(3d) = sin(n+ 3d)(sin(n+ 2d)− 2 sinn cos(2d)) + sinn sin(n+ d). (5.6)

Expanding sin(n + 2d), we see that to prove (5.6) it is enough to prove that

sin(2d) sin(3d) = sin(n + 3d) sin(2d − n) + sinn sin(n+ d). (5.7)

To prove (5.7), we apply (2.1) to each product on the right side of (5.7), and apply (2.2)
to the result. This shows that (5.5) is true. Furthermore, L(2, d) = R(2, d) = 0, and this
completes the proof of (5.1). �

Since the closed forms for S2
4 and S6

4 are relatively succinct, we present these closed forms
in the following theorem.
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Theorem 5.2. With S2
4 and S6

4 as defined above,

2 sin2 d cos d
(

S2
4(n, d)− S2

4(2, d)
)

= sin(n− 2) (Φ(n, 0, d)− Φ(n, 2d, 3d)) , (5.8)

− sin d sin(2d)
(

S6
4(n, d)− S6

4(2, d)
)

= sin(n− 2) (Ψ(n, 0, d)−Ψ(n, 2d, 3d)) . (5.9)

Let d = 1. Then (5.8) and (5.9) yield, respectively,

n−1
∑

i=1

sin(2i+ 3)

sin i sin(i+ 1) sin(i+ 2) sin(i+ 3)
=

cos 4− cos(2n + 2)

sin3 1(4 cos 2 + 2) sin n sin(n+ 2)
,

n−1
∑

i=1

sin(2i + 3)

cos i cos(i+ 1) cos(i+ 2) cos(i+ 3)
=

cos 4− cos(2n + 2)

sin 1 cos2 1(4 cos 2− 2) cosn cos(n+ 2)
.

We remark that there are variations of the sums defined in this section whose closed forms
we have managed to find. For instance, consider the four sums S2

4 , S
3
4 , S

6
4 , and S7

4 . In each of
these finite sums, replace the argument 2i+ 3d in the numerator of the summand by 2i+ kd,
where k is an integer. Then we have managed to find the corresponding closed forms for
certain small values of k. We have found that the case k = 3 yields closed forms that are the
least complicated.

6. The Summand has Five Distinct Factors in the Denominator

Define

S0
5(n, d) =

n−1
∑

i=1

cos(i+ 2d)

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d) sin(i+ 4d)
,

S1
5(n, d) =

n−1
∑

i=1

cos(i+ d) cos(i+ 2d) cos(i+ 3d)

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d) sin(i+ 4d)
,

S2
5(n, d) =

n−1
∑

i=1

sin(3(i+ 2d))

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d) sin(i+ 4d)
,

S3
5(n, d) =

n−1
∑

i=1

cos(3(i+ 2d))

sin i sin(i+ d) sin(i+ 2d) sin(i+ 3d) sin(i+ 4d)
.

Also define

S4
5(n, d) =

n−1
∑

i=1

sin(i+ 2d)

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d) cos(i+ 4d)
,

S5
5(n, d) =

n−1
∑

i=1

sin(i+ d) sin(i+ 2d) sin(i+ 3d)

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d) cos(i+ 4d)
,

S6
5(n, d) =

n−1
∑

i=1

cos(3(i+ 2d))

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d) cos(i+ 4d)
,

S7
5(n, d) =

n−1
∑

i=1

sin(3(i+ 2d))

cos i cos(i+ d) cos(i+ 2d) cos(i+ 3d) cos(i+ 4d)
.
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We have discovered closed forms for each of the eight sums defined above. There are
variations of these sums that we have also investigated. For instance, in S0

5(n, d) replace the
numerator of the summand by cos3(i + 2d), and in S4

5(n, d) replace the numerator of the
summand by sin3(i + 2d). Then we have discovered closed forms for the corresponding finite
sums. Furthermore, comments similar to those made in the paragraph at the end of Section 5
apply to each of the eight sums defined at the beginning of this section.

On the negative side, in each of S2
5 , S3

5 , S6
5 , and S7

5 , we replaced the numerator of the
summand by the cube of that numerator. However, in each case, we were not able to find the
closed forms for the corresponding finite sums.

Below, we give only the closed forms for S2
5 and S4

5 . Accordingly, set e = e(d) = 2 cos(2d)−1,
and f = f(d) = 2 cos(2d) + 1. We then have the following two theorems.

Theorem 6.1. With S2
5 as defined above,

sin2 d sin(4d)
(

S2
5(n, d)− S2

5(2, d)
)

= sin(n − 2) (eΦ(n, 0, d) − Φ(n, d, 2d) − Φ(n, 2d, 3d) + eΦ(n, 3d, 4d)) .

Theorem 6.2. With S4
5 as defined above,

2f sin2 d sin2(2d)
(

S4
5(n, d) − S4

5(2, d)
)

= sin(n− 2) (−Ψ(n, 0, d) + fΨ(n, d, 2d) − fΨ(n, 2d, 3d) + Ψ(n, 3d, 4d)) .

The specializations of S2
5 and S4

5 for small values of d, including d = 1, are rather unwieldy.
We therefore write down only the closed form of S4

5 for d = 1. After much simplification, the
sum in question becomes

n−1
∑

i=1

2 sin 8 cos 3 cos 5 sin(i+ 2)

cos i cos(i+ 1) cos(i+ 2) cos(i+ 3) cos(i+ 4)
− 16 sin 1 sin 3

= (cos 7− cos(2n+ 3))
cos 1 + cos 3 + cos 7 + cos(2n+ 3)

cosn cos(n+ 1) cos(n + 2) cos(n+ 3)
.

7. Concluding Comments

In order to present this paper succinctly, we have chosen to give all our results in abbreviated
form. To write down our results in their most general form is easy. Let θ be any real number
that is not a rational multiple of π. This condition on θ excludes the possibility of vanishing
denominators. Then this entire paper can be generalized in the following manner: take every

occurrence of sin and cos, and multiply the argument by θ.
For example, redefine Φ as

Φ(n, l1, l2, θ) =

l2−1
∑

i=l1

1

sin((2 + i)θ) sin((n + i)θ)
,

and redefine S0
3 as

S0
3(n, d, θ) =

n−1
∑

i=1

cos((i+ d)θ)

sin(iθ) sin((i+ d)θ) sin((i+ 2d)θ)
.

Then (4.1) generalizes to

2 sin2(dθ)
(

S0
3(n, d, θ)− S0

3(2, d, θ)
)

= sin((n− 2)θ) (Φ(n, 0, d, θ)− Φ(n, d, 2d, θ)) .
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Results analogous to those presented here become more unwieldy as the number of factors
in the denominator of the summand increases. It is for this reason that we have limited the
scope of this paper. We trust that our presentation has given the reader an indication of the
kinds of results that are possible.
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