IDENTICALLY DISTRIBUTED SECOND-ORDER LINEAR RECURRENCES MODULO p, II

LAWRENCE SOMER AND MICHAL KŘÍŽEK

Abstract

Let p be an odd prime and let $u(a, 1)$ and $u\left(a^{\prime}, 1\right)$ be two Lucas sequences whose discriminants have the same nonzero quadratic character modulo p and whose periods modulo p are equal. We prove that there is then an integer c such that for all $d \in \mathbb{Z}_{p}$, the frequency with which d appears in a full period of $u(a, 1)(\bmod p)$ is the same frequency as $c d$ appears in $u\left(a^{\prime}, 1\right)(\bmod p)$. Here $u(a, 1)$ satisfies the recursion relation $u_{n+2}=a u_{n+1}+u_{n}$ with initial terms $u_{0}=0$ and $u_{1}=1$. Similar results are obtained for the companion Lucas sequences $v(a, 1)$ and $v\left(a^{\prime}, 1\right)$. We also explicitly determine the exact distribution of residues of $u(a, 1)$ $(\bmod p)$ when $u(a, 1)$ has a maximal period modulo p.

1. Introduction

Consider the second-order linear recurrence $(w)=w(a, b)$ satisfying the recursion relation

$$
\begin{equation*}
w_{n+2}=a w_{n+1}+b w_{n} \tag{1.1}
\end{equation*}
$$

where the parameters a and b and the initial terms w_{0} and w_{1} are all integers. We distinguish two special recurrences, the Lucas sequence of the first kind (LSFK) $u(a, b)$ and the Lucas sequence of the second kind (LSSK) $v(a, b)$ with initial terms $u_{0}=0, u_{1}=1$ and $v_{0}=2, v_{1}=a$, respectively. Associated with the linear recurrence $w(a, b)$ is the characteristic polynomial $f(x)$ defined by

$$
\begin{equation*}
f(x)=x^{2}-a x-b \tag{1.2}
\end{equation*}
$$

with characteristic roots α and β and discriminant $D=a^{2}+4 b=(\alpha-\beta)^{2}$. By the Binet formulas,

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad v_{n}=\alpha^{n}+\beta^{n} \tag{1.3}
\end{equation*}
$$

Throughout this paper, p will denote an odd prime unless specified otherwise, and ε will specify an element from $\{-1,1\}$. It was shown in [7, pp. 344-345] that $w(a, b)$ is purely periodic modulo p if $p \nmid b$. From here on, we assume that $p \nmid b$. We will usually assume that $b= \pm 1$, which will automatically guarantee that $p \nmid b$. If $(m / p)=1$, where (m / p) denotes the Legendre symbol, \sqrt{m} modulo p will denote the residue c modulo p such that $c^{2} \equiv m(\bmod p)$ and $0 \leq c \leq(p-1) / 2$.

The period of $w(a, b)$ modulo p, denoted by $\lambda_{w}(p)$, is the least positive integer m such that $w_{n+m} \equiv w_{n}(\bmod p)$ for all $n \geq 0$. The restricted period of $w(a, b)$ modulo p, denoted by $h_{w}(p)$, is the least positive integer r such that $w_{n+r} \equiv M w_{n}(\bmod p)$ for all $n \geq 0$ and some fixed nonzero residue M modulo p. Here $M=M_{w}(p)$ is called the multiplier of $w(a, b)$ modulo p. Since the LSFK $u(a, b)$ is purely periodic modulo p and has initial terms $u_{0}=0$ and $u_{1}=1$, it is easily seen that $h_{u}(p)$ is the least positive integer r such that $u_{r} \equiv 0(\bmod p)$. It is proved in [7, pp. 354-355], that $h_{w}(p) \mid \lambda_{w}(p)$. Let $E_{w}(p)=\frac{\lambda_{w}(p)}{h_{w}(p)}$. Then by [7, pp. 354-355] $E_{w}(p)$ is the multiplicative order of the multiplier M modulo p.

THE FIBONACCI QUARTERLY

The main result of the paper [21] was to prove that if p is a fixed prime and $u\left(a_{1}, 1\right)$ and $u\left(a_{2}, 1\right)$ are two LSFK's with the same restricted period modulo p, then $u\left(a_{1}, 1\right)$ and $u\left(a_{2}, 1\right)$ have the same distribution of residues modulo p. A similar result was proved for the LSSK's $v\left(a_{1}, 1\right)$ and $v\left(a_{2}, 1\right)$. With a little bit of extra effort, we can sharpen these results from [21] by also obtaining the conclusion that the actual residues modulo p occurring in $u\left(a_{2}, 1\right)$ are related to the residues modulo p appearing in $u\left(a_{1}, 1\right)$. Even more so, we will show that the residues modulo p appearing in $v\left(a_{2}, 1\right)$ are exactly the same as the residues appearing in $v\left(a_{1}, 1\right)$ modulo p.

We now define what it means for the recurrences $w\left(a_{1}, b\right)$ and $w^{\prime}\left(a_{2}, b\right)$ with the same parameter b to have the same distribution of residues modulo p. Let $w(a, b)$ be a recurrence and p be a fixed prime. Given a residue d modulo p, we let $A_{w}(d)$ denote the number of times that d appears in a full period of (w) modulo p. We have the following theorem regarding upper bounds for $A_{w}(d)$.

Theorem 1.1. Let p be a fixed prime and consider the recurrence $w(a, b)$ and the LSFK $u(a, b)$. Let d be a fixed residue modulo p such that $0 \leq d \leq p-1$. Let $g=\operatorname{ord}_{p}(-b)$, where $\operatorname{ord}_{p}(-b)$ denotes the multiplicative order of $(-b)$ modulo p. Then
(i) $A_{w}(d) \leq \min \left(2 \cdot \operatorname{ord}_{p}(-b), p\right)$.
(ii) $A_{u}(0)=E_{u}(p) \leq \min (p-1,2 g)$ and $A_{u}(d) \leq \min \left(g+E_{u}(p), 2 g, p\right)$ if $d \neq 0$.
(iii) If $b=1$ then $A_{w}(d) \leq 4$.
(iv) If $b=1$ and $E_{u}(p)=1$, then $A_{u}(d) \leq 3$.

Proof. Part (i) was proved in Theorem 3 of [12]. Part (ii) was proved in Theorem 2 of [19]. Parts (iii) and (iv) follow from parts (i) and (ii), respectively.

We let

$$
\begin{equation*}
N_{w}(p)=\#\left\{d \mid A_{w}(d)>0\right\} . \tag{1.4}
\end{equation*}
$$

We define the set $S_{w}(p)$ by

$$
\begin{equation*}
S_{w}(p)=\left\{i \mid A_{w}(d)=i \text { for some } d \text { such that } 0 \leq d \leq p-1\right\} . \tag{1.5}
\end{equation*}
$$

Further, if i is a nonnegative integer, we define $B_{w}(i)$ by

$$
\begin{equation*}
B_{w}(i)=\#\left\{d \mid 0 \leq d \leq p-1 \text { and } A_{w}(d)=i\right\} . \tag{1.6}
\end{equation*}
$$

We observe by Theorem 1.1 that

$$
\begin{equation*}
B_{w}(i)=0 \quad \text { if } i>\min \left(2 \cdot \operatorname{ord}_{p} b, p\right) . \tag{1.7}
\end{equation*}
$$

We say that the linear recurrences $w\left(a_{1}, b\right)$ and $w^{\prime}\left(a_{2}, b\right)$ have the same distribution of residues modulo p if $N_{w}(p)=N_{w^{\prime}}(p), S_{w}(p)=S_{w^{\prime}}(p)$, and $B_{w}(i)=B_{w^{\prime}}(i)$ for all $i \geq 0$. Recurrences that have the same distribution of residues modulo p are also said to be identically distributed modulo p.

To show that the two recurrences $w\left(a_{1}, b\right)$ and $w^{\prime}\left(a_{2}, b\right)$ are identically distributed modulo p, it suffices by relation (1.7) to prove that $B_{w}(i)=B_{w^{\prime}}(i)$ for all $i \in\{0, \ldots, \ell\}$, where $\ell=\min \left(2 \cdot \operatorname{ord}_{p}(-b), p\right)$. This follows, since

$$
\begin{equation*}
N_{w}(p)=\sum_{i=1}^{\ell} B_{w}(i) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{w}(p)=\left\{i \mid B_{w}(i)>0\right\} . \tag{1.9}
\end{equation*}
$$

Before proceeding further, we will need the following results and definitions.

Definition 1.2. Let p be a fixed prime. The recurrence $w(a, b)$ is said to be p-regular if

$$
\left|\begin{array}{ll}
w_{0} & w_{1} \tag{1.10}\\
w_{1} & w_{2}
\end{array}\right|=w_{0} w_{2}-w_{1}^{2} \not \equiv 0 \quad(\bmod p)
$$

Otherwise, the recurrence $w(a, b)$ is called p-irregular. The p-irregular recurrence in which $w_{n} \equiv 0(\bmod p)$ for all $n \geq 0$ is called the trivial recurrence modulo p.

The recurrence $w(a, b)$ is p-irregular if and only if it satisfies a recursion relation modulo p of order less than two.

Theorem 1.3. Suppose that the recurrences $w(a, b)$ and $w^{\prime}(a, b)$ are both p-regular. Then

$$
\lambda_{w}(p)=\lambda_{w^{\prime}}(p), h_{w}(p)=h_{w^{\prime}}(p), E_{w}(p)=E_{w^{\prime}}(p), \quad \text { and } \quad M_{w}(p) \equiv M_{u^{\prime}}(p) \quad(\bmod p) .
$$

This is proved in [5, p. 695].
Theorem 1.4. Let p be a fixed prime. Consider the $\operatorname{LSFK} u(a, b)$ and the $\operatorname{LSSK} v(a, b)$ with discriminant $D=a^{2}+4 b$. Then
(i) $u(a, b)$ is p-regular.
(ii) $v(a, b)$ is p-regular if and only if $p \nmid D$.
(iii) If $w(a, b)$ is a recurrence for which $h_{w}(p)=1$, then $w(a, b)$ is p-irregular.

Proof. (i) We note that

$$
u_{0} u_{2}-u_{1}^{2}=0 \cdot a-1^{2}=-1 \not \equiv 0 \quad(\bmod p) .
$$

Thus, $u(a, b)$ is p-regular by (1.10).
(ii) We observe that

$$
v_{0} v_{2}-v_{1}^{2}=2\left(a^{2}+2 b\right)-a^{2}=a^{2}+4 b=D .
$$

Thus, $v(a, b)$ is p-regular if and only if $p \nmid D$.
(iii) If $w(a, b)$ were to be p-regular, then $h_{w}(p)=h_{u}(p)$ by Theorem 1.3 and part (i) of this theorem. However, $h_{u}(p) \geq 2$, since $u_{0}=0$ and $u_{1}=1$.
Theorem 1.5. Let p be a fixed prime. Consider the p-regular recurrence $w(a, b)$ with discriminant D and characteristic roots $\alpha=(a+\sqrt{D}) / 2$ and $\beta=(a-\sqrt{D}) / 2$. Let $h=h_{w}(p)$ and $\lambda=\lambda_{w}(p)$. Let P be a prime ideal in $\mathbb{Q}(\sqrt{D})$ lying over p. Then
(i) $h>1$ and $h \mid p-(D / p)$, where $(D / p)=0$ if $p \mid D$.
(ii) If $(D / p)=0$, then $h=p$.
(iii) If $p \nmid D$, then $h \mid(p-(D / p)) / 2$ if and only if $(-b / p)=1$.
(iv) If $w(a, b)=u(a, b)$, then $u_{n} \equiv 0(\bmod p)$ if and only if $h \mid n$.
(v) If $(D / p)=1$, then $\lambda \mid p-1$.
(vi) If $p \nmid D$, then $\lambda=\operatorname{lcm}\left(\operatorname{ord}_{P} \alpha, \operatorname{ord}_{P} \beta\right)$, where $\operatorname{ord}_{P} \alpha$ denotes the multiplicative order of α modulo P.

Proof. We first note that by Theorem 1.3 and Theorem 1.4 (i) and (iii), $h_{w}(p)>1, h_{w}(p)=$ $h_{u}(p)$, and $\lambda_{w}(p)=\lambda_{u}(p)$, since both $w(a, b)$ and $u(a, b)$ are p-regular. Parts (i) and (v) are proved in [6, pp. 44-45] and [10, pp. 290, 296, 297]. Parts (ii) and (iv) are proved in [8, pp. 423-424]. Part (iii) is proved in [8, p. 441]. Part (vi) is proved in Theorem 6 (i) of [14] and Theorem 8.44 of [9].

If the p-irregular recurrence $w(a, b)$ is not the trivial recurrence modulo p, then $(D / p)=0$ or 1 and we can consider α and β to be in \mathbb{Z}_{p}, the ring of integers modulo p.

THE FIBONACCI QUARTERLY

Theorem 1.6. Let p be a fixed prime. Suppose that $w(a, b)$ is a p-irregular recurrence.
(i) If $w_{0} \equiv 0(\bmod p)$, then $w_{n} \equiv 0(\bmod p)$ for $n \geq 0$ and $w(a, b)$ is the trivial recurrence modulo p.
(ii) If $w_{0} \not \equiv 0(\bmod p)$, then either $w_{n} \equiv \alpha^{n} w_{0}(\bmod p)$ or $w_{n} \equiv \beta^{n} w_{0}(\bmod p)$ for all $n \geq 0$.
(iii) $h_{w}(p)=1$.

Proof. Parts (i) and (ii) are proved in [5, p.695]. Part (iii) follows from parts (i) and (ii).
Definition 1.7. Let p be a fixed prime. The recurrences $w(a, b)$ and $w^{\prime}(a, b)$ are p-equivalent if $w^{\prime}(a, b)$ is a nonzero multiple of a translation of $w(a, b)$ modulo p, that is, there exists a nonzero residue c and a fixed integer r such that

$$
\begin{equation*}
w_{n}^{\prime} \equiv c w_{n+r} \quad(\bmod p) \quad \text { for all } n \geq 0 \tag{1.11}
\end{equation*}
$$

It is clear that p-equivalence is indeed an equivalence relation on the set of recurrences $w(a, b)$ modulo p, since c is invertible modulo p. It is also evident that if $w^{\prime}(a, b)$ is p-equivalent to $w(a, b)$ and (1.11) holds, then

$$
\begin{equation*}
A_{w^{\prime}}(c d)=A_{w}(d) \tag{1.12}
\end{equation*}
$$

for $0 \leq d \leq p-1$.
Theorem 1.8. Suppose that $w(a, b)$ and $w^{\prime}(a, b)$ are p-equivalent recurrences such that $w_{n}^{\prime} \equiv$ $c w_{n+r}(\bmod p)$ for all $n \geq 0$, where c is a fixed nonzero residue modulo p and r is a fixed integer. Then
(i) $w(a, b)$ and $w^{\prime}(a, b)$ are either both p-regular or both p-irregular.
(ii) $w(a, b)$ and $w^{\prime}(a, b)$ are identically distributed modulo p.

Proof. Part (i) is proven in [5, p. 694]. Part (ii) follows from the fact that

$$
A_{w^{\prime}}(c d)=A_{w}(d)
$$

for $d \in\{0, \ldots, p-1\}$.
Theorem 1.9. Let $w(a, b)$ be a p-regular recurrence. Then $w(a, b)$ is p-equivalent to $u(a, b)$ if and only if $w_{n} \equiv 0(\bmod p)$ for some $n \geq 0$.
Proof. This follows from the fact that $u_{0} \equiv 0(\bmod p)$, from Definition 1.7, from Theorem 1.4 (i), and from the fact that if $c \not \equiv 0(\bmod p)$, then $c m \equiv 0(\bmod p)$ if and only if $m \equiv 0$ $(\bmod p)$.

Theorem 1.10. Let p be a fixed prime. Let a and b be fixed integers such that $p \nmid b$. Define the relation p-equivalence on the set of all p-regular recurrences $w(a, b)$ modulo p. Let $h=h_{u}(a, b)$ and $D=a^{2}-4 b$. Then the number of equivalence classes is equal to

$$
\frac{p-(D / p)}{h} .
$$

This is proved in Theorem 2.14 of [5].
Theorem 1.11. Let p be a fixed prime.
(i) If $p \equiv 1(\bmod 4)$, then there exists a LSFK $u(a, 1)$ such that $(D / p)=1$ and $h_{u}(p)=m$ if and only if $m \mid(p-1) / 2$ and $m \neq 1$.
(ii) If $p \equiv 3(\bmod 4)$, then there exists a LSFK $u(a, 1)$ such that $(D / p)=1$ and $h_{u}(p)=m$ if and only if $m \mid p-1$ and $m \nmid(p-1) / 2$.
(iii) If $p \equiv 1(\bmod 4)$, then there exists a $\operatorname{LSFK} u(a, 1)$ such that $(D / p)=-1$ and $h_{u}(p)=$ m if and only if $m \mid(p+1) / 2$ and $m \neq 1$.
(iv) If $p \equiv 3(\bmod 4)$, then there exists a LSFK $u(a, 1)$ such that $(D / p)=-1$ and $h_{u}(p)=$ m if and only if $m \mid p+1$ and $m \nmid(p+1) / 2$.
(v) If there exists a LSFK $u(a, 1)$ such that $(D / p)=\varepsilon$ and $h_{u}(p)=m$, then there exist exactly $\phi(m)$ such LSFK's, where $\phi(m)$ denotes Euler's totient function and $0 \leq a \leq$ $p-1$.
Proof. Parts (i) and (ii) follow from Theorem 12 of [15]. Parts (iii) and (iv) follow from Theorems 3 and 4 of [18]. Part (v) is proved in Theorems 3.7, 3.8, and 3.12 of [11].

The principal results of the paper [21] are given below.
Theorem 1.12. Let p be a fixed prime. Let $(u)=\left(a_{1}, 1\right)$ and $\left(u^{\prime}\right)=u\left(a_{2}, 1\right)$ be two LSFK's with discriminants $D_{1}=a_{1}^{2}+4$ and $D_{2}=a_{2}^{2}+4$, respectively, such that $p \nmid D_{1} D_{2}$. Suppose that $h_{u}(p)=h_{u^{\prime}}(p)$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)$, where $\left(D_{i} / p\right)$ denotes the Legendre symbol. This occurs if and only if $\lambda_{u}(p)=\lambda_{u^{\prime}}(p)$. Then $u\left(a_{1}, 1\right)$ and $u\left(a_{2}, 1\right)$ are identically distributed modulo p.
Theorem 1.13. Let p be a fixed prime. Let $(v)=v\left(a_{1}, 1\right)$ and $\left(v^{\prime}\right)=v\left(a_{2}, 1\right)$ be two LSSK's with discriminants $D_{1}=a_{1}^{2}+4$ and $D_{2}=a_{2}^{2}+4$, respectively, such that $p \nmid D_{1} D_{2}$. Suppose that $\left(D_{1} / p\right)=\left(D_{2} / p\right)$ and that $h_{v}(p)=h_{v^{\prime}}(p)$. This occurs if and only if $\lambda_{v}(p)=\lambda_{v^{\prime}}(p)$. Then $v\left(a_{1}, 1\right)$ and $v\left(a_{2}, 1\right)$ are identically distributed modulo p.

In the next section presenting the principal results of this paper in addition to the previously mentioned results refining Theorems 1.12 and 1.13 , we will show that if $w(a, 1)$ is a p-regular recurrence having a maximal restricted period modulo p, then we can explicitly determine the distribution of $w(a, b)$ modulo p.

2. The Main Theorems

Theorem 2.1. Let p be an odd prime. Suppose that $(u)=u\left(a_{1}, 1\right)$ and $\left(u^{\prime}\right)=u\left(a_{2}, 1\right)$ both have the same restricted period $h=h_{u}(p)$ and that the associated respective discriminants D_{1} and D_{2} both have the same nonzero quadratic character modulo p. Then not only are (u) and $\left(u^{\prime}\right)$ identically distributed modulo p, but there exists an integer c such that

$$
\begin{equation*}
A_{u^{\prime}}(d)=A_{u}(c d) \quad \text { for all } d \in\{0,1, \ldots, p-1\} \tag{2.1}
\end{equation*}
$$

where

$$
c \equiv\left\{\begin{array}{llll}
\varepsilon \sqrt{D_{1} D_{2}^{-1}} & (\bmod p), & \text { if } h \equiv 2 & (\bmod 4) ; \\
\sqrt{D_{1} D_{2}^{-1}} & (\bmod p), & \text { if } h \not \equiv 2 & (\bmod 4),
\end{array}\right.
$$

for some $\varepsilon= \pm 1$.
In the case $h \not \equiv 2(\bmod 4)$, we may also choose $c \equiv M^{k} \sqrt{D_{1} D_{2}^{-1}}(\bmod p)$, where k is any integer and M is the multiplier $M_{u}(p)$.
Theorem 2.2. Let p be an odd prime. Suppose that $(v)=v\left(a_{1}, 1\right)$ and $\left(v^{\prime}\right)=v\left(a_{2}, 1\right)$ both have the same restricted period $h=h_{v}(p)$ and that the associated respective discriminants D_{1} and D_{2} both have the same nonzero quadratic character modulo p. Then not only are (v) and $\left(v^{\prime}\right)$ identically distributed modulo p, but

$$
\begin{equation*}
A_{v^{\prime}}(d)=A_{v}(d) \quad \text { for all } d \in\{0,1, \ldots, p-1\} . \tag{2.2}
\end{equation*}
$$

Moreover, in the case $h \not \equiv 2(\bmod 4)$ we also have that

$$
\begin{equation*}
A_{v^{\prime}}(d)=A_{v}\left(M^{k} d\right) \quad \text { for all } d \in\{0,1, \ldots, p-1\} \tag{2.3}
\end{equation*}
$$

where k is any integer and M is the multiplier $M_{v}(p)$.

THE FIBONACCI QUARTERLY

In Theorems 2.4, 2.6, and 2.7, we will sharpen Theorems 1.12, 1.13, 2.1, and 2.2 for p-regular recurrences having a maximal restricted period modulo p equal to $p-(D / p)$. Theorems 1.12 and 2.1 show that the LSFK's $u\left(a_{1}, 1\right)$ and $u\left(a_{2}, 1\right)$ with the same restricted periods modulo p, (or equivalently the same periods modulo p) are identically distributed modulo p if their discriminants have the same quadratic character modulo p. An analogous result was obtained in Theorems 1.13 and 2.2 for the LSSK's $v\left(a_{1}, 1\right)$ and $v\left(a_{2}, 1\right)$. However, these theorems do not necessarily explicitly describe the actual distribution of residues modulo p. For recurrences (w) with a maximal restricted period modulo p, we will be able to explicitly determine $S_{w}(p)$, $N_{w}(p)$, and $B_{w}(i)$ for $i \geq 0$ given only the restricted period of (w) modulo p and also possibly the quadratic character of the discriminants of these recurrences modulo p. First, we present Proposition 2.3 which gives a relation between p-regular recurrences $w(a, b)$ having a maximal restricted period modulo p and the LSFK $u(a, b)$.

Proposition 2.3. Let $w(a, b)$ be a p-regular recurrence with discriminant D. Suppose that $h_{w}(p)=p-(D / p)$. Then $w(a, b)$ is p-equivalent to $u(a, b)$. In particular,

$$
\begin{equation*}
A_{w}(0) \geq 1 . \tag{2.4}
\end{equation*}
$$

Proof. By Theorem 1.10 and Theorem 1.8 (i), there exists exactly one class of regular p equivalent recurrences. The result now follows upon application of Theorem 1.4 (i).

Theorem 2.4. Suppose that $w(a, 1)$ is a p-regular recurrence such that $(D / p)=-1$ and $h_{w}(p)=p+1$. Then $p \equiv 3(\bmod 4)$ and $(-D / p)=1$. Consider the LSFK $u(a, 1)$. Then $h_{u}(p)=h_{w}(p)=p+1, E_{u}(p)=E_{w}(p)=2, M_{u}(p) \equiv M_{w}(p) \equiv-1(\bmod p)$, and $\lambda_{u}(p)=$ $\lambda_{w}(p)=2 p+2$. Moreover, there exists a nonzero residue c modulo p such that $w_{n} \equiv c u_{n+r}$ $(\bmod p)$ for all n and some fixed integer r such that $0 \leq r \leq 2 p+1$, where we can take $c \equiv 1$ $(\bmod p)$ and $r=0$ if $w_{n}(a, 1) \equiv u_{n}(a, 1)(\bmod p)$ for all $n \geq 0$. Then the following hold:
(i) If $p=3$, then $S_{w}(p)=\{2,3\}$ while if $p \equiv 3(\bmod 8)$ and $p>3$, then $S_{w}(p)=$ $\{0,2,3,4\}$. Moreover, if $p \equiv 3(\bmod 8)$ and $p \geq 3$, then

$$
N_{w}(p)=\frac{3 p+3}{4}, \quad B_{w}(0)=\frac{p-3}{4}, \quad B_{w}(2)=\frac{p-1}{2}, \quad B_{w}(3)=2, \quad B_{w}(4)=\frac{p-3}{4} .
$$

(ii) If $p=7$ then $S_{w}(p)=\{1,2,4\}$, whereas if $p>7$ then $S_{w}(p)=\{0,1,2,4\}$. Further, if $p \equiv 7(\bmod 8)$ and $p \geq 7$, then

$$
N_{w}(p)=\frac{3 p+7}{4}, \quad B_{w}(0)=\frac{p-7}{4}, \quad B_{w}(1)=2, \quad B_{w}(2)=\frac{p-1}{2}, \quad B_{w}(4)=\frac{p+1}{4} .
$$

(iii) $A_{w}(d)=A_{w}(-d)$.
(iv) $A_{w}(d) \in\{1,3\} \quad$ if and only if $d \equiv \pm 2 c / \sqrt{-D}(\bmod p)$.
(v) $A_{w}(0)=2$.
(vi) If $p>3$ and $a \equiv \pm 1(\bmod p)$, then $A_{w}(c)=A_{w}(-c)=4$.
(vii) If $p \equiv 3(\bmod 8)$ then $A_{w}(2 c / \sqrt{-D})=A_{w}(-2 c / \sqrt{-D})=3$.
(viii) If $p \equiv 7(\bmod 8)$ then $A_{w}(2 c / \sqrt{-D})=A_{w}(-2 c / \sqrt{-D})=1$.

Proof. By Theorems 1.3, 1.4 (i), and 1.8 and by Proposition 2.3, it suffices to consider the case in which $w(a, b)=u(a, b)$. The rest of the theorem now follows from the proofs of Theorems 7 and 8 in [17].

Remark 2.5. It follows from Theorems 1.3, 1.4 (i), 1.10, and $1.11(\mathrm{v})$ that if $p \equiv 3(\bmod 4)$, then there exist exactly $\phi(p+1)$ parameters $a, 0 \leq a \leq p-1$, such that $\left(\left(a^{2}+4\right) / p\right)=-1$ and any p-regular recurrence $w(a, 1)$ has a maximal restricted period $h_{w}(p)=p+1$.

Let $p=2^{q}-1$ be a Mersenne prime, where q is a prime. Then clearly $p \equiv 3(\bmod 4)$. Let $w(a, 1)$ be any p-regular recurrence with discriminant $D=a^{2}+4$ such that $(D / p)=-1$. Then by Theorem 1.5 (i) and (iii), $h_{w}(p)=p+1$. At present there are 49 known Mersenne primes (see [2]) with the largest being $2^{74207281}-1$ with 22338618 digits.
Theorem 2.6. Suppose that $w(a, 1)$ is a p-regular recurrence such that $p \mid D$. Then $p \equiv 1$ $(\bmod 4)$ and $a \equiv \pm \sqrt{-4}(\bmod p)$. Further,

$$
\begin{equation*}
h_{w}(p)=p, \quad E_{w}(p)=4, \quad \text { and } \quad \lambda_{w}(p)=4 p . \tag{2.5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
A_{w}(d)=4 \quad \text { for all } d \in\{0,1, \ldots, p-1\} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{w}(p)=\{4\}, \quad N_{w}(p)=p, \quad B_{w}(4)=p, \quad \text { and } \quad B_{w}(i)=0 \quad \text { if } \quad i \neq 4 . \tag{2.7}
\end{equation*}
$$

Proof. The results in (2.5) follow from Theorem 1.5 (ii) and Theorem 3.11 (iv) which is given in Section 3. The results in (2.6) and (2.7) are proved in [1] and [22]. It is clear that $a \equiv$ $\pm \sqrt{-4}(\bmod p)$, since $D=a^{2}+4 \equiv 0(\bmod p)$. By the law of quadratic reciprocity, $p \equiv 1$ $(\bmod 4)$.

Theorem 2.7. Suppose that $w(a, 1)$ is a p-regular recurrence such that $(D / p)=1$ and $h_{w}(p)=$ $p-1$. Then $p \equiv 3(\bmod 4)$. Consider the LSFK $u(a, 1)$. Then

$$
\begin{array}{r}
h_{u}(p)=h_{w}(p)=p-1, \quad E_{u}(p)=E_{w}(p)=1, \\
M_{u}(p) \equiv M_{w}(p) \equiv 1 \quad(\bmod p), \quad \text { and } \quad \lambda_{u}(p)=\lambda_{w}(p)=p-1 . \tag{2.8}
\end{array}
$$

Furthermore, there exists a nonzero residue c modulo p such that $w_{n} \equiv c u_{n+r}(\bmod p)$ for all n and some fixed integer r such that $0 \leq r \leq p-2$, where we can take $c \equiv 1(\bmod p)$ and $r=0$ if $w_{n}(a, 1) \equiv u_{n}(a, 1)(\bmod p)$ for all $n \geq 0$. Then the following hold:
(i) If $p=3$, then $S_{w}(p)=\{0,1\}$, while if $p \equiv 3(\bmod 8)$ and $p>3$, then $S_{w}(p)=$ $\{0,1,2,3\}, N_{w}(p)=(5 p+1) / 8, B_{w}(0)=(3 p-1) / 8, B_{w}(1)=(3 p+7) / 8, B_{w}(2)=$ $(p-3) / 8$, and $B_{w}(3)=(p-3) / 8$.
(ii) If $p=7$ then $S_{w}(p)=\{0,1,2\}$, while if $p \equiv 7(\bmod 8)$ and $p>7$, then $S_{w}(p)=$ $\{0,1,2,3\}$. Moreover, if $p \equiv 7(\bmod 8)$ and $p \geq 7$, then

$$
\begin{aligned}
& N_{w}(p)=\frac{5 p-3}{8}, \quad B_{w}(0)=\frac{3 p+3}{8}, \quad B_{w}(1)=\frac{3 p-5}{8}, \quad B_{w}(2)=\frac{p+9}{8}, \quad B_{w}(3)=\frac{p-7}{8} . \\
& \text { (iii) } A_{w}(d)+A_{w}(-d) \in\{1,3\} \text { if } d \equiv \pm 2 c / \sqrt{D}(\bmod p) . \\
& \text { (iv) } A_{w}(d)+A_{w}(-d) \in\{0,2,4\} \text { if } d \not \equiv \pm 2 c / \sqrt{D}(\bmod p) . \\
& \text { (v) } A_{w}(0)=1 . \\
& \text { (vi) If } a \equiv \pm 1(\bmod p) \text {, then } A_{w}(c)=3 \text { and } A_{w}(-c)=1 . \\
& \text { (vii) If } A_{w}(d)+A_{w}(-d)=4 \text { then } A_{w}(d) \in\{1,3\} \text {. } \\
& \text { (viii) If } p \equiv 3(\bmod 8) \text { then } A_{w}(2 c / \sqrt{D}) \in\{0,1\} \text { and } A_{w}(-2 c / \sqrt{D})=1-A_{w}(2 c \sqrt{D}) \text {. } \\
& \text { (ix) If } p \equiv 7(\bmod 8) \text {, then } A_{w}(2 c / \sqrt{D}) \in\{1,2\} \text { and } A_{w}(-2 c / \sqrt{D})=3-A_{w}(2 c \sqrt{D}) .
\end{aligned}
$$

The proof of Theorem 2.7 will be given in Section 4.
Remark 2.8. We see by Theorems 1.3, 1.4 (i), 1.10, and 1.11 (v) that if $p \equiv 3(\bmod 4)$, then there exist exactly $\phi(p-1)$ parameters $a, 0 \leq a \leq p-1$ for which $\left(\left(a^{2}+4\right) / p\right)=1$ and any p-regular recurrence $w(a, 1)$ has a maximal restricted period modulo p equal to $p-1$. Primes q such that $2 q+1$ is also prime are called Sophie Germain primes. It is easily seen that if q is an odd Sophie Gemain prime, then $2 q+1 \equiv 3(\bmod 4)$. Let q be an odd Sophie Germain prime and let $p=2 q+1$. Suppose that $a \not \equiv 0(\bmod p)$ and $w(a, 1)$ is a p-regular

THE FIBONACCI QUARTERLY

recurrence with discriminant $D=a^{2}+4$ such that $(D / p)=1$. Then by Theorem 1.5 (i) and (iii), $h_{w}(p)=p-1$.

By inspection, we see that the first few Sophie Germain primes are

$$
2,3,5,11,23,29,41,53,89,113,131, \ldots
$$

According to [3], the largest known Sophie Germain prime is $18543637900515 \cdot 2^{666667}-1$ with 200701 digits.

3. Preliminaries

Before proving our main theorems, we will need the following results.
Theorem 3.1. Let p be a fixed prime. Let a and b be integers such that $p \nmid b$. Define the relation p-equivalence on the set of all nontrivial p-irregular recurrences $w(a, b)$ modulo p. Let $D=a^{2}+4 b$. Let α and β be the characteristic roots of the characteristic polynomial

$$
f(x)=x^{2}-a x-b
$$

Let $H(p)$ denote the number of equivalence classes.
(i) If $(D / p)=-1$, then $H(p)=0$.
(ii) If $(D / p)=1$, then $H(p)=2$. Moreover, the recurrence $w(a, b)$ having initial terms $w_{0} \equiv 1, w_{1} \equiv \alpha(\bmod p)$ is in one equivalence class, while the recurrence $w^{\prime}(a, b)$ having initial terms $w_{0}^{\prime} \equiv 1, w_{1}^{\prime} \equiv \beta(\bmod p)$ is in the other equivalence class.
(iii) If $(D / p)=0$, then $H(p)=1$. Furthermore, the recurrence $w^{\prime \prime}(a, b)$ having initial terms $w_{0}^{\prime \prime} \equiv 1, w_{1}^{\prime \prime} \equiv \alpha(\bmod p)$ is in the unique equivalence class.
This follows from Lemma 2.4 of [5].
Theorem 3.2. Let $w(a, b)$ be a p-regular recurrence. Let e be a fixed integer such that $1 \leq$ $e \leq h_{w}(p)-1$. Then the ratios $\frac{w_{n+e}}{w_{n}}$ are distinct modulo p for $0 \leq n \leq h_{w}(p)-1$, where we denote the ratio $\frac{w_{n+e}}{w_{n}}(\bmod p)$ by ∞ if $w_{n} \equiv 0(\bmod p)$.

This is proved in Lemma 2 of [19].
Theorem 3.3. Let p be a fixed prime. Let $w(a, b)$ be a p-regular recurrence with restricted period $h=h_{w}(p)$ and let $w^{\prime}(a, b)$ be a nontrivial recurrence modulo p (possibly p-irregular) with restricted period $h^{\prime}=h_{w^{\prime}}(p)$. Let c be a fixed integer such that $1 \leq c \leq h-1$. Then there exist integers n_{1} and n_{2} such that

$$
\frac{w_{n_{1}+c}}{w_{n_{1}}} \equiv \frac{w_{n_{2}+c}^{\prime}}{w_{n_{2}}^{\prime}} \quad(\bmod p)
$$

if and only if $w(a, b)$ and $w^{\prime}(a, b)$ are p-equivalent, where we allow the possibility that $w_{n_{1}+c} / w_{n_{1}}$ $\equiv w_{n_{2}+c}^{\prime} / w_{n_{2}}^{\prime} \equiv \infty(\bmod p)$.

This follows from Lemma 3.4 of [5].
Lemma 3.4. Let p be a fixed prime. Consider the $\operatorname{LSFK} u(a, b)$ and the $\operatorname{LSSK} v(a, b)$. Suppose further that in the case of the $\operatorname{LSSK} v(a, b)$ that $p \nmid D=a^{2}+4 b$. Then $u(a, b)$ and $v(a, b)$ are both p-regular and have common restricted period h and multiplier M modulo p. Moreover, the following hold:
(i) $u_{h-n} \equiv-M u_{n} /(-b)^{n}(\bmod p)$ for $0 \leq n \leq h$.
(ii) $v_{h-n} \equiv M v_{n} /(-b)^{n}(\bmod p)$ for $0 \leq n \leq h$.

This is proved in Lemma 5 of [19]. The proof is established by induction and use of the recursion relation (1.1) defining $u(a, b)$ and $v(a, b)$.
Lemma 3.5. Let p be a fixed prime. Let $w(a, 1)$ be either the LSFK $u(a, 1)$ or the LSSK $v(a, 1)$, and let $h=h_{w}(p)$, where $p \nmid D$. If h is even, then

$$
\begin{equation*}
w_{n+2 r} \not \equiv \varepsilon w_{n} \quad(\bmod p) \tag{3.1}
\end{equation*}
$$

for any integers n and r such that $0 \leq n<n+2 r \leq h / 2$ or $h / 2 \leq n<n+2 r \leq h$. Moreover, if h is odd, then

$$
\begin{equation*}
w_{n+2 r} \not \equiv \varepsilon w_{n} \quad(\bmod p) \tag{3.2}
\end{equation*}
$$

for any integers n and r such that $0 \leq n<n+2 r \leq h-1$.
This follows from Lemmas 2 and 5 of [19], Lemma 7 (i) and (ii) of [16], and Lemma 7 of [20].

Proposition 3.6. Consider the LSFK $u(a, b)$ and the $\operatorname{LSSK} v(a, b)$ with discriminant $D=$ $a^{2}-4 b \neq 0$. Let p be a fixed prime and let $h=h_{u}(p)$.
(i) If $m \mid n$, then $u_{m} \mid u_{n}$.
(ii) $u_{2 n}=u_{n} v_{n}$.
(iii) $v_{n}^{2}-D u_{n}^{2}=4(-b)^{n}$.
(iv) If h is even, then $v_{h / 2} \equiv 0(\bmod p)$.

Proof. Parts (i)-(iii) follow from the Binet formulas (1.3). We now establish part (iv). Suppose that h is even. Then h is the least positive integer n such that $u_{n} \equiv 0(\bmod p)$. Hence, by part (ii),

$$
u_{h}=u_{h / 2} v_{h / 2} \equiv 0 \quad(\bmod p),
$$

where $u_{h / 2} \not \equiv 0(\bmod p)$. Therefore, $v_{h / 2} \equiv 0(\bmod p)$.
Theorem 3.7. Let k be a fixed positive integer. Consider the LSFK $u(a, b)$ and $\operatorname{LSSK} v(a, b)$, where $b \neq 0$, with characteristic roots α and β and discriminant $D=a^{2}+4 b \neq 0$. Suppose that $u_{k}(a, b) \neq 0$. Then

$$
\left\{\frac{u_{k n}(a, b)}{u_{k}(a, b)}\right\}_{n=0}^{\infty}
$$

is a LSFK $u\left(a^{\prime}, b^{\prime}\right)$ and $\left\{v_{k n}(a, b)\right\}_{n=0}^{\infty}$ is a LSSK $v\left(a^{\prime}, b^{\prime}\right)$, where $u\left(a^{\prime}, b^{\prime}\right)$ and $v\left(a^{\prime}, b^{\prime}\right)$ have characteristic roots α^{k} and β^{k}, parameters $a^{\prime}=v_{k}(a, b)$ and $b^{\prime}=-(-b)^{k}$, and discriminant $D^{\prime}=D u_{k}^{2}(a, b)$.

Proofs of Theorem 3.7 are given in [10, pp. 189-190] and [8, p. 437].
Lemma 3.8. Consider the $\operatorname{LSFK} u(a, b)$ and the $\operatorname{LSSK} v(a, b)$. Then
(i) $u_{n}(-a, b)=(-1)^{n+1} u_{n}(a, b)$ for $n \geq 0$,
(ii) $v_{n}(-a, b)=(-1)^{n} v_{n}(a, b)$ for $n \geq 0$.
(iii) If h_{1} and h_{2} are the restricted periods of $u(a, b)$ and $u(-a, b)$, respectively, then $h_{1}=h_{2}$.

Proof. Parts (i) and (ii) follow from the Binet formulas (1.3). Part (iii) follows from Theorem 1.5 (iv) and part (i) of this lemma.

Lemma 3.9. Let p be a fixed prime and let $w(a, b)$ be a p-regular recurrence. Let $M=M_{w}(p)$. Then

$$
A_{w}(d)=A_{w}\left(M^{j} d\right) \quad \text { for } 1 \leq j \leq E_{w}(p)-1 .
$$

This follows from the proof of Lemma 10 of [17] and Lemma 13 of [19].

THE FIBONACCI QUARTERLY

Theorem 3.10. Let p be a fixed prime. Consider the recurrences $u(a, b)$ and $v(a, b)$. Let $h=h_{u}(p)$. Then $v(a, b)$ is p-equivalent to $u(a, b)$ if and only if h is even.
Proof. By Proposition 3.6 (iv), $v_{h / 2} \equiv 0(\bmod p)$ when h is even. Then

$$
\begin{equation*}
v_{h / 2} \equiv v_{h / 2+1} \cdot u_{0} \equiv v_{h / 2+1} \cdot 0 \equiv 0 \quad(\bmod p) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{h / 2+1} \equiv v_{h / 2+1} \cdot u_{1} \equiv v_{h / 2+1} \cdot 1 \equiv v_{h / 2+1} \quad(\bmod p) . \tag{3.4}
\end{equation*}
$$

Since $v(a, b)$ is nontrivial modulo p, it now follows by the recursion relation (1.1) defining both $u(a, b)$ and $v(a, b)$ that $v(a, b)$ is p-equivalent to $u(a, b)$ when h is even. It is proved in Lemma 6 of [19] that $v(a, b)$ is not p-equivalent to $u(a, b)$ when h is odd.
Theorem 3.11. Let $w(a, 1)$ be a p-regular recurrence with discriminant D. Then
(i) $E_{w}(p)=1,2$, or 4 .
(ii) $E_{w}(p)=1$ if and only if $h_{w}(p) \equiv 2(\bmod 4)$. Moreover, if $E_{w}(p)=1$, then $(D / p)=1$.
(iii) $E_{w}(p)=2$ if and only if $h_{w}(p) \equiv 0(\bmod 4)$. Moreover, if $E_{w}(p)=2$, then $(D / p)=$ $(-1 / p)$.
(iv) $E_{w}(p)=4$ if and only if $h_{w}(p)$ is odd. Moreover, if $E_{w}(p)=4$ then $p \equiv 1(\bmod 4)$.
(v) If $p \equiv 3(\bmod 4)$ and $(D / p)=1$, then $h_{w}(p) \equiv 2(\bmod 4)$ and $E_{w}(p)=1$.
(vi) If $p \equiv 3(\bmod 4)$ and $(D / p)=-1$, then $h_{w}(p) \equiv 0(\bmod 4)$ and $E_{w}(p)=2$.
(vii) If $p \equiv 1(\bmod 4)$ and $(D / p)=-1$, then $h_{w}(p)$ is odd and $E_{w}(p)=4$.

Proof. By Theorem 1.4 (i), $u(a, b)$ is p-regular. It now follows from Theorem 1.3 that $h_{w}(p)=$ $h_{u}(p)$ and $\lambda_{w}(p)=\lambda_{u}(p)$. Parts (i)-(vii) now follow from Lemma 3 and Theorem 13 of [14].
Lemma 3.12. Let p be a fixed prime. Consider the recurrences $w(a, 1)$ and $w^{\prime}(-a, 1)$, where either $w(a, 1)$ and $w^{\prime}(-a, 1)$ are the LSFK's $u(a, 1)$ and $u(-a, 1)$, respectively, or they are the LSSK's $v(a, 1)$ and $v(-a, 1)$, respectively. Then

$$
\begin{equation*}
A_{w^{\prime}}(d)=A_{w}(d) \tag{3.5}
\end{equation*}
$$

for $0 \leq d \leq p-1$, and $w(a, 1)$ and $w^{\prime}(-a, 1)$ are identically distributed modulo p.
This follows from the proof of Lemma 3.18 in [21].
Lemma 3.13. Let $u(a, 1)$ be a LSFK. Suppose that $h=h_{u}(p) \equiv 2(\bmod 4)$. Then $E_{u}(p)=1$ and $M_{u}(p) \equiv 1(\bmod p)$.
(i) Suppose that $u_{n+2 r-1} \equiv \pm u_{n}(\bmod p)$, where n and r integers such that $1 \leq n<$ $n+2 r-1<h / 2$. Then the only values of $2 s-1$ and m such that $1 \leq 2 s-1 \leq h-1$, $1 \leq m \leq h-1, u_{m} \equiv \pm u_{n}(\bmod p)$, and $u_{m+2 s-1} / u_{m} \equiv \pm 1(\bmod p)$ are

$$
\begin{align*}
& 2 s-1=2 r-1, \quad m=n \quad \text { or } \quad m=h-n-2 r+1, \tag{3.6}\\
& 2 s-1=h-2 r+1, \quad m=n+2 r-1 \quad \text { or } \quad m=h-n, \tag{3.7}\\
& 2 s-1=h-2 n-2 r+1, \quad m=n \quad \text { or } \quad m=n+2 r-1, \tag{3.8}\\
& 2 s-1=2 n+2 r-1, \quad m=h-n-2 r+1 \quad \text { or } \quad m=h-n . \tag{3.9}
\end{align*}
$$

(ii) Suppose that $u_{h / 2} \equiv \pm u_{n}(\bmod p)$, where $1 \leq n<h / 2$ and $h / 2=n+2 r-1$ for some positive integer r. Then the only values of $2 s-1$ and m such that $1 \leq 2 s-1 \leq h-1$, $1 \leq m \leq h-1, u_{m} \equiv \pm u_{n}(\bmod p)$, and $u_{m+2 s-1} / u_{m} \equiv \pm 1(\bmod p)$ are

$$
\begin{align*}
& 2 s-1=2 r-1, \quad m=n \quad \text { or } \quad m=h / 2, \tag{3.10}\\
& 2 s-1=h-2 r+1, \quad m=h / 2 \quad \text { or } \quad m=h / 2+2 r-1 . \tag{3.11}
\end{align*}
$$

IDEN. DISTRIB. SECOND-ORDER LINEAR RECURRENCES MODULO P, II

Proof. (i) It follows from Theorem 3.11 (ii) that $E_{u}(p)=1$ and $M_{u}(p) \equiv 1(\bmod p)$. Moreover, we see by Lemma 3.5 that if $u_{e} \equiv \pm u_{g}(\bmod p)$ and $u_{e} \equiv \pm u_{n}(\bmod p)$, where $1 \leq e<g<$ $h / 2$, then $e=n$ and $g=n+2 r-1$. It now follows from the fact that $M_{u}(p) \equiv 1(\bmod p)$ and from Lemma 3.4 (i) that the only values for $2 s-1$ and m are the ones listed in (3.6)-(3.9).
(ii) This follows by an argument similar to that used in the proof of part (i).

4. Proofs of the Main Theorems

Proof of Theorem 2.1. Let $h=h_{u}(p), h_{1}=h_{u^{\prime}}(p), \lambda=\lambda_{u}(p)$, and $\lambda_{1}=\lambda_{u^{\prime}}(p)$. By hypothesis, $\left(D_{1} / p\right)=\left(D_{2} / p\right), p \nmid D_{1} D_{2}$, and $h=h_{1}$. By Theorem 3.11 (i)-(iv), it then follows that $\lambda=\lambda_{1}$.

Let $p-\left(D_{1} / p\right)=2^{i} m$. By Theorem 1.5,

$$
\begin{equation*}
h=h_{1}=2^{j} m_{1} \tag{4.1}
\end{equation*}
$$

for some j and m such that $0 \leq j \leq i$ and $m_{1} \mid m$. Let $r=m / m_{1}$. By Theorem 1.11, 1.4(i), and 1.3, there exists a LSFK $\left(u^{\prime \prime}\right)=u\left(a_{3}, 1\right)$ and LSSK $\left(v^{\prime \prime}\right)=v\left(a_{3}, 1\right)$ with discriminant $D_{3}=a_{3}^{2}+4$ such that $\left(D_{3} / p\right)=\left(D_{1} / p\right)=\left(D_{2} / p\right)$ and

$$
\begin{equation*}
h_{u^{\prime \prime}}(p)=h_{v^{\prime \prime}}(p)=2^{j} m=r h=r h_{1} . \tag{4.2}
\end{equation*}
$$

Let $\lambda_{2}=\lambda_{u^{\prime \prime}}(p)$. Then by Theorem 3.11,

$$
\begin{equation*}
\lambda_{2}=\lambda_{v^{\prime \prime}}(p)=r \lambda=r \lambda_{1} . \tag{4.3}
\end{equation*}
$$

By (4.3) and the proof of Theorem 2.1 in [21], there exist odd integers k and ℓ such that $1 \leq k, \ell \leq 2^{j-1} m$ if $j \geq 1,1 \leq k, \ell \leq m-2$ if $j=0$,

$$
\begin{equation*}
\operatorname{gcd}\left(k, \lambda_{2}\right)=\operatorname{gcd}\left(\ell, \lambda_{2}\right)=r=\frac{\lambda_{2}}{\lambda}, \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}\left(a_{3}, 1\right) \equiv \varepsilon_{1} a_{1}, \quad v_{\ell}\left(a_{3}, 1\right) \equiv \varepsilon_{2} a_{2} \quad(\bmod p) \tag{4.5}
\end{equation*}
$$

for some ε_{1} and $\varepsilon_{2} \in\{-1,1\}$. Then by (4.5) and Theorem 3.7,

$$
\begin{equation*}
u_{n}\left(\varepsilon_{1} a_{1}, 1\right) \equiv u_{n}\left(v_{k}\left(a_{3}, 1\right), 1\right)=\frac{u_{k n}\left(a_{3}, 1\right)}{u_{k}\left(a_{3}, 1\right)} \quad(\bmod p) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n}\left(\varepsilon_{2} a_{2}, 1\right) \equiv u_{n}\left(v_{\ell}\left(a_{3}, 1\right), 1\right)=\frac{u_{\ell n}\left(a_{3}, 1\right)}{u_{\ell}\left(a_{3}, 1\right)} \quad(\bmod p) \tag{4.7}
\end{equation*}
$$

for all $n \geq 0$. Since $u\left(a_{1}, 1\right)$ and $u\left(a_{2}, 1\right)$ both have periods modulo p equal to λ, it follows from Lemma 3.8 (iii) and Theorem 3.11 (i)-(iv) that $u\left(\varepsilon_{1} a_{1}, 1\right)$ and $u\left(\varepsilon_{2} a_{2}, 1\right)$ also have periods modulo p equal to λ. It now follows from (4.4) that the sets

$$
\begin{equation*}
\{k n\}_{n=1}^{\lambda} \quad \text { and } \quad\{\ell n\}_{n=1}^{\lambda} \tag{4.8}
\end{equation*}
$$

contain the same sets of residues modulo λ_{2}. It thus follows that the sets

$$
\begin{equation*}
\left\{u_{k n}\left(a_{3}, 1\right)\right\}_{n=1}^{\lambda} \quad \text { and } \quad\left\{u_{\ell n}\left(a_{3}, 1\right)\right\}_{n=1}^{\lambda} \tag{4.9}
\end{equation*}
$$

contain the same sets of residues modulo p. Let $u_{k}^{\prime \prime}=u_{k}\left(a_{3}, 1\right), u_{\ell}^{\prime \prime}=u_{\ell}\left(a_{3}, 1\right), v_{k}^{\prime \prime}=v_{k}\left(a_{3}, 1\right)$, and $v_{\ell}^{\prime \prime}=v_{\ell}\left(a_{3}, 1\right)$. Noting that $u_{k}^{\prime \prime}$ and $u_{\ell}^{\prime \prime}$ are both invertible modulo p by Theorem 1.5 (iv), it follows from (4.6), (4.7), (4.9), and the fact that both $(\hat{u})=u\left(\varepsilon_{1} a_{1}, 1\right)$ and $(\tilde{u})=u\left(\varepsilon_{2} a_{2}, 1\right)$ have periods modulo p equal to λ_{1} that

$$
\begin{equation*}
A_{\tilde{u}}(d)=A_{\hat{u}}\left(u_{k}^{\prime \prime}\left(u_{\ell}^{\prime \prime}\right)^{-1} d\right) \tag{4.10}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

for $0 \leq d \leq p-1$. Since $A_{\hat{u}}(d)=A_{u}(d)$ and $A_{\tilde{u}}(d)=A_{u^{\prime}}(d)$ for $0 \leq d \leq p-1$ by Lemma 3.12, we have by (4.10) that

$$
\begin{equation*}
A_{u^{\prime}}(d)=A_{u}\left(u_{k}^{\prime \prime}\left(u_{\ell}^{\prime \prime}\right)^{-1} d\right) \tag{4.11}
\end{equation*}
$$

for $0 \leq d \leq p-1$.
By Proposition 3.6 (iii),

$$
\begin{equation*}
\left(v_{k}^{\prime \prime}\right)^{2}-D_{3}\left(u_{k}^{\prime \prime}\right)^{2}=4(-1)^{k}=-4 \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(v_{\ell}^{\prime \prime}\right)^{2}-D_{3}\left(u_{\ell}^{\prime \prime}\right)^{2}=4(-1)^{\ell}=-4 \tag{4.13}
\end{equation*}
$$

Noting that $p \nmid D_{3} u_{k}^{\prime \prime} u_{\ell}^{\prime \prime}$, we see by (4.5), (4.12), and (4.13) that

$$
\begin{equation*}
\frac{D_{3}\left(u_{k}^{\prime \prime}\right)^{2}}{D_{3}\left(u_{\ell}^{\prime \prime}\right)^{2}} \equiv \frac{\left(v_{k}^{\prime \prime}\right)^{2}+4}{\left(v_{\ell}^{\prime \prime}\right)^{2}+4} \equiv \frac{a_{1}^{2}+4}{a_{2}^{2}+4} \equiv \frac{D_{1}}{D_{2}} \equiv \frac{\left(u_{k}^{\prime \prime}\right)^{2}}{\left(u_{\ell}^{\prime \prime}\right)^{2}} \quad(\bmod p) . \tag{4.14}
\end{equation*}
$$

Thus, by (4.14),

$$
\begin{equation*}
u_{k}^{\prime \prime}\left(u_{\ell}^{\prime \prime}\right)^{-1} \equiv \varepsilon \sqrt{D_{1} D_{2}^{-1}} \quad(\bmod p) \tag{4.15}
\end{equation*}
$$

for some $\varepsilon \in\{-1,1\}$. Therefore, by (4.11), (4.15), and Lemma 3.9,

$$
\begin{equation*}
A_{u^{\prime}}(d)=A_{u}\left(\varepsilon \sqrt{D_{1} D_{2}^{-1}} d\right)=A_{u}\left(M^{k} \varepsilon \sqrt{D_{1} D_{2}^{-1}} d\right)=A_{u}(d) \tag{4.16}
\end{equation*}
$$

for $0 \leq d \leq p-1$ and any integer k. We note from Theorem 3.11 (i)-(iv) that $M^{k} \equiv-1$ $(\bmod p)$ for some integer k if and only if $h \not \equiv 2(\bmod 4)$. The result now follows.

Proof of Theorem 2.2. Since $p \nmid D_{1} D_{2}$, both $(v)=v\left(a_{1}, 1\right)$ and $\left(v^{\prime}\right)=v\left(a_{2}, 1\right)$ are p-regular by Theorem 1.4 (ii). Consider the LSFK's $(u)=u\left(a_{1}, 1\right)$ and $\left(u^{\prime}\right)=u\left(a_{2}, 1\right)$. Then by Theorem 1.3 and Theorem 1.4 (ii),

$$
\begin{equation*}
h_{u}(p)=h_{v}(p) \quad \text { and } \quad h_{u^{\prime}}(p)=h_{v^{\prime}}(p) . \tag{4.17}
\end{equation*}
$$

By hypothesis, $h_{v}(p)=h_{v^{\prime}}(p)$. It now follows from Theorem 3.11 (i)-(iv) that $\lambda_{v}(p)=\lambda_{v^{\prime}}(p)$. Let $\lambda_{1}=\lambda_{v}(p)$. As in the proof of Theorem 2.1, let $p-\left(D_{1} / p\right)=2^{i} m$. By Theorem 1.5

$$
\begin{equation*}
h_{v}(p)=h_{v^{\prime}}(p)=2^{j} m_{1} \tag{4.18}
\end{equation*}
$$

for some j and some m_{1} such that $0 \leq j \leq i$ and $m_{1} \mid m$. Let $r=m / m_{1}$. By Theorems 1.11, 1.4 (ii), and 1.3 , there exists a LSSK $\left(v^{\prime \prime}\right)=v\left(a_{3}, 1\right)$ with discriminant $D_{3}=a_{3}^{2}+4$ such that $\left(D_{3} / p\right)=\left(D_{1} / p\right)=\left(D_{2} / p\right)$ and having restricted period $h_{v^{\prime \prime}}(p)$ for which

$$
\begin{equation*}
h_{v^{\prime \prime}}(p)=2^{j} m=r h_{v}(p) . \tag{4.19}
\end{equation*}
$$

Then by Theorem 3.11,

$$
\begin{equation*}
\lambda_{v^{\prime \prime}}(p)=r \lambda_{v}(p) . \tag{4.20}
\end{equation*}
$$

Let $\lambda_{2}=\lambda_{v^{\prime \prime}}(p)$. By (4.20) and the proof of Theorem 2.2 in [21] there exist odd integers k and ℓ such that $1 \leq k, \ell \leq 2^{j-1} m$ if $j \geq 1,1 \leq k, \ell \leq m-2$ if $j=0$,

$$
\begin{equation*}
\operatorname{gcd}\left(k, \lambda_{2}\right)=\operatorname{gcd}\left(\ell, \lambda_{2}\right)=r=\frac{\lambda_{2}}{\lambda}, \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}\left(a_{3}, 1\right) \equiv \varepsilon_{1} a_{1}, \quad v_{\ell}\left(a_{3}, 1\right) \equiv \varepsilon_{2} a_{2}, \quad(\bmod p) \tag{4.22}
\end{equation*}
$$

for some $\varepsilon_{1}, \varepsilon_{2} \in\{-1,1\}$. Then by (4.22) and Theorem 3.7,

$$
\begin{equation*}
v_{n}\left(\varepsilon_{1} a_{1}, 1\right) \equiv v_{n}\left(v_{k}\left(a_{3}, 1\right), 1\right)=v_{k n}\left(a_{3}, 1\right) \quad(\bmod p) \tag{4.23}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}\left(\varepsilon_{2} a_{2}, 1\right) \equiv v_{n}\left(v_{\ell}\left(a_{3}, 1\right), 1\right)=v_{\ell n}\left(a_{3}, 1\right) \quad(\bmod p) \tag{4.24}
\end{equation*}
$$

for all $n \geq 0$. Let $\left(v^{\prime \prime}\right)=v\left(a_{3}, 1\right), \hat{v}=v\left(\varepsilon_{1} a, 1\right)$, and $\tilde{v}=v\left(\varepsilon_{2} a, 1\right)$.
Since $v\left(a_{1}, 1\right)$ and $v\left(a_{2}, 1\right)$ both have periods equal to λ, it follows from Lemma 3.8 (iii), Theorem 1.4 (ii), Theorem 1.3, and Theorem 3.11 (i)-(iv) that $v\left(\varepsilon_{1} a_{1}, 1\right)$ and $v\left(\varepsilon_{2} a_{2}, 1\right)$ also have periods equal to $\lambda_{v}(p)$. It now follows from (4.21) that the sets

$$
\begin{equation*}
\{k n\}_{n=1}^{\lambda} \quad \text { and }\{\ell n\}_{n=1}^{\lambda} \tag{4.25}
\end{equation*}
$$

contain the same sets of residues modulo λ_{2}. Therefore, it follows that the sets

$$
\begin{equation*}
\left\{v_{k n}\left(a_{3}, 1\right)\right\}_{n=1}^{\lambda} \quad \text { and } \quad\left\{v_{\ell n}\left(a_{3}, 1\right)\right\}_{n=1}^{\lambda} \tag{4.26}
\end{equation*}
$$

contain the same sets of residues modulo p. Since both the LSSK's

$$
\begin{equation*}
v\left(\varepsilon_{1} a_{1}, 1\right) \equiv\left\{v_{k n}\left(a_{3}, 1\right)\right\}_{n=0}^{\infty} \quad(\bmod p) \tag{4.27}
\end{equation*}
$$

and

$$
\begin{equation*}
v\left(\varepsilon_{2} a_{2}, 1\right) \equiv\left\{v_{\ell n}\left(a_{3}, 1\right)\right\}_{n=0}^{\infty} \quad(\bmod p) \tag{4.28}
\end{equation*}
$$

have periods modulo p equal to λ, it follows from (4.26)-(4.28) that

$$
\begin{equation*}
A_{\tilde{v}}(d)=A_{\hat{v}}(d) \tag{4.29}
\end{equation*}
$$

for $0 \leq d \leq p-1$. Moreover, by Lemma 3.12,

$$
\begin{equation*}
A_{\hat{v}}(d)=A_{v}(d) \quad \text { and } \quad A_{\tilde{v}}(d)=A_{v^{\prime}}(d) \tag{4.30}
\end{equation*}
$$

for $0 \leq d \leq p-1$. We now see from (4.29) and (4.30) that equation (2.2) holds. Equation (2.3) now follows from Lemma 3.9.

Proof of Theorem 2.7. By Theorems 1.3, 1.4 (i), and 1.11, there exists a p-regular recurrence $w(a, 1)$ with restricted period $h_{w}(p)=p-1$. As in the proof of Theorem 2.4, we can assume that $w(a, 1)=u(a, 1)$, and thus, $c \equiv 1(\bmod p)$. By Theorem $1.5($ iii $), p \equiv 3(\bmod 4)$. We note that (2.7) follows from Theorem 3.11 (ii). Moreover, by Theorem 1.5 (iv) and the fact that $E_{u}(p)=1$, we see that $A_{u}(0)=1$, and part (v) is established.

We now prove parts (iii), (iv), (vi), and (vii). Let $h=h_{u}(p)=p-1$. By Lemma 3.4 (i),

$$
\begin{equation*}
u_{h-n} \equiv(-1)^{n+1} u_{n} \quad(\bmod n) \tag{4.31}
\end{equation*}
$$

for $0 \leq n \leq h / 2$. Moreover, by Lemma 3.5, if $0 \leq m<n \leq h / 2$ and $m \equiv n(\bmod 2)$, then

$$
\begin{equation*}
u_{m} \not \equiv \pm u_{n} \quad(\bmod p) . \tag{4.32}
\end{equation*}
$$

Now suppose that $1 \leq m \leq h / 2$ and there does not exist an integer $n \neq m$ such that $1 \leq n \leq h / 2$ and $u_{n} \equiv \pm u_{m}(\bmod p)$. If m is odd and $m \neq h / 2$, then by (4.31) and the fact that $E_{u}(p)=1$,

$$
\begin{equation*}
A\left(u_{m}\right)=2 \quad \text { and } \quad A\left(-u_{m}\right)=0 \tag{4.33}
\end{equation*}
$$

while if $m=h / 2$, then

$$
\begin{equation*}
A\left(u_{m}\right)=1 \quad \text { and } \quad A\left(-u_{m}\right)=0 \tag{4.34}
\end{equation*}
$$

If m is even, then by (4.31),

$$
\begin{equation*}
A\left(u_{m}\right)=A\left(-u_{m}\right)=1 \tag{4.35}
\end{equation*}
$$

Next we suppose that for a given integer m such that $1 \leq m \leq h / 2$, there exists an integer $n \neq m$ such that $1 \leq n \leq h / 2$ and $u_{n} \equiv \pm u_{m}(\bmod p)$. By (4.32) and the pigeonhole principle, there exists exactly one such n and $n \not \equiv m(\bmod 2)$. Thus, we can assume that m is odd and n is even. Then by (4.31), we find that if $1 \leq m<h / 2$, then

$$
\begin{equation*}
A\left(u_{m}\right)=3 \quad \text { and } \quad A\left(-u_{m}\right)=1 \tag{4.36}
\end{equation*}
$$

while if $m=h / 2$, then

$$
\begin{equation*}
A\left(u_{m}\right)=2 \quad \text { and } \quad A\left(-u_{m}\right)=1 \tag{4.37}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

We now determine $u_{h / 2}(\bmod p)$. We observe by Theorem 1.5 (iv) and Proposition 3.6 (ii) that $u_{h}=u_{h / 2} v_{h / 2} \equiv 0(\bmod p)$. Since $u_{h / 2} \not \equiv 0(\bmod p)$ by Proposition 1.5 (iv), we find that $v_{h / 2} \equiv 0(\bmod p)$. We now see by Proposition 3.6 (iii) that

$$
v_{h / 2}^{2}-D u_{h / 2}^{2} \equiv 0^{2}-D u_{h / 2}^{2} \equiv 4(-1)^{h / 2} \equiv-4 \quad(\bmod p) .
$$

Thus, since $(D / p)=1$, we obtain that

$$
\begin{equation*}
u_{h / 2} \equiv 2 \varepsilon / \sqrt{D} \quad(\bmod p) . \tag{4.38}
\end{equation*}
$$

Parts (iii), (iv), and (vii) now follow from (4.33)-(4.38). Now suppose that $a \equiv \pm 1(\bmod p)$. Then $u_{1} \equiv 1$ and $u_{2}=a \equiv \pm 1(\bmod p)$. Part (vi) now follows from (4.36).

We now prove parts (i), (ii), (viii), and (ix). We first determine $N_{u}(p)$. Let R be the number of even integers e such that $2 \leq e \leq(p-1) / 2$. Let T be the number of odd integers j such that $1 \leq j \leq(p-1) / 2$. Clearly, $R=(p-3) / 4$ and $T=(p+1) / 4$. Let Y be the number of odd integers m such that $m \leq(p-1) / 2$ and

$$
\begin{equation*}
u_{m} \equiv \pm u_{e} \quad(\bmod p) \tag{4.39}
\end{equation*}
$$

for some even integer e such that $2 \leq e \leq(p-1) / 2$. Since $A_{u}(0)=1$, we now see by (4.33)-(4.37) that

$$
\begin{equation*}
N_{u}(p)=1+2 R+(T-Y)=1+2\left(\frac{p-3}{4}\right)+\frac{p+1}{4}-Y=\frac{3 p-1}{4}-Y . \tag{4.40}
\end{equation*}
$$

We will see later

$$
Y=\left\{\begin{array}{lll}
\frac{p-3}{8}, & \text { if } p \equiv 3 & (\bmod 8) \tag{4.41}\\
\frac{p+1}{8}, & \text { if } p \equiv 7 & (\bmod 8) .
\end{array}\right.
$$

This will imply by (4.40) and (4.41) that

$$
N_{u}(p)=\left\{\begin{array}{lll}
\frac{5 p+1}{8}, & \text { if } p \equiv 3 & (\bmod 8) ; \tag{4.42}\\
\frac{5 p-3}{8}, & \text { if } p \equiv 7 & (\bmod 8),
\end{array}\right.
$$

as desired.
By Theorem 3.3 and Lemma 3.13, if there exist integers m and n such that $1 \leq m<n<$ $(p-1) / 2, n-m$ is odd, and $u_{n} \equiv \pm u_{m}(\bmod p)$, then there exist exactly four odd integers ℓ such that $1 \leq \ell \leq p-2$ and for which there exist exactly two distinct integers n_{1} and n_{2} satisfying $1 \leq n_{1}, n_{2} \leq p-2$,

$$
\begin{equation*}
u_{n_{1}+\ell} \equiv u_{n_{1}} \equiv \varepsilon u_{m} \quad(\bmod p) \tag{4.43}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n_{2}+\ell} \equiv-u_{n_{1}} \equiv-\varepsilon u_{m} \quad(\bmod p) . \tag{4.44}
\end{equation*}
$$

Similarly, if there exists an integer m for which $1 \leq m<(p-1) / 2,(p-1) / 2-m$ is odd, and $u_{(p-1) / 2} \equiv \pm u_{m}(\bmod p)$, then there exist exactly two odd integers ℓ such that $1 \leq \ell \leq p-2$ and (4.43) and (4.44) hold for two distinct integers n_{1} and n_{2} satisfying $1 \leq n_{1}, n_{2} \leq p-2$.

Let g be a fixed integer such that $1 \leq g \leq p-2$. Noting that $h_{u}(p)=p-1$, it follows from Theorem 3.2 that the $p-1$ ratios w_{n+g} / w_{n} are distinct modulo p for $0 \leq n \leq p-2$. Notice that there are $p+1$ possible values for $w_{n+g} / w_{n}(\bmod p)$ including the values 0 and ∞. Furthermore, by Theorem 1.6 (ii) and Theorem 3.1 (ii), there are two nontrivial p-irregular recurrences that are not p-equivalent to $u(a, 1)$ or to each other, namely, the recurrences

IDEN. DISTRIB. SECOND-ORDER LINEAR RECURRENCES MODULO P, II

$w^{\prime}(a, 1)$ with initial terms $w_{0}^{\prime} \equiv 1, w_{1}^{\prime} \equiv \alpha(\bmod p)$ and $w^{\prime \prime}(a, 1)$ with initial terms $w_{0}^{\prime \prime} \equiv 1$, $w_{1}^{\prime \prime} \equiv \beta(\bmod p)$. Thus, by Theorem 3.3, the ratios

$$
\begin{equation*}
\frac{w_{g}^{\prime}}{w_{0}^{\prime}} \equiv \alpha^{g} \quad(\bmod p) \quad \text { and } \quad \frac{w_{g}^{\prime \prime}}{w_{0}^{\prime \prime}} \equiv \beta^{g} \quad(\bmod p) \tag{4.45}
\end{equation*}
$$

are distinct from each other and from the $p-1$ ratios $w_{n+g} / w_{n}(\bmod p), 0 \leq n \leq p-2$. Hence, we have exhausted all $p+1$ possible values for these ratios modulo p. Thus, for a given integer g such that $1 \leq g \leq p-2$ both of the residues 1 and $(-1)(\bmod p)$ appear among the ratios

$$
\begin{equation*}
\left\{\frac{u_{n+g}}{u_{n}}\right\}_{n=0}^{p-2}, \quad \frac{w_{g}^{\prime}}{w_{0}^{\prime}}, \quad \text { and } \quad \frac{w_{g}^{\prime \prime}}{w_{0}^{\prime \prime}} \quad \text { modulo } p . \tag{4.46}
\end{equation*}
$$

We now determine the values of $w_{g}^{\prime} / w_{0}^{\prime}$ and $w_{g}^{\prime \prime} / w_{0}^{\prime \prime}(\bmod p)$ for various integers g such that $1 \leq g \leq p-2$. By Theorem 1.5 (vi),

$$
\begin{equation*}
\lambda_{u}(p)=p-1=\operatorname{lcm}\left(\operatorname{ord}_{p} \alpha, \operatorname{ord}_{p} \beta\right), \tag{4.47}
\end{equation*}
$$

where we assume that $\operatorname{ord}_{p} \alpha \leq \operatorname{ord}_{p} \beta$. Since $\alpha \beta=-1$, it follows from (4.47) that

$$
\begin{equation*}
\operatorname{ord}_{p} \alpha=\frac{p-1}{2}, \quad \operatorname{ord}_{p} \beta=p-1 . \tag{4.48}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\alpha^{g} \not \equiv \pm 1 \quad \text { and } \quad \beta^{g} \not \equiv \pm 1 \quad(\bmod p) \tag{4.49}
\end{equation*}
$$

if $1 \leq g \leq p-2$ and $g \neq(p-1) / 2$, while

$$
\begin{equation*}
\alpha^{(p-1) / 2} \equiv 1 \quad \text { and } \quad \beta^{(p-1) / 2} \equiv-1 \quad(\bmod p) . \tag{4.50}
\end{equation*}
$$

Thus, by (4.46), (4.49), and (4.50), if ℓ is an odd integer such that $1 \leq \ell \leq p-2$, then there exist distinct integers n_{1} and n_{2} such that $0 \leq n_{1}, n_{2} \leq p-2$ and

$$
\begin{equation*}
\frac{u_{n_{1}+\ell}}{u_{n_{1}}} \equiv 1, \quad \frac{u_{n_{2}+\ell}}{u_{n_{2}}} \equiv-1 \quad(\bmod p) \tag{4.51}
\end{equation*}
$$

if and only if ℓ is one of the $(p-3) / 2$ odd integers for which $1 \leq \ell \leq p-2$ and $\ell \neq(p-1) / 2$. We now observe that

$$
\frac{p-3}{2} \equiv\left\{\begin{array}{lll}
0 & (\bmod 4), & \text { if } p \equiv 3 \tag{4.52}\\
2 & (\bmod 8) ; \\
2 & (\bmod 4), & \text { if } p \equiv 7
\end{array}(\bmod 8) .\right.
$$

It now follows from (4.34), (4.37), (4.38), and (4.52) that parts (viii) and (ix) both hold.
We now see from Theorem 3.2, (4.43), and (4.44) that

$$
Y=\left\{\begin{array}{c}
\frac{(p-3) / 2}{4}=\frac{p-3}{8}, \quad \text { if } p \equiv 3 \quad(\bmod 8) \tag{4.53}\\
\frac{(p-7) / 2}{4}+\frac{2}{2}=\frac{p+1}{8}, \quad \text { if } p \equiv 7 \quad(\bmod 8)
\end{array}\right.
$$

and the formula for $N_{u}(p)$ given in (4.42) indeed holds.
We now observe by Theorem 1.1 (iv) that $S_{u}(p) \subset\{0,1,2,3\}$. Next we determine $B_{w}(i)$ for $0 \leq i \leq 3$. First suppose that $i=0$. Then by (4.42),

$$
B_{u}(0)=p-N_{u}(p)=\left\{\begin{array}{lll}
p-\frac{5 p+1}{8}=\frac{3 p-1}{8} & \text { if } p \equiv 3 & (\bmod 8), \tag{4.54}\\
p-\frac{5 p-3}{8}=\frac{3 p+3}{8} & \text { if } p \equiv 7 & (\bmod 8) .
\end{array}\right.
$$

Now we let $i=1$. It follows from (4.34)-(4.38) and parts (v), (viii), and (ix) that
$B_{u}(1)=1+2(R-Y)+(Y+1)=1+\frac{p-3}{2}-\frac{p-3}{4}+\frac{p-3}{8}+1=\frac{3 p+7}{8}$ if $p \equiv 3 \quad(\bmod 8)$,

THE FIBONACCI QUARTERLY

whereas
$B_{u}(1)=1+2(R-Y)+Y=1+\frac{p-3}{2}-\frac{p+1}{4}+\frac{p+1}{8}=\frac{3 p-5}{8}$ if $p \equiv 7 \quad(\bmod 8)$. (4.56)
Further, we consider the case in which $i=2$. Then by (4.33), (4.34), (4.37), (4.38), and parts (viii) and (ix),

$$
\begin{equation*}
B_{u}(2)=(T-Y)-1=\frac{p+1}{4}-\frac{p-3}{8}-1=\frac{p-3}{8} \text { if } p \equiv 3 \quad(\bmod 8), \tag{4.57}
\end{equation*}
$$

while

$$
\begin{equation*}
B_{u}(2)=(T-Y)+1=\frac{p+1}{4}-\frac{p+1}{8}+1=\frac{p+9}{8} \text { if } p \equiv 7 \quad(\bmod 8) . \tag{4.58}
\end{equation*}
$$

Finally, we suppose that $i=3$. Then by (4.34), (4.36), and (4.37),

$$
\begin{equation*}
B_{u}(3)=Y=\frac{p-3}{8} \text { if } p \equiv 3 \quad(\bmod 8), \tag{4.59}
\end{equation*}
$$

while

$$
\begin{equation*}
B_{u}(3)=Y-1=\frac{p+1}{8}-1=\frac{p-7}{8} \text { if } p \equiv 7 \quad(\bmod 8) . \tag{4.60}
\end{equation*}
$$

Finally, we see from (4.55)-(4.60) that $S_{u}(p)=\{0,1\}$ if $p=3, S_{u}(p)=\{0,1,2\}$ if $p=7$, and $S_{u}(p)=\{0,1,2,3\}$ if $p \equiv 3(\bmod 4)$ and $p>7$.

Parts (i) and (ii) are now established and the proof is complete.

5. Corollaries of the Main Theorems

Corollary 5.1 follows from Theorem 2.1 and 2.2 upon application of Theorem 1.8, Theorem 3.11, and (1.12).

Corollary 5.1. Let p be a fixed prime. Let $w\left(a_{1}, 1\right)$ and $w^{\prime}\left(a_{2}, 1\right)$ be recurrences with discriminants $D_{1}=a_{1}^{2}+4$ and $D_{2}=a_{2}^{2}+4$, respectively, such that $p \nmid D_{1} D_{2}$ and $\left(D_{1} / p\right)=\left(D_{2} / p\right)$. Suppose that either $w\left(a_{1}, 1\right)$ is p-equivalent to $u\left(a_{1}, 1\right)$ and $w^{\prime}\left(a_{2}, 1\right)$ is p-equivalent to $u\left(a_{2}, 1\right)$, or it is the case that $w(a, 1)$ is p-equivalent to $v\left(a_{1}, 1\right)$ and $w^{\prime}\left(a_{2}, 1\right)$ is p-equivalent to $v\left(a_{2}, 1\right)$.

Suppose further that $h_{w}(p)=h_{w^{\prime}}(p)$. This occurs if and only if $\lambda_{w}(p)=\lambda_{w^{\prime}}(p)$. Then there exists a nonzero residue c modulo p such that $A_{w^{\prime}}(d)=A_{w}(c d)$ for $0 \leq d \leq p-1$, and $w\left(a_{1}, 1\right)$ and $w^{\prime}\left(a_{2}, 1\right)$ are identically distributed modulo p.

Corollary 5.2 below follows from Theorems 2.1 and 2.2 upon application of Theorem 1.8, Theorem 1.10, Theorem 3.10, and (1.12).

Corollary 5.2. Let $p \equiv 1(\bmod 4)$ be a fixed prime. Then there exists a LSFK $u(a, 1)$ with discriminant D such that $(D / p)=-1$ and $h_{u}(p)=(p+1) / 2$.

Let $w^{\prime}\left(a_{1}, 1\right)$ be any p-regular recurrence with discriminant D_{1} such that $\left(D_{1} / p\right)=-1$ and $h_{w^{\prime}}(p)=(p+1) / 2$. Then $w^{\prime}\left(a_{1}, 1\right)$ is p-equivalent to either $u\left(a_{1}, 1\right)$ or $v\left(a_{1}, 1\right)$.

If $w^{\prime}\left(a_{1}, 1\right)$ is p-equivalent to $u\left(a_{1}, 1\right)$, then there exists a nonzero residue c modulo p such that $A_{w^{\prime}}(d)=A_{u}(c d)$, and $w^{\prime}\left(a_{1}, 1\right)$ is identically distributed modulo p to $u(a, 1)$. If $w^{\prime}\left(a_{1}, 1\right)$ is p-equivalent to $v\left(a_{1}, 1\right)$, then there exists a nonzero residue c modulo p such that $A_{w^{\prime}}(c d)=$ $A_{v}(d)$, and $w^{\prime}\left(a_{1}, 1\right)$ is identically distributed modulo p to $v(a, 1)$.
Remark 5.3. Primes q for which $2 q-1$ is also prime are called Sophie Germain primes of the second kind. It is easily seen that if q is an odd Sophie Gemain prime, then $2 q-1 \equiv 1$ $(\bmod 4)$. Let q be an odd Sophie Germain prime and let $p=2 q-1$. Suppose that $w(a, 1)$ is a p-regular recurrence with discriminant $D=a^{2}+4$ such that $(D / p)=-1$. Then by Theorem 1.5 (i) and (iii), $h_{w}(p)=(p+1) / 2$.

IDEN. DISTRIB. SECOND-ORDER LINEAR RECURRENCES MODULO P, II

By inspection, we see that the first few Sophie Germain primes of the second kind are

$$
2,3,7,19,31,37,79,97,139,157,199,211, \ldots
$$

The largest known Sophie Germain prime of the second kind is $129431439657 \cdot 2^{170172}+1$ with 51238 digits according to [4].

Corollary 5.4. Suppose that $w(a, 1)$ is p-equivalent to $v(a, 1)$ and that $p \mid D=a^{2}+4$. Then $w(a, 1)$ is p-irregular and

$$
\begin{equation*}
\lambda_{w}(p)=\lambda_{v}(p)=4 \tag{5.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
A_{w}(0)=0, S_{w}(p)=\{0,1\}, N_{w}(p)=\lambda_{w}(p)=4, B_{w}(0)=p-4, B_{w}(1)=4 \tag{5.2}
\end{equation*}
$$

Proof. By Theorem 1.8 it suffices to prove the result for the case in which $w(a, 1)=v(a, 1)$. Since $v_{0}=2$, we see by Theorem 1.6 (ii) that

$$
\lambda_{v}(p)=\operatorname{ord}_{p} \alpha=\operatorname{ord}_{p} a / 2 .
$$

Since $D=a^{2}+4 \equiv 0(\bmod p)$, we find that $(a / 2)^{2} \equiv-1(\bmod p)$, which implies that $\operatorname{ord}_{p} \alpha=\lambda_{v}(p)=4$, and (5.1) holds. It now easily follows that (5.2) holds upon use of Theorem 1.6 (ii).

Acknowledgement

We express our deep appreciation to the anonymous referee for suggestions improving and substantially shortening our paper. This paper was supported by RVO 67985840 of the Czech Republic.

References

[1] R. T. Bumby, A distribution property for linear recurrence of the second order, Proc. Amer. Math. Soc., 50 (1975), 101-106.
[2] C. K. Caldwell, Mersenne primes: history, theorems and lists, http://primes.utm.edu/mersenne/.
[3] C. K. Caldwell, The top twenty, Sophie Germain (p), http://primes.utm.edu/top20/page.php?id=2.
[4] C. K. Caldwell, The top twenty, Cunningham chains (2nd kind), http://primes.utm.edu/top20/page. php?id=20.
[5] W. Carlip and L. Somer, Bounds for frequencies of residues of regular second-order recurrences modulo p^{r}, Number Theory in Progress, Vol. 2, (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 691-719.
[6] R. D. Carmichael, On the numerical factors of arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math., 15 (1913), 30-70.
[7] R. D. Carmichael, On sequences of integers defined by recurrence relations, Quart. J. Pure Appl. Math., 48 (1920), 343-372.
[8] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math., 31 (1930), 419-448.
[9] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983.
[10] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math., 1 (1878), 184-240, 289-321.
[11] S. Müller, On the rank of appearance of Lucas sequences, Applications of Fibonacci Numbers, Vol. 8, F. T. Howard (ed.), Kluwer Academic Publ., Dordrecht, 1999, 259-275.
[12] H. Niederreiter, A. Schinzel, and L. Somer, Maximal frequencies of elements in second-order linear recurring sequences over a finite field, Elem. Math., 46 (1991), 139-143.
[13] L. Somer, Fibonacci-like groups and periods of Fibonacci-like sequences, The Fibonacci Quarterly, 15.1 (1977), 35-41.
[14] L. Somer, The divisibility properties of primary Lucas recurrences with respect to primes, The Fibonacci Quarterly, 18.4 (1980), 316-334.
[15] L. Somer, Possible periods of primary Fibonacci-like sequences with respect to a fixed odd prime, The Fibonacci Quarterly, 20.4 (1982), 311-333.

THE FIBONACCI QUARTERLY

[16] L. Somer, Primes having an incomplete system of residues for a class of second-order recurrences, Applications of Fibonacci Numbers, Vol. 2, A. F. Horadam, A. N. Philippou, and G. E. Bergum (eds.), Kluwer Academic Publ., Dordrecht, 1988, 113-141.
[17] L. Somer, Distribution of residues of certain second-order linear recurrences modulo p, Applications of Fibonacci Numbers, Vol. 3, G. E. Bergum, A. N. Philippou, and A. F. Horadam (eds.), Kluwer Academic Publ., Dordrecht, 1990, 311-324.
[18] L. Somer, Periodicity properties of k th order linear recurrences with irreducible characteristic polynomial over a finite field, Finite fields, coding theory and advances in communications and computing, G. L. Mullen and P. J.-S. Shiue (eds.), Marcel Dekker Inc., New York, 1993, 195-207.
[19] L. Somer, Upper bounds for frequencies of elements in second-order recurrences over a finite field, Applications of Fibonacci Numbers, Vol. 5, G. E. Bergum, A. N. Philippou, and A. F. Horadam (eds.), (St. Andrew, 1992), Kluwer Acad. Publ., Dordrecht, 1993, 527-546.
[20] L. Somer, Distribution of residues of certain second-order linear recurrences modulo $p-I I I$, Applications of Fibonacci Numbers, Vol. 6, G. E. Bergum, A. N. Philippou, and A. F. Horadam (eds.), Kluwer Acad. Publ., Dordrecht, 1996, 451-471.
[21] L. Somer and M. Křížek, Identically distributed second-order linear recurrences modulo p, The Fibonacci Quarterly, 53.4 (2015), 290-312.
[22] W. A. Webb and C. T. Long, Distribution modulo p^{h} of the general linear second order recurrence, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 92-100.

MSC2010: 11B39, 11A07, 11A41
Department of Mathematics, Catholic University of America, Washington, D.C. 20064
E-mail address: somer@cua.edu
Institute of Mathematics, Academy of Sciences, Žitná 25, CZ - 11567 Prague 1, Czech Republic
E-mail address: krizek@math.cas.cz

