POLYNOMIAL EXTENSIONS OF A DIMINNIE DELIGHT

THOMAS KOSHY AND ZHENGUANG GAO

Abstract

As a neat application of Chebyshev polynomials of the first kind, we extend to Fibonacci polynomials a complex recurrence studied by C. R. Diminnie. We then explore the corresponding versions to Lucas, Pell, and Pell-Lucas polynomials, and extract the respective number-theoretic versions. In addition, we pursue two interesting recurrences with Fibonacci, Lucas, Pell, and Pell-Lucas implications.

1. Introduction

Gibonacci (generalized Fibonacci) polynomials $g_{n}(x)$ are defined by the recurrence $g_{n}(x)=$ $x g_{n-1}(x)+g_{n-2}(x)$, where $g_{1}(x)=a, g_{2}(x)=b, a=a(x), b=b(x)$, and $n \geq 3$. Clearly, $g_{0}(x)=b-a x$. When $a=1$ and $b=x, g_{n}(x)=f_{n}(x)$, the nth Fibonacci polynomial; and when $a=x$ and $b=x^{2}+2, g_{n}(x)=l_{n}(x)$, the nth Lucas polynomial. In particular, $g_{n}(1)=G_{n}$, the nth gibonacci number; $f_{n}(1)=F_{n}$, the nth Fibonacci number; and $l_{n}(1)=L_{n}$, the nth Lucas number [1,5].

Table 1 shows the first six Fibonacci and Lucas polynomials.
Table 1: First Six Fibonacci and Lucas Polynomials

n	$f_{n}(x)$	$l_{n}(x)$
1	1	x
2	x	$x^{2}+2$
3	$x^{2}+1$	$x^{3}+3 x$
4	$x^{3}+2 x$	$x^{4}+4 x^{2}+2$
5	$x^{4}+3 x^{2}+1$	$x^{5}+5 x^{3}+5 x$
6	$x^{5}+4 x^{3}+3 x$	$x^{6}+6 x^{4}+9 x^{2}+2$

Pell polynomials $p_{n}(x)$ and Pell-Lucas polynomials $q_{n}(x)$ are defined by $p_{n}(x)=f_{n}(2 x)$ and $q_{n}(x)=l_{n}(2 x)$, respectively. The Pell numbers P_{n} and Pell-Lucas numbers Q_{n} are given by $P_{n}=p_{n}(1)$ and $2 Q_{n}=q_{n}(1)$, respectively $[4,6]$.

Table 2 shows the first six Pell and Pell-Lucas polynomials, and Table 3 the first 10 Pell and Pell-Lucas numbers.

Table 2: First Six Pell and Pell-Lucas Polynomials

n	$p_{n}(x)$	$q_{n}(x)$
1	1	$2 x$
2	$2 x$	$4 x^{2}+2$
3	$4 x^{2}+1$	$8 x^{3}+6 x$
4	$8 x^{3}+4 x$	$16 x^{4}+16 x^{2}+2$
5	$16 x^{4}+12 x^{2}+1$	$32 x^{5}+40 x^{3}+10 x$
6	$32 x^{5}+32 x^{3}+6 x$	$64 x^{6}+96 x^{4}+36 x^{2}+2$

THE FIBONACCI QUARTERLY

Table 3: First 10 Pell and Pell-Lucas Numbers

n	1	2	3	4	5	6	7	8	9	10
P_{n}	1	2	5	12	29	70	169	408	985	2378
Q_{n}	1	3	7	17	41	99	239	577	1393	3363

1.1. Binet-like Formulas. Gibonacci polynomials can also be defined by the Binet-like formula

$$
g_{n}=\frac{c \alpha^{n}-d \beta^{n}}{\alpha-\beta}
$$

where $\alpha=\alpha(x)$ and $\beta=\beta(x)$ are solutions of the characteristic equation $t^{2}-x t-1=0, c=$ $c(x)=a+(a x-b) \beta, d=d(x)=a+(a x-b) \alpha$, and $n \geq 0$. In particular,

$$
f_{n}(x)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where $\alpha=\alpha(x)=\frac{x+\Delta}{2}$ and $\beta=\beta(x)=\frac{x-\Delta}{2}=0, \Delta=\Delta(x)=\sqrt{x^{2}+4}$, and $n \geq 0[1,5]$. Clearly, $\alpha \beta=-1$.

Likewise,

$$
p_{n}(x)=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}
$$

$\gamma=\gamma(x)=x+D$ and $\delta=\delta(x)=x-D$ are the solutions of the equation $t^{2}-2 x t-1=$ $0, D=D(x)=\sqrt{x^{2}+1}$, and $n \geq 0[4,6]$. Clearly, $\gamma \delta=-1$.

Chebyshev polynomials of the first kind $T_{n}(x)$ are defined by the recurrence $T_{n+2}=2 x T_{n+1}(x)-$ $T_{n}(x)$, where $T_{0}(x)=1, T_{1}(x)=x$, and $n \geq 0[6,7]$. Table 4 shows the Chebyshev polynomials $T_{n}(x)$, where $0 \leq n \leq 7$.

Table 4: Chebyshev polynomials $T_{n}(x)$

n	$T_{n}(x)$	n	$T_{n}(x)$
0	1	4	$8 x^{4}-8 x^{2}+1$
1	x	5	$16 x^{5}-20 x^{3}+5 x$
2	$2 x^{2}-1$	6	$32 x^{6}-48 x^{4}+18 x^{2}-1$
3	$4 x^{3}-3 x$	7	$64 x^{7}-112 x^{5}+56 x^{3}-7 x$

To make our exposition simple, short, and elegant, we employ a slightly modified version of the polynomials $T_{n}(x)$. To this end, consider the polynomials $c_{n}(x)$, defined by the recurrence $c_{n}(x)=x c_{n-1}(x)-c_{n-2}(x)$, where $c_{0}(x)=2, c_{1}(x)=x$, and $n \geq 2$. Then

$$
\begin{array}{ll}
c_{2}(x)=x^{2}-2 & c_{3}(x)=x^{3}-3 x \\
c_{4}(x)=x^{4}-4 x^{2}+2 & c_{5}(x)=x^{5}-5 x^{3}+5 x \\
c_{6}(x)=x^{6}-6 x^{4}+9 x^{2}-2 & c_{7}(x)=x^{7}-7 x^{5}+14 x^{3}-7 x
\end{array}
$$

Clearly, $c_{n}(x)=2 T_{n}(x / 2)=i^{n} l_{n}(-i x)$, where $i=\sqrt{-1}$. For example, $2 T_{5}(x / 2)=$ $2\left[16(x / 2)^{5}-20(x / 2)^{3}+5(x / 2)\right]=x^{5}-5 x^{3}+5 x=c_{5}(x)$.

The polynomials $c_{n}(x)$ satisfy a charming property:

$$
\begin{equation*}
c_{n}\left(y+\frac{1}{y}\right)=y^{n}+\frac{1}{y^{n}} \tag{1.1}
\end{equation*}
$$

where $y \neq 0$ and $n \geq 0$; this follows by induction.

POLYNOMIAL EXTENSIONS OF A DIMINNIE DELIGHT

1.2. A Diminnie Delight. In 1994, C. R. Diminnie proposed the following spectacular problem [2]. Solve the recurrence

$$
\begin{equation*}
d_{n+1}=5 d_{n}\left(5 d_{n}^{4}-5 d_{n}^{2}+1\right), \tag{1.2}
\end{equation*}
$$

where $d_{0}=1$ and $n \geq 0$. A few months later, A. Sinefakopoulos provided a beautiful solution to the problem [3, 8]: $d_{n}=F_{5^{n}}$.

We can extend this problem to Fibonacci polynomials. In the interest of brevity, clarity, and convenience, we drop the argument from the functional notation when omitting it causes $n o$ ambiguity. For example, g_{n} will mean $g_{n}(x)$.

2. Fibonacci Extensions

Solve the recurrence

$$
\begin{equation*}
a_{n+1}=a_{n}\left(\Delta^{4} a_{n}^{4}-5 \Delta^{2} a_{n}^{2}+5\right), \tag{2.1}
\end{equation*}
$$

where $a_{n}=a_{n}(x), a_{0}=1$, and $n \geq 0$.
Then,

$$
\begin{aligned}
a_{0}= & 1 \\
a_{1}= & x^{4}+3 x^{2}+1 \\
a_{2}= & x^{24}+23 x^{22}+231 x^{20}+1330 x^{18}+4845 x^{16}+11628 x^{14}+18564 x^{12} \\
& +19448 x^{10}+12870 x^{8}+5005 x^{6}+1001 x^{4}+78 x^{2}+1 \\
a_{3}= & x^{124}+123 x^{122}+7381 x^{120}+\cdots+1,
\end{aligned}
$$

a polynomial of degree 124 and with 63 terms.
By looking at these four initial values of a_{n}, it does not appear to be easy to conjecture a formula for a_{n}. But, here is an interesting observation: $a_{0}=f_{5^{0}}, a_{1}=f_{5^{1}}$, and $a_{2}=f_{5^{2}}$. This, coupled with the solution $d_{n}=F_{5^{n}}$ of recurrence (2.1), helps us conjecture that $a_{n}=f_{5^{n}}$, where $n \geq 0$.

To confirm this formula, we rely on the polynomials $c_{n}(x)$. To this end, first we establish a close relationship between a_{n+1} and c_{5}. Using recurrence (2.1), we have

$$
\begin{aligned}
\Delta a_{n+1} & =\Delta^{5} a_{n}^{5}-5 \Delta^{3} a_{n}^{3}+5 \Delta a_{n} \\
& =\left(\Delta a_{n}\right)^{5}-5\left(\Delta a_{n}\right)^{3}+5\left(\Delta a_{n}\right) \\
& =c_{5}\left(\Delta a_{n}\right) .
\end{aligned}
$$

Consequently, we claim that the solution of the recurrence $\Delta a_{n+1}=c_{5}\left(\Delta a_{n}\right)$ is $a_{n}=f_{5^{n}}$.
More generally, we will now confirm that the solution of the recurrence

$$
\begin{equation*}
\Delta a_{n+1}=c_{m}\left(\Delta a_{n}\right) \tag{2.2}
\end{equation*}
$$

is $a_{n}=f_{k \cdot m^{n}}$, where $a_{0}=f_{k}, k$ and m are odd positive integers, $k \neq m, m \geq 3$ and $n \geq 0$.

THE FIBONACCI QUARTERLY

Proof. Clearly, the formula is true when $n=0$. Assume, it is true for an arbitrary integer $n \geq 0$. Since k and m are odd, by the Binet-like formula for $f_{k \cdot m^{n}}$, we then have

$$
\begin{aligned}
\Delta a_{n+1} & =c_{m}\left(\Delta f_{k \cdot m^{n}}\right) \\
& =c_{m}\left(\alpha^{k \cdot m^{n}}-\beta^{k \cdot m^{n}}\right) \\
& =c_{m}\left(\alpha^{k \cdot m^{n}}+\frac{1}{\alpha^{k \cdot m^{n}}}\right) \\
& =\alpha^{k \cdot m^{n+1}}+\frac{1}{\alpha^{k \cdot m^{n+1}}} \\
& =\alpha^{k \cdot m^{n+1}}-\beta^{k \cdot m^{n+1}} \\
a_{n+1} & =f_{k \cdot m^{n+1}} .
\end{aligned}
$$

So the formula works for $n+1$ also. Thus, by induction, formula (2.2) works for all $n \geq 0$; that is, the solution of recurrence (2.2) is $a_{n}=f_{k \cdot m^{n}}$.

For example, with $k=3, m=5$, and $a_{0}=f_{3}=x^{2}+1$, we have

$$
\begin{aligned}
a_{1} & =a_{0}\left(\Delta^{4} a_{0}^{4}-5 \Delta^{2} a_{0}^{2}+5\right) \\
& =\left(x^{2}+1\right)\left[\left(x^{2}+4\right)^{2}\left(x^{2}+1\right)^{4}-5\left(x^{2}+4\right)\left(x^{2}+1\right)^{2}+5\right] \\
& =x^{14}+13 x^{12}+66 x^{10}+165 x^{8}+210 x^{6}+126 x^{4}+28 x^{2}+1 \\
& =f_{3.5} .
\end{aligned}
$$

In particular, the solution of recurrence (2.1) is $a_{n}=f_{5^{n}}$, where $n \geq 0$, as conjectured. Clearly, the solution of recurrence (1.2) follows from this.

Suppose we let $m=3$ in recurrence (2.2). Since $c_{3}(x)=x^{3}-3 x$,

$$
\begin{align*}
\Delta a_{n+1} & =c_{3}\left(\Delta a_{n}\right) \\
a_{n+1} & =\Delta^{2} a_{n}^{3}-3 a_{n} . \tag{2.3}
\end{align*}
$$

The solution of this recurrence is $a_{n}=f_{k \cdot 3^{n}}$, where $a_{0}=f_{k}$ and $n \geq 0$.
Likewise, when $m=7$, we get

$$
\begin{equation*}
a_{n+1}=\Delta^{6} a_{n}^{7}-7 \Delta^{4} a_{n}^{5}+14 \Delta^{2} a_{n}^{3}-7 a_{n} ; \tag{2.4}
\end{equation*}
$$

its solution is $a_{n}=f_{k \cdot 7^{n}}$, where $a_{0}=f_{k}$ and $n \geq 0$.
Obviously, we can continue this procedure for any odd integer ≥ 9.
In particular, let $x=1=k$. Then the solutions of the recurrences $a_{n+1}=5 a_{n}^{3}-3 a_{n}$ and $a_{n+1}=125 a_{n}^{7}-175 a_{n}^{5}+70 a_{n}^{3}-7 a_{n}$ are $a_{n}=F_{3^{n}}$ and $a_{n}=F_{7^{n}}$, respectively.

As we can predict, the polynomial extension (2.1) has Pell consequences.
2.1. Pell Extensions. Let $b_{n}=b_{n}(x)=a_{n}(2 x), b_{0}=1$, and $n \geq 0$. Then recurrences (2.3), (2.1), and (2.4) yield

$$
\begin{align*}
b_{n+1} & =b_{n}\left(4 D^{2} b_{n}^{2}-3\right) \tag{2.5}\\
b_{n+1} & =b_{n}\left(16 D^{4} b_{n}^{4}-20 D^{2} b_{n}^{2}+5\right) \tag{2.6}\\
b_{n+1} & =b_{n}\left(64 D^{6} b_{n}^{6}-112 D^{4} b_{n}^{4}+56 D^{2} b_{n}^{2}-7\right) \tag{2.7}
\end{align*}
$$

respectively. The corresponding solutions are $b_{n}=p_{k \cdot 3^{n}}, b_{n}=p_{k \cdot 5^{n}}$, and $b_{n}=p_{k \cdot 7^{n}}$, respectively.

When $x=1=k$, these yield the solutions $b_{n}=P_{3^{n}}, b_{n}=P_{5^{n}}$, and $b_{n}=P_{7^{n}}$, respectively.

For example, $b_{1}=29=P_{5^{1}}$; so $b_{2}=29\left(64 \cdot 29^{4}-40 \cdot 29^{2}+5\right)=1,311,738,121=P_{5^{2}}$, as expected.

3. Lucas Counterparts

Recall that the solutions of recurrences (1.2), (2.3), and (2.4) pivoted on the polynomial $c_{m}(x)$, where m is odd and ≥ 3. Interestingly, focusing on $c_{m}(x)$ with m even and ≥ 2 yields equally rewarding results.

For example, consider the recurrence

$$
\begin{equation*}
a_{n+1}=a_{n}^{4}-4 a_{n}^{2}+2, \tag{3.1}
\end{equation*}
$$

where $a_{n}=a_{n}(x), a_{1}=l_{4 e}, e$ is a positive integer such that $4 \nmid e$, and $n \geq 1$.
Clearly, $a_{n+1}=c_{4}\left(a_{n}\right)$. Using the Binet-like formula for $l_{e \cdot 4^{n}}$, property (1.1), and induction, we can show that $a_{n}=l_{e \cdot 4^{n}}$.

For example, let $e=1$. Then $a_{1}=l_{4}=x^{4}+4 x^{2}+2$, and

$$
\begin{aligned}
a_{2} & =a_{1}^{4}-4 a_{1}^{2}+2 \\
& =\left(x^{4}+4 x^{2}+2\right)^{4}-4\left(x^{4}+4 x^{2}+2\right)^{2}+2 \\
& =x^{16}+16 x^{14}+104 x^{12}+352 x^{10}+660 x^{8}+672 x^{6}+336 x^{4}+64 x^{2}+2 \\
& =l_{4^{2}} .
\end{aligned}
$$

Similarly, the recurrences

$$
\begin{align*}
& a_{n+1}=a_{n}^{2}-2, a_{1}=l_{2 e}(2 \not \backslash e) \tag{3.2}\\
& a_{n+1}=a_{n}^{6}-6 a_{n}^{4}+9 a_{n}^{2}-2, a_{1}=l_{6 e}(6 \not \subset e) \tag{3.3}
\end{align*}
$$

yield the abbreviated recurrences $a_{n+1}=c_{2}\left(a_{n}\right)$ and $a_{n+1}=c_{6}\left(a_{n}\right)$, respectively, where $a_{n}=$ $a_{n}(x)$. Correspondingly, we have $a_{n}=l_{e \cdot 2^{n}}$ and $a_{n}=l_{e \cdot 6^{n}}$, respectively.

In particular, let $x=1=e$. Then $L_{2^{n}}, L_{4^{n}}$, and $L_{6^{n}}$ are the solutions of the recurrences (3.2), (3.1), and (3.3), respectively; M. Klamkin (1921-2004) found these solutions [8].
3.1. Pell-Lucas Byproducts. Since $l_{k}(2 x)=q_{k}(x)$, it follows from recurrences (3.2), (3.1), and (3.3) that

$$
\begin{align*}
& b_{n+1}=b_{n}^{2}-2, b_{1}=q_{2 e}(2 \not \backslash e) \\
& b_{n+1}=b_{n}^{4}-4 b_{n}^{2}+2, b_{1}=q_{4 e}(4 \not \backslash e) ; \tag{3.4}\\
& b_{n+1}=b_{n}^{6}-6 b_{4}^{4}+9 b_{n}^{2}-2, b_{1}=q_{6 e}(6 \nless e),
\end{align*}
$$

respectively, where $b_{n}=a_{n}(2 x)$. The corresponding solutions are $b_{n}=q_{e \cdot 2^{n}}, b_{n}=q_{e \cdot 4^{n}}$, and $b_{n}=q_{e \cdot 6^{n}}$, respectively.

In particular, let $x=1=e$. Then $b_{n}=2 Q_{2^{n}}, b_{n}=2 Q_{4^{n}}$, and $b_{n}=2 Q_{6^{n}}$, respectively.
For example, consider recurrence (3.4), where $b_{1}=34=2 Q_{4}$. Then $b_{2}=34^{4}-4 \cdot 34^{2}+2=$ $1,331,714=2 Q_{4^{2}}$.

4. Two Charming Recurrences

Next we study two equally delightful recurrences with Fibonacci and Pell implications.

THE FIBONACCI QUARTERLY

4.1. Recurrence A. Consider the recurrence

$$
\begin{equation*}
x_{n+1}=x_{n}\left(\Delta^{2} x_{n}^{2}+3\right), \tag{4.1}
\end{equation*}
$$

where $x_{0}=f_{e}, e$ is a positive even integer, and $n \geq 0$.
Suppose $e=2$. Then $x_{0}=f_{2}=x$ and $x_{1}=x\left[\left(x^{2}+4\right) x^{2}+3\right]=x^{5}+4 x^{3}+3 x=f_{2 \cdot 3}$.
More generally, we conjecture that $x_{n}=f_{e \cdot 3^{n}}$, where $n \geq 0$. It is clearly true when $n=0$. Assume it is true for an arbitrary integer $n \geq 0$. Then

$$
\begin{aligned}
x_{n+1} & =\Delta^{2} f_{e \cdot 3^{n}}^{3}+3 f_{e \cdot 3} 3^{n} \\
\Delta x_{n+1} & =\left(\alpha^{e \cdot 3^{n}}-\beta^{e \cdot 3^{n}}\right)^{3}+3\left(\alpha^{e \cdot 3^{n}}-\beta^{e \cdot 3^{n}}\right) \\
& =\alpha^{e \cdot 3^{n+1}}-\beta^{e \cdot 3^{n+1}}-3(\alpha \beta)^{e \cdot 3^{n}}\left(\alpha^{e \cdot 3^{n}}-\beta^{e \cdot 3^{n}}\right)+3\left(\alpha^{e \cdot 3^{n}}-\beta^{e \cdot 3^{n}}\right) \\
& =\alpha^{e \cdot 3^{n+1}}-\beta^{e \cdot 3^{n+1}} \\
x_{n+1} & =f_{e \cdot 3^{n+1}} .
\end{aligned}
$$

Thus, by induction, the conjecture works for all $n \geq 0$.
For example, let $e=4$. Then $x_{0}=f_{4}=x^{3}+2 x$. So

$$
\begin{aligned}
x_{1} & =x_{0}\left(\Delta^{2} x_{0}^{2}+3\right) \\
& =\left(x^{3}+2 x\right)\left[\left(x^{2}+4\right)\left(x^{3}+2 x\right)^{2}+3\right] \\
& =x^{11}+10 x^{9}+36 x^{7}+56 x^{5}+35 x^{3}+6 x \\
& =f_{4 \cdot 3^{1}} .
\end{aligned}
$$

In particular, the solution of the recurrence $x_{n+1}=x_{n}\left(5 x_{n}^{2}+3\right)$ is $x_{n}=F_{e \cdot 3^{n}}$, where $x_{0}=F_{e}$ and $n \geq 0$.
4.2. Pell Byproducts. It follows from recurrence (4.1) that the solution of the recurrence $x_{n+1}=x_{n}\left(4 D^{2} x_{n}^{2}+3\right)$ is $x_{n}=p_{e \cdot 3^{n}}$, where $x_{0}=p_{e}$ and $n \geq 0$. In particular, the solution of the recurrence $x_{n+1}=x_{n}\left(8 x_{n}^{2}+3\right)$ is $x_{n}=P_{e \cdot 3^{n}}$.

Next we study a similar recurrence which also has interesting consequences.
4.3. Recurrence B. Consider the recurrence

$$
\begin{equation*}
z_{n+2}=z_{n+1}\left(\Delta^{2} z_{n}^{2}+2\right), \tag{4.2}
\end{equation*}
$$

where $z_{1}=f_{2 k}, z_{2}=f_{4 k}, k$ is an odd positive integer, and $n \geq 1$.
When $k=1, z_{1}=f_{2}=x$ and $z_{2}=f_{4}=x^{3}+2 x$. So

$$
\begin{aligned}
z_{3} & =\left(x^{3}+2 x\right)\left[\left(x^{2}+4\right) x^{2}+2\right] \\
& =x^{7}+6 x^{5}+10 x^{3}+4 x \\
& =f_{2^{3}} .
\end{aligned}
$$

More generally, it follows by induction that the solution of recurrence (4.2) is $z_{n}=f_{k \cdot 2^{n}}$, where $n \geq 1$.

For example, let $k=3$. Then $z_{1}=f_{6}=x^{5}+4 x^{3}+3 x$ and $z_{2}=f_{12}=x^{11}+10 x^{9}+36 x^{7}+$ $56 x^{5}+35 x^{3}+6 x$. Consequently,

$$
\begin{aligned}
z_{3}= & z_{2}\left(\Delta^{2} z_{1}^{2}+2\right) \\
= & \left(x^{11}+10 x^{9}+36 x^{7}+56 x^{5}+35 x^{3}+6 x\right)\left[\left(x^{2}+4\right)\left(x^{5}+4 x^{3}+3 x\right)^{2}+2\right] \\
= & x^{23}+22 x^{21}+210 x^{19}+1140 x^{17}+3876 x^{15}+8568 x^{13}+12376 x^{11} \\
& +11440 x^{9}+6435 x^{7}+2002 x^{5}+286 x^{3}+12 x \\
= & f_{3 \cdot 2^{3}} .
\end{aligned}
$$

Suppose we let $x=1$ in recurrence (4.2). Then the solution of the recurrence $z_{n+2}=$ $z_{n+1}\left(5 z_{n}^{2}+2\right)$ is $z_{n}=F_{k \cdot 2^{n}}$, where $z_{1}=F_{2 k}, z_{2}=F_{4 k}$, and $n \geq 0$.

Recurrence (4.1) also has Pell implications.
4.4. Pell Consequences. The solution of the recurrence $z_{n+2}=2 z_{n+1}\left(2 D^{2} z_{n}^{2}+1\right)$ is $z_{n}=$ $p_{k \cdot 2^{n}}$, where $z_{1}=p_{2 k}, z_{2}=p_{4 k}$, and $n \geq 0$. Consequently, the solution of the recurrence $z_{n+2}=2 z_{n+1}\left(4 z_{n}^{2}+1\right)$ is $z_{n}=P_{k \cdot 2^{n}}$, where $z_{1}=P_{2 k}, z_{2}=P_{4 k}$, and $n \geq 0$.

For example, let $k=5$. Then $z_{1}=P_{10}=2,378$ and $z_{2}=P_{20}=15,994,428$. So $z_{3}=$ $2 z_{2}\left(4 z_{1}^{2}+1\right)=2 \cdot 15,994,428\left(4 \cdot 2378^{2}+1\right)=723,573,111,879,672=P_{40}$.
4.5. Lucas Counterparts. Interestingly, recurrences (4.1) and (4.2) have their own Lucas counterparts:

$$
\begin{equation*}
u_{n+1}=u_{n}\left(u_{n}^{2}-3\right) \tag{4.3}
\end{equation*}
$$

where $u_{0}=l_{e}$ and $n \geq 0$; and

$$
\begin{equation*}
v_{n+2}=v_{n+1}\left(v_{n}^{2}-2\right)-2, \tag{4.4}
\end{equation*}
$$

where $v_{1}=l_{2 k}, v_{2}=l_{4 k}$, and $n \geq 1$.
Their solutions are $u_{n}=l_{e \cdot 3^{n}}$ and $v_{n}=l_{k \cdot 2^{n}}$, respectively. Their proofs follow similarly, so we omit them.

For example, let $e=4$. Then

$$
\begin{aligned}
u_{1} & =l_{4}\left(l_{4}^{2}-3\right) \\
& =x^{12}+12 x^{10}+54 x^{8}+112 x^{6}+105 x^{4}+36 x^{2}+2 \\
& =l_{l_{4 \cdot 31}}
\end{aligned}
$$

likewise,

$$
\begin{aligned}
v_{3}= & l_{12}\left(l_{6}^{2}-2\right)-2 \\
= & x^{24}+24 x^{22}+252 x^{20}+1520 x^{18}+5814 x^{16}+14688 x^{14} \\
& +24752 x^{12}+27456 x^{10}+19305 x^{8}+8008 x^{6}+1716 x^{4}+144 x^{2}+2 \\
= & l_{3 \cdot 2^{3}} .
\end{aligned}
$$

4.6. Pell-Lucas Versions. It follows from recurrences (4.3) and (4.4) that the solutions of the recurrences

$$
\begin{equation*}
u_{n+1}=u_{n}\left(u_{n}^{2}-3\right), u_{0}=q_{e} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n+2}=v_{n+1}\left(v_{n}^{2}-2\right)-2, v_{1}=q_{2 k} \text { and } v_{2}=q_{4 k} \tag{4.6}
\end{equation*}
$$

are $u_{n}=q_{e \cdot 3^{n}}$ and $v_{n}=q_{k \cdot 2^{n}}$, respectively.
In particular, let $x=1$. Then the solutions of the recurrences (4.3), (4.4), (4.5), and (4.6) are $u_{n}=L_{e \cdot 3^{n}}, v_{n}=L_{k \cdot 2^{n}}, u_{n}=2 Q_{e \cdot 3^{n}}$, and $v_{n}=2 Q_{k \cdot 2^{n}}$, respectively.

THE FIBONACCI QUARTERLY

For example, when $k=1$,

$$
\begin{aligned}
v_{5} & =v_{4}\left(v_{3}^{2}-2\right)-2 \\
& =1,331,714\left(1154^{2}-2\right)-2 \\
& =2 \cdot 886,731,088,897 \\
& =2 Q_{2^{5}} .
\end{aligned}
$$

Finally, we invite Fibonacci enthusiasts to interpret combinatorially the recurrences investigated in the article.

5. Acknowledgment

The authors would like to thank the reviewer for his thoughtful and encouraging words and comments.

References

[1] M. Bicknell, A Primer for the Fibonacci Numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407-420.
[2] C. R. Diminnie, Problem 1909, Crux Mathematicorum, 20 (1994), 17.
[3] R. Honsberger, Mathematical Delights, The Mathematical Association of America, Washington, D.C., 2004.
[4] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas Polynomials, The Fibonacci Quarterly, 23.1 (1985), 7-20.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2002.
[6] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[7] T. J. Rivlin, Chebyshev Polynomials, Wiley, Second Edition, New York, 1990.
[8] A. Sinefakopoulos, Solution to Problem 1909, Crux Mathematicorum, 20 (1994), 295-296.
MSC2010: 11B37, 11B39, 11B50
Department of Mathematics, Framingham State University, Framingham, MA 01701
E-mail address: tkoshy@emeriti.framingham.edu
Department of Computer Science, Framingham State University, Framingham, MA 01701
E-mail address: zgao@framingham.edu

