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Abstract. Let K/Q be a finite Galois extension. A normal integral basis for K is an integral
basis for K in which all the elements of the basis are conjugate over Q. Let θ ∈ R be a root
of the polynomial

f(X) = X5 +X4
− 4X3

− 3X2 + 3X + 1.

Set K = Q(θ). It is known that K possesses infinitely many normal integral bases. In this
paper, we explicitly determine all normal integral bases of K and parametrize them using the
Fibonacci and Lucas numbers.

1. Introduction

Let K be a finite Galois extension of the rational field Q with ring of integers OK . An
integral basis for K is said to be a normal integral basis if all of its elements are conjugate
over Q. It is known by the Hilbert-Speiser Theorem that a finite abelian extension K/Q has
a normal integral basis if and only if K is tamely ramified over Q. This result is known not to
hold for arbitrary extensions of number fields, thus making the study of normal integral bases
of number fields over Q an interesting problem. For instance, the existence of normal integral
bases of a given form in a parametric family of fields was proved in [16]. An element a ∈ OK

is said to generate a normal integral basis for K if a and all of its conjugates form an integral
basis for K. Generators for normal integral bases in cyclic fields of prime degree were studied
in [1]. If K is a finite, tame, abelian, Galois extension of Q, then an asymptotic formula for
the number of generators of normal integral bases of K was given in [5].

Consider the polynomial

f(X) = X5 +X4 − 4X3 − 3X2 + 3X + 1.

Lehmer studied a parametric family of polynomials that contains f in [12, p. 539], with
n = −1; this parametric family was also studied by Nakano in [13]. It is known that f(X) is
irreducible, that all the roots of f(X) are real, and that K = Q(θ) is a cyclic extension of Q of
degree 5 where θ ∈ R is a root of f (see [12, 14]). In [4], the authors exhibited infinitely many
normal integral bases of K parametrized by Fibonacci and Lucas numbers. In this paper,
we expand upon this result by finding all normal integral bases of K. We are able to show
this result by considering the group ring generated by the Galois group Gal(K/Q) over Z.
Moreover, if Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively, we also
prove that every normal integral basis of K can be parametrized using Fn and Ln where n ∈ Z.
Our main result is as follows.

Theorem 1.1. Let K be the cyclic quintic field Q(θ) where θ is a root of

f(X) = X5 +X4 − 4X3 − 3X2 + 3X + 1.

Let G = Gal(K/Q) and let σ ∈ G be such that G = 〈σ〉. Define

an =
1

10
(25F2n + (−1)nL2n − 2) +

1

2
(−5F2n + (−1)nL2n)θ − 4F2nθ

2 + F2nθ
3 + F2nθ

4 (1.1)
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and

S = {α ∈ OK : α generates a normal integral basis for K}.

Then an ∈ OK for all n ∈ Z, and furthermore,

S = {(−1)iσj(an) : n ∈ Z, i = 0, 1, j = 0, . . . , 4}.

As stated, the proof of the theorem will utilize a certain group ring, the necessary theory
of which will be provided in Section 2. Some useful identities regarding Fibonacci and Lucas
numbers are given in Section 3. The proof of the theorem is given in Section 4.

2. A Special Group Ring

In this section we explain how group rings are related to generators of normal integral bases.
The definition of a group ring can be found in numerous algebra texts, see for instance [15,
p. 1], or [8, p. 117]. For a given group G and ring R, we will denote the group ring of G
over R by R[G]. One shows that R[G] forms a ring with unity under the specified operations
with identity element 1R[G] = 1ReG where 1R and eG are the identity elements in R and G,
respectively. It is also easy to show that R[G] is commutative if and only if G is abelian. The
theory of group rings is rich and the curious reader should consult [15] for more information.

For the rest of this section suppose thatK is a finite, abelian, Galois extension of the rational
field Q with ring of integers OK and Galois group G. We are concerned with the group ring
Z[G] and how it relates to OK . Following the notation given in [5], the next proposition
answers our query.

Proposition 2.1. OK is a Z[G]-module under the following action:

a.

(

∑

σ∈G

xσσ

)

=
∑

σ∈G

xσσ(a).

The proof of this proposition is straightforward definition checking and is omitted. Fur-
thermore, Proposition 2.1 implies the following important observation: a ∈ OK generates a
normal integral basis for K if and only if

a.Z[G] = OK .

The next proposition, given in [5, p. 1007], shows that all the generators of normal integral
bases of K can be characterized by this action and is pivotal to our main result.

Proposition 2.2. Let a ∈ OK generate a normal integral basis for K. Then the set of all

generators of normal integral bases for K is a.Z[G]∗ where Z[G]∗ is the unit group of Z[G].

The proof of this proposition follows using a standard dual inclusion argument and so is
omitted. Notice that Proposition 2.2 reduces the problem of finding generators of normal
integral bases to one of finding the unit group in a particular group ring (a single generator
can always theoretically be found, see [5, p. 1007]). However, determining the units in a group
ring is often an arduous task, and we refer to [3, 7, 10, 11, 15] for more details.

3. Some Useful Identities

In this section we give some identities of Fibonacci numbers Fn, and Lucas numbers Ln,
that will be used in the proof of Theorem 1. We recall that the Fibonacci and Lucas numbers
are generated via the following recursions

F0 = 0, F1 = 1, and Fn = Fn−2 + Fn−1 for n ≥ 2,

L0 = 2, L1 = 1, and Ln = Ln−2 + Ln−1 for n ≥ 2.

MAY 2017 153



THE FIBONACCI QUARTERLY

Proposition 3.1. Let n be a positive integer. The Fibonacci and Lucas numbers extend to all

integers via the following two formulas,

F−n = (−1)n+1Fn, and L−n = (−1)nLn, for n ∈ N.

Then, for any n,m ∈ Z, the Fibonacci and Lucas numbers satisfy the following 7 identities.

(1) F2(m+1) =
1

2
(3F2m + L2m),

(2) L2(m+1) =
1

2
(5F2m + 3L2m),

(3) F2(m−1) =
1

2
(3F2m − L2m),

(4) L2(m−1) =
1

2
(3L2m − 5F2m),

(5) F2(m−2) =
1

2
(7F2m − 3L2m),

(6) L2(m−2) =
1

2
(7L2m − 15F2m),

and

(7) 5F 2
n − L2

n = 4(−1)n+1.

Proof. (1)–(7) can be proved immediately from (15a), (15b), (17a), (17b), and (17c), or from
(16a) and (16b) of [17, p. 177]. �

4. Proof of Theorem 1.1

Proof. The field K = Q(θ) is a finite, abelian Galois extension of Q with Galois group G ∼=
Z/5Z and discriminant 114 (see [12, p. 539] with n = −1). Let σ ∈ G with G = 〈σ〉. From [4,
p. 151], the conjugates of θ are

θ, σ(θ) = 2− 4θ2 + θ4, σ2(θ) = −1 + 2θ + 3θ2 − θ3 − θ4 (4.1)

σ3(θ) = −2 + θ2, σ4(θ) = −3θ + θ3. (4.2)

Furthermore, by the theorem of [4, p. 152], an ∈ OK generates a normal integral basis for all
n ∈ N.

We are now ready to proceed with the proof of the main result. We first show that an ∈ OK

for all n ∈ Z. The congruence relations

Ln ≡ Fn (mod 2), L2n ≡ (−1)n2 (mod 5)

given in [4, page 152], hold for all n ∈ Z. Substituting these into the formula for an given
in equation (1.1), we see that an ∈ OK for all n ∈ Z. Using (7) of Proposition 3.1, the
discriminant of {an, σ(an), σ

2(an), σ
3(an), σ

4(an)} is

114 ·
1

256
(5F 2

2n − L2
2n)

4 = 114 ·
1

256
(256) = 114

for all n ∈ Z. Thus, an generates a normal integral basis for all n ∈ Z. From [2, pp. 2932 and
2934], the unit group of Z[G] is 〈−1, σ, σ2 + σ3 − 1〉 where 〈·〉 denotes the multiplicative group
of Z[G] generated by these three elements. Fixing n = 1 for a1, Proposition 2.2 implies that

S = {α ∈ OK : α generates a normal integral basis} = a1.〈−1, σ, σ2 + σ3 − 1〉
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where

a1 = 2− 4θ − 4θ2 + θ3 + θ4. (4.3)

Hence, a typical element s ∈ S is of the form

s = a1.((−1)iσj(σ2 + σ3 − 1)m) = (−1)iσj((σ2 + σ3 − 1)m(a1))

where i = 0, 1, j = 0, . . . , 4, and m ∈ Z. We now prove two lemmas that give formulas for
a1.(σ

2 + σ3 − 1)m for any m ∈ Z in terms of an.

Lemma 4.1. Let m ∈ N. Then a1.(σ
2 + σ3 − 1)m = aM(m) where M(m) = (−1)m−1(m− 1).

Proof. We use induction on m. If m = 1, then we use the identities in (4.1) and (4.2) to get

a1.(σ
2 + σ3 − 1) = σ2(a1) + σ3(a1)− a1 = θ = a0 = aM(1).

Now suppose that a1.(σ
2 + σ3 − 1)m−1 = aM(m−1). By the induction hypothesis,

a1.(σ
2 + σ3 − 1)m = (a1.(σ

2 + σ3 − 1)m−1).(σ2 + σ3 − 1) = aM(m−1).(σ
2 + σ3 − 1).

In order to make the proof slightly easier, we now split it into two cases: one where m is even
and one where m is odd.

Case 1: Assume m is even. Then m−1 is odd, so that M(m−1) = m−2 and M(m) = 1−m.
Equation (1.1) implies

am−2 =
1

10
(25F2(m−2) + L2(m−2) − 2) +

1

2
(−5F2(m−2) + L2(m−2))θ

− 4F2(m−2)θ
2 + F2(m−2)θ

3 + F2(m−2)θ
4.

Using (4.1) and (4.2), we calculate

am−2.(σ
2 + σ3 − 1) = −

1

5
(1 + 20F2(m−2) + 7L2(m−2)) +

1

2
(5F2(m−2) + L2(m−2))θ

+ 2(3F2(m−2) + L2(m−2))θ
2 −

1

2
(3F2(m−2) + L2(m−2))θ

3

−
1

2
(3F2(m−2) + L2(m−2))θ

4,

and by equation (1.1) and the definitions of F−n and L−n in Proposition 3.1, we have

a1−m =
1

10
(−25F2(m−1) − L2(m−1) − 2) +

1

2
(5F2(m−1) − L2(m−1))θ

+ 4F2(m−1)θ
2 − F2(m−1)θ

3 − F2(m−1)θ
4.

Applying (3)–(6) of Proposition 3.1 to the coefficients of the powers of θ in am−2.(σ
2 +σ3− 1)

and a1−m shows that they are equal. Hence we have a1.(σ
2 + σ3 − 1)m = aM(m).

Case 2: Assume m is odd. Then m− 1 is even, and M(m− 1) = 2 −m and M(m) = m− 1.
The proof then follows in the same way as Case 1. �

Lemma 4.2. Let m ∈ N. Then a1.(σ
2 + σ3 − 1)−m = aN(m) where N(m) = (−1)m(m+ 1).

Proof. The proof follows in the same fashion as that of Lemma 4.1, using (1) and (2) of
Proposition 3.1, and noting that (σ2 + σ3 − 1)−1 = σ + σ4 − 1. �

Lemmas 1 and 2 imply immediately that S ⊆ {(−1)iσj(an) : n ∈ Z, i = 0, 1, j = 0, . . . , 4}.
Equality follows from noting that, for any n ∈ Z, we have M(n + 1) = n if n is even and
N(n − 1) = n if n is odd. �
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