EXTRAORDINARY SUBSETS: A GENERALIZATION

RALPH P. GRIMALDI

Abstract

For n a positive integer, a subset S of $[n](=\{1,2,3, \ldots, n\})$ is called extraordinary if $|S|$ is equal to the smallest element of S. The number of such subsets S, for a given n, is counted by F_{n}, the nth Fibonacci number.

For positive integers k, n, where $1<k \leq n$, we now investigate those subsets S of $[n]$, where $|S|$ is equal to the k th smallest element of S. We call such subsets $S k$-extraordinary.

1. Extraordinary Subsets

For a positive integer n, let a_{n} count the number of subsets S of $[n](=\{1,2,3, \ldots, n\})$, where $|S|$ is equal to the smallest element of S. We find that $a_{1}=1$, for the subset $\{1\}$, and that $a_{2}=1$, also for the subset $\{1\}$.

For $n \geq 3$, it follows that $a_{n}=a_{n-1}+a_{n-2}$;

1) If S is counted in a_{n} with $n \notin S$, then S is counted in a_{n-1}.
2) If S is counted in a_{n} with $n \in S$, upon removing n from S and then subtracting 1 from each remaining element of S, we obtain the corresponding subset counted in a_{n-2}. [To go in the reverse direction, for each subset S counted in a_{n-2}, increase each element by 1 and then add in the element n.] Consequently, $a_{n}=F_{n}, n \geq 1$, and there are F_{n} extraordinary subsets of $[n]$.
Alternately, for $n \geq 1$ and $1 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, the number of extraordinary subsets, where k is the smallest element, is given by $\binom{n-i}{i-1}$. Consequently,

$$
a_{n}=\sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-i}{i}=F_{n}, \quad n \geq 1 .
$$

(See [5, Theorem 12.4, pp. 155-156].)
[Note: The idea of an extraordinary subset is introduced in Exercise 50 [1, pp. 263-264] . Further results on these subsets are examined in [3, 4].]

2. k-Extraordinary Subsets

For positive integers n, k, where $1<k \leq n$, let $a_{n, k}$ count the number of subsets S of $[n]$, where $|S|$ is equal to the k th smallest element of S. We use $A_{n, k}$ to denote this collection of subsets of $\left[n\right.$], so $\left|A_{n, k}\right|=a_{n, k}$. [If we allow k to equal 1 , then $a_{n, 1}$ is simply $a_{n}\left(=F_{n}\right)$, as shown in Section 1.] When $n=6$ and $k=3$, for instance, we find that $a_{6,3}=7$, for the collection $A_{6,3}$ made up of

$$
\{1,2,3\},\{1,2,4,5\},\{1,2,4,6\},\{1,3,4,5\},\{1,3,4,6\},\{2,3,4,5\},\{2,3,4,6\} .
$$

For the general case, if $1<k \leq n$, then

$$
\begin{aligned}
a_{n, k}= & \binom{k-1}{k-1}\binom{n-k}{0}+\binom{k}{k-1}\binom{n-k-1}{1}+\binom{k+1}{k-1}\binom{n-k-2}{2}+\cdots \\
& +\binom{k-1+\left\lfloor\frac{n-k}{2}\right\rfloor}{ k-1}\binom{n-k-\left\lfloor\frac{n-k}{2}\right\rfloor}{\left\lfloor\frac{n-k}{2}\right\rfloor} \\
= & \sum_{i=0}^{\left\lfloor\frac{n-k}{2}\right\rfloor}\binom{k-1+i}{k-1}\binom{n-k-i}{i} .
\end{aligned}
$$

Here, for example,
(i) The summand $\binom{k-1}{k-1}\binom{n-k}{0}$ in $a_{n, k}$ accounts for the unique subset $\{1,2,3, \ldots, k\}$ of $[n]$.
(ii) The summand $\binom{k}{k-1}\binom{n-k-1}{1}$ accounts for the subsets S of $[n]$ which include $k-1$ of the elements of $[k]$, the element $k+1$, and one element selected from the $n-k-1$ elements in $\{k+2, k+3, \ldots, n\}$. These are the subsets S of $[n]$ of size $k+1$, where $k+1$ is the k th smallest element of S.
In general, for $0 \leq i \leq\left\lfloor\frac{n-k}{2}\right\rfloor$, the summand $\binom{k-1+i}{k-1}\binom{n-k-i}{i}$ accounts for the subsets S of [n] which include $k-1$ of the elements of $[k-1+i]$, the element $k+i$, and i elements selected from the $n-k-i$ elements in $\{k+i+1, k+i+2, \ldots, n\}$. These are the subsets S of $[n]$ of size k where $k+i$ is the k th smallest element of S.

To further investigate the values of $a_{n, k}$, for $1 \leq k \leq n$, we consider the results in Table 1, where we find $a_{n, k}$, for $1 \leq n \leq 12$ and $1 \leq k \leq n$.

Table 1

$n \backslash k$	1	2	3	4	5	6	7	8	9	10	11	12
1	1											
2	1	1										
3	2	1	1									
4	3	3	1	1								
5	5	5	4	1	1							
6	8	10	7	5	1	1						
7	13	18	16	9	6	1	1					
8	21	33	31	23	11	7	1	1				
9	34	59	62	47	31	13	8	1	1			
10	55	105	119	101	66	40	15	9	1	1		
11	89	185	227	205	151	88	50	17	10	1	1	
12	144	324	426	414	321	213	113	61	19	11	1	1

Once again we see here that $a_{n, 1}=a_{n-1,1}+a_{n-2,1}$, for $n \geq 3$. For the results in the first column of Table 1, where $k=1$, are the Fibonacci numbers. However, for $k>1$, we do not find that $a_{n, k}=a_{n-1, k}+a_{n-2, k}$.

When $k=2$, for instance, we find that $a_{7,2}=18 \neq 10+5=a_{6,2}+a_{5,2}$. But we do notice that $a_{7,2}=18=10+5+3=a_{6,2}+a_{5,2}+a_{4,1}$. Likewise, although $a_{8,3}=31 \neq 16+7=a_{7,3}+3_{6,3}$, we do find that $a_{8,3}=31=16+7+5+3=a_{7,3}+a_{6,3}+a_{5,2}+a_{4,1}$. Lastly, we observe that $a_{10,4}=a_{9,4}+a_{8,4}+a_{7,3}+a_{6,2}+a_{5,1}=a_{9,4}+\sum_{i=1}^{4} a_{4+i, i}$. Is there a pattern here? Could it

THE FIBONACCI QUARTERLY

be that for $n \geq k>1$

$$
a_{n, k}=a_{n-1, k}+\sum_{i=1}^{k} a_{n-k-2+i, i} ?
$$

To help establish this pattern, recall that $a_{n, k}$ counts those subsets S of $[n]$ where the k th smallest element of S equals $|S|$. Consider the case where $n=9$ and $k=5$. Among the $a_{9,5}=31$ subsets S where the fifth smallest element of S equals $|S|$, there are $\binom{4}{4}\binom{3}{0}+\binom{5}{4}\binom{2}{1}=$ 11 such subsets which do not include 9 . These are precisely the subsets T of $[8]$ where the fifth smallest element of T equals $|T|$. This is $a_{8,5}=11$. We then partition the remaining $a_{9,5}-a_{8,5}$ subsets counted in the collection $A_{9,5}$ according to the smallest element of [9] that is missing from each of these subsets. For example, consider those subsets U of [9] which contain 9 but do not contain 1. How many such subsets are there? Here the fifth smallest element is either 6 or 7 and the number of such subsets U is $\binom{4}{4}\binom{2}{0}+\binom{5}{4}\binom{1}{1}$, where $\binom{4}{4}\binom{2}{0}$ accounts for the subset $\{2,3,4,5,6,9\}$ and $\binom{5}{4}\binom{1}{1}$ for the five subsets that contain four of the elements from $\{2,3,4,5,6\}$, the element 7 , and the element 8 (along with 9). But then $\binom{4}{4}\binom{2}{0}+\binom{5}{4}\binom{1}{1}=6=a_{7,5}$.
[Note that we can also set up a one-to-one correspondence between the subsets counted in $A_{7,5}$ with these subsets U in $A_{9,5}$ as follows. Map U in $A_{9,5}$ to the subset U^{\prime} in $A_{7,5}$ by deleting 9 from U and decreasing each of the remaining elements in U by 1 - or, by taking a subset V^{\prime} in $A_{7,5}$ and corresponding it with the subset V in $A_{9,5}$, after increasing each element of V^{\prime} by 1 and then adding in the element 9.]

For the general case, consider $n \geq k>1$ and the collection $A_{n, k}$, where $\left|A_{n, k}\right|=a_{n, k}$.
(1) The collection of subsets $S \subseteq[n]$, where $S \in A_{n, k}$ and $n \notin S$ is the same collection of subsets $T \subseteq[n-1]$, where $T \in A_{n-1, k}$, and the number of these subsets T is counted by $a_{n-1, k}$.
(2) The remaining $a_{n, k}-a_{n-1, k}$ subsets in $A_{n, k}$ are then partitioned as follows.

For $1 \leq j \leq k$, let $A_{n, k, j}$ be the collection of subsets S in $A_{n, k}$ which contain n and where the smallest positive integer that is missing from S is j. So each such subset S contains n and $1,2,3, \ldots, j-1$ but not j. This then provides the partition

$$
A_{n, k}=A_{n-1, k} \cup\left(\cup_{j=1}^{k} A_{n, k, j}\right) .
$$

For if $S \in A_{n, k, j}$ and $S \in A_{n, k, j^{\prime}}$, where $j<j^{\prime}$, then $S \in A_{n, k, j} \Rightarrow j \notin S$, while $S \in A_{n, k, j^{\prime}} \Rightarrow$ $j \in S$, so $A_{n, k, j} \cap A_{n, k, j^{\prime}}=\emptyset$.

Further, for each $S \in A_{n, k, j}$, if we remove $1,2,3, \ldots, j-1$ and n, then subtract j from the remaining elements, we have the corresponding subset in $A_{n-j-1, k-j+1}$. Consequently,

$$
\begin{aligned}
\left|A_{n, k, j}\right| & =\left|A_{n-j-1, k-j+1}\right|=a_{n-j-1, k-j+1}, \text { so } \\
a_{n, k} & =\left|A_{n, k}\right|=\left|A_{n-1, k}\right|+\left|\cup_{j=1}^{k} A_{n, k, j}\right| \\
& =\left|A_{n-1, k}\right|+\sum_{j=1}^{k}\left|A_{n-j-1, k-j+1}\right| \\
& =a_{n-1, k}+\sum_{j=1}^{k} a_{n-j-1, k-j+1} .
\end{aligned}
$$

If we let $i=k-j+1$, then as j varies from 1 to k, i varies from k to 1 , and

$$
a_{n, k}=a_{n-1, k}+\sum_{i=1}^{k} a_{n-k-2+i, i} .
$$

3. Determining $a_{n, k}$ for Some Specific Values of k

(i) For $k=1$ we know that $a_{n, k}=a_{n, 1}=a_{n}=F_{n}$.
(ii) For $k=2$, we have the recurrence relation

$$
\begin{aligned}
a_{n, 2} & =a_{n-1,2}+a_{n-2,2}+a_{n-3,1} \\
& =a_{n-1,2}+a_{n-2,2}+F_{n-3} \\
& =a_{n-1,2}+a_{n-2,2}+\frac{1}{\sqrt{5}}\left(\alpha^{n-3}-\beta^{n-3}\right)
\end{aligned}
$$

where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$. To solve this recurrence relation we use the techniques given in Chapter 7 of [1] or Chapter 10 of [2]. We find that $a_{n, 2}=a_{n, 2}^{(h)}+a_{n, 2}^{(p)}$, where $a_{n, 2}^{(h)}$ denotes the homogeneous part of the solution and $a_{n, 2}^{(p)}$ the particular part. Since $a_{n, 2}^{(h)}=c_{1} \alpha^{n}+c_{2} \beta^{n}$, it follows that $a_{n, 2}^{(p)}=A n \alpha^{n}+B n \beta^{n}$. To determine A we substitute $a_{n, 2}=A n \alpha^{n}$ into the recurrence relation $a_{n, 2}=a_{n-1,2}+a_{n-2,2}+\frac{1}{\sqrt{5}} \alpha^{n-3}$. This gives us $A n \alpha^{n}=A(n-1) \alpha^{n-1}+$ $A(n-2) \alpha^{n-2}+\frac{1}{\sqrt{5}} \alpha^{n-3}$, which leads to $A n \alpha^{3}=A(n-1) \alpha^{2}+A(n-2) \alpha+\frac{1}{\sqrt{5}}$. Since $\alpha^{2}=\alpha+1$, we find that $A=\frac{3}{10}-\frac{1}{10} \sqrt{5}$, and then a similar calculation yields $B=\frac{3}{10}+\frac{1}{10} \sqrt{5}$. So

$$
a_{n, 2}=c_{1} \alpha^{n}+c_{2} \beta^{n}+\left(\frac{3}{10}-\frac{1}{10} \sqrt{5}\right) n \alpha^{n}+\left(\frac{3}{10}+\frac{1}{10} \sqrt{5}\right) n \beta^{n} .
$$

From $a_{2,2}=1$ and $a_{3,2}=1$ we learn that $c_{1}=\frac{\sqrt{5}}{25}$ and $c_{2}=-\frac{\sqrt{5}}{25}$. So, for $n \geq 2$,

$$
\begin{aligned}
a_{n, 2} & =\frac{\sqrt{5}}{25} \alpha^{n}-\frac{\sqrt{5}}{25} \beta^{n}+\left(\frac{3}{10}-\frac{1}{10} \sqrt{5}\right) n \alpha^{n}+\left(\frac{3}{10}+\frac{1}{10} \sqrt{5}\right) n \beta^{n} \\
& =\frac{1}{5} F_{n}+\frac{3}{10} n L_{n}-\frac{1}{2} n F_{n},
\end{aligned}
$$

where L_{n} denotes the nth Lucas number.
(iii) Continuing for $k=3$, we now consider the recurrence relation

$$
\begin{aligned}
a_{n, 3} & =a_{n-1,3}+a_{n-2,3}+a_{n-3,2}+a_{n-4,1} \\
& =a_{n-1,3}+a_{n-2,3}+\left[\frac{1}{5} F_{n-3}+\frac{3}{10}(n-3) L_{n-3}-\frac{1}{2}(n-3) F_{n-3}\right]+F_{n-4}
\end{aligned}
$$

Once again the homogeneous part of the solution has the form $c_{1} \alpha^{n}+c_{2} \beta^{n}$, but now the form of the particular part of the solution is given by $a_{n, 3}^{(p)}=A_{1} n \alpha^{n}+A_{2} n^{2} \alpha^{n}+B_{1} n \beta^{n}+B_{1} n^{2} \beta^{n}$.

To determine A_{1}, A_{2} we substitute $a_{n, 3}=A_{1} n \alpha^{n}+A_{2} n^{2} \alpha^{n}$ into the recurrence relation $a_{n, 3}=a_{n-1,3}+a_{n-2,3}+\frac{1}{5 \sqrt{5}} \alpha^{n-3}+\frac{3}{10} n \alpha^{n-3}-\frac{9}{10} \alpha^{n-3}-\frac{1}{2 \sqrt{5}} n \alpha^{n-3}+\frac{3}{2 \sqrt{5}} \alpha^{n-3}+\frac{1}{\sqrt{5}} \alpha^{n-4}$. Upon

THE FIBONACCI QUARTERLY

dividing through by α^{n-4} and simplifying, this leads to

$$
\begin{aligned}
& A_{1} n \alpha^{4}+A_{2} n^{2} \alpha^{4}=A_{1}(n-1) \alpha^{3}+A_{2}(n-1)^{2} \alpha^{3}+A_{1}(n-2) \alpha^{2} \\
& \quad+A_{2}(n-2)^{2} \alpha^{2}+\frac{1}{5 \sqrt{5}} \alpha+\frac{3}{10} n \alpha-\frac{9}{10} \alpha-\frac{1}{2 \sqrt{5}} n \alpha+\frac{3}{2 \sqrt{5}} \alpha+\frac{1}{\sqrt{5}} .
\end{aligned}
$$

When this expression is expanded, we compare the coefficients for n and n^{0} (the constant terms) to learn that

$$
\begin{aligned}
10 A_{2}+4 \sqrt{5} A_{2} & =\frac{1}{10} \sqrt{5}-\frac{1}{10} \text { and } \\
5 A_{1}+2 \sqrt{5} A_{1}-8 A_{2}-3 \sqrt{5} A_{2} & =\frac{2}{5}-\frac{2 \sqrt{5}}{25}
\end{aligned}
$$

Solving these equations simultaneously, we arrive at $A_{1}=\frac{19}{100}-\frac{7 \sqrt{5}}{100}$ and $A_{2}=-\frac{3}{20}+\frac{\sqrt{5}}{100}$. Then a similar calculation yields $B_{1}=\frac{19}{100}+\frac{7 \sqrt{5}}{100}$ and $B_{2}=-\frac{3}{20}-\frac{\sqrt{5}}{100}$. So $a_{n, 3}=c_{1} \alpha^{n}+$ $c_{2} \beta^{n}+\left(\frac{19}{100}-\frac{7 \sqrt{5}}{100}\right) n \alpha^{n}+\left(-\frac{3}{20}+\frac{7 \sqrt{5}}{100}\right) n^{2} \alpha^{n}+\left(\frac{19}{100}+\frac{7 \sqrt{5}}{100}\right) n \beta^{n}+\left(-\frac{3}{20}-\frac{7 \sqrt{5}}{100}\right) n^{2} \beta^{n}$. From $a_{3,3}=1$ and $a_{4,3}=1$ it follows that $c_{1}=-\frac{1}{125} \sqrt{5}$ and $c_{2}=\frac{1}{125} \sqrt{5}$. Consequently,

$$
\begin{aligned}
a_{n, 3}= & -\frac{1}{125} \sqrt{5} \alpha^{n}+\frac{1}{125} \sqrt{5} \beta^{n}+\left(\frac{19}{100}-\frac{7 \sqrt{5}}{100}\right) n \alpha^{n} \\
& +\left(-\frac{3}{20}+\frac{7 \sqrt{5}}{100}\right) n^{2} \alpha^{n}+\left(\frac{19}{100}+\frac{7 \sqrt{5}}{100}\right) n \beta^{n}+\left(-\frac{3}{20}-\frac{7 \sqrt{5}}{100}\right) n^{2} \beta^{n} \\
= & -\frac{1}{25} F_{n}+\frac{19}{100} n L_{n}-\frac{7}{20} n F_{n}-\frac{3}{20} n^{2} L_{n}+\frac{7}{20} n^{2} F_{n} .
\end{aligned}
$$

(iv) To determine $a_{n, 4}$, we consider the recurrence relation

$$
\begin{aligned}
a_{n, 4}= & a_{n-1,4}+a_{n-2,4}+a_{n-3,3}+a_{n-4,2}+a_{n-5,1} \\
= & a_{n-1,4}+a_{n-2,4}+\left[-\frac{1}{25} F_{n-3}+\frac{19}{100}(n-3) L_{n-3}\right. \\
& \left.-\frac{7}{20}(n-3) F_{n-3}-\frac{3}{20}(n-3)^{2} L_{n-3}+\frac{7}{20}(n-3)^{2} F_{n-3}\right] \\
& +\left[\frac{1}{5} F_{n-4}+\frac{3}{10}(n-4) L_{n-4}-\frac{1}{2}(n-4) F_{n-4}\right]+F_{n-5} .
\end{aligned}
$$

Here the solution has the form $a_{n, 4}=c_{1} \alpha^{n}+c_{2} \beta^{n}+\left(A_{1} n+A_{2} n^{2}+A_{3} n^{3}\right) \alpha^{n}+\left(B_{1} n+\right.$ $\left.B_{2} n^{2}+B_{3} n^{3}\right) \beta^{n}$. Calculations, somewhat more complicated but comparable to those that were performed in (ii) and (iii), yield

$$
\begin{array}{lll}
A_{1}=\frac{9}{100}-\frac{59}{1500} \sqrt{5}, & A_{2}=-\frac{17}{100}+\frac{39}{500} \sqrt{5}, & A_{3}=\frac{3}{50}-\frac{2}{75} \sqrt{5} \\
B_{1}=\frac{9}{100}+\frac{59}{1500} \sqrt{5}, & B_{2}=-\frac{17}{100}-\frac{39}{500} \sqrt{5}, & B_{3}=\frac{3}{50}+\frac{2}{75} \sqrt{5} .
\end{array}
$$

The initial conditions $a_{4,4}=1$ and $a_{5,4}=1$ then lead to $c_{1}=-\frac{1}{125} \sqrt{5}$ and $c_{2}=\frac{1}{125} \sqrt{5}$. So, for $n \geq 4$,

$$
\begin{aligned}
a_{n, 4}= & -\frac{1}{125} \sqrt{5} \alpha^{n}+\frac{1}{125} \sqrt{5} \beta^{n} \\
& +\left[\left(\frac{9}{100}-\frac{59}{1500} \sqrt{5}\right) n+\left(-\frac{17}{100}+\frac{39}{500} \sqrt{5}\right) n^{2}+\left(\frac{3}{50}-\frac{2}{75} \sqrt{5}\right) n^{3}\right] \alpha^{n} \\
& +\left[\left(\frac{9}{100}+\frac{59}{1500} \sqrt{5}\right) n+\left(-\frac{17}{100}-\frac{39}{500} \sqrt{5}\right) n^{2}+\left(\frac{3}{50}+\frac{2}{75} \sqrt{5}\right) n^{3}\right] \beta^{n} \\
= & \left(-\frac{2}{15} n^{3}+\frac{39}{100} n^{2}-\frac{59}{300} n-\frac{1}{25}\right) F_{n}+\left(\frac{3}{50} n^{3}-\frac{17}{100} n^{2}+\frac{9}{100} n\right) L_{n} .
\end{aligned}
$$

4. Sums of Consecutive Column Entries

(i) For $k=1$, it follows that for $n \geq 1, \sum_{i=1}^{n} a_{i, 1}=\sum_{i=1}^{n} F_{i}=F_{n+2}-1$. (See [5, Theorem 5.1, pp. 69-70].)
(ii) For $k=2$, consider the n equations

$$
a_{i, 2}=a_{i-1,2}+a_{1-2,2}+F_{i-3}, \quad 3 \leq i \leq n+2 .
$$

Summing these n equations we find that

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i, 2} & =\sum_{i=2}^{n} a_{i, 2}=a_{n+2,2}-a_{2,2}-\sum_{i=0}^{n-1} F_{i} \\
& =a_{n+2,2}-1-\left[F_{n+1}-1\right]=a_{n+2,2}-F_{n+1} \\
& =a_{n+2,2}-a_{n+1,1}
\end{aligned}
$$

(iii) When $k=3$, the $n-1$ equations

$$
a_{i, 3}=a_{i-1,3}+a_{i-2,3}+a_{i-3,2}+F_{i-4}, \quad 4 \leq i \leq n+2,
$$

can be rewritten as

$$
a_{i-2,3}=a_{i, 3}-a_{i-1,3}-a_{i-3,2}-F_{i-4}, \quad 4 \leq i \leq n+2 .
$$

Upon summing and simplifying we find that

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i, 3} & =\sum_{i=2}^{n} a_{i, 3}=\sum_{i=3}^{n} a_{i, 3}=a_{n+2,3}-a_{3,3}-\sum_{i=1}^{n-1} a_{i, 2}-\sum_{i=0}^{n-2} F_{i} \\
& =a_{n+2,3}-1-\left[a_{n+1,2}-F_{n}\right]-\left[F_{n}-1\right]=a_{n+2,3}-a_{n+1,2}
\end{aligned}
$$

(iv) Continuing for $k=4$, the system of $n-2$ equations

$$
a_{i, 4}=a_{i-1,4}+a_{i-2,4}+a_{i-3,3}+a_{i-4,2}+F_{i-5}, \quad 5 \leq i \leq n+2
$$

provides the corresponding system

$$
a_{i-2,4}=a_{i, 4}-a_{i-1,4}-a_{i-3,3}-a_{i-4,2}-F_{i-5}, \quad 5 \leq i \leq n+2 .
$$

THE FIBONACCI QUARTERLY

Upon summing these $n-2$ equations we arrive at the following.

$$
\begin{aligned}
\sum_{i=3}^{n} a_{i, 4} & =\sum_{i=4}^{n} a_{i, 4}=a_{n+2,4}-a_{4,4}-\sum_{i=2}^{n-1} a_{i, 3}-\sum_{i=1}^{n-2} a_{i, 2}-\sum_{i=0}^{n-3} F_{i} \\
& =a_{n+2,4}-1-\left[a_{n+1,3}-a_{n, 2}\right]-\left[a_{n, 2}-F_{n-1}\right]-\left[F_{n-1}-1\right] \\
& =a_{n+2,4}-a_{n+1,3}
\end{aligned}
$$

(v) When $k=5$ we have the following system of $n-3$ equations - namely,

$$
a_{i, 5}=a_{i-1,5}+a_{i-2,5}+a_{i-3,4}+a_{i-4,3}+a_{i-5,2}+F_{i-6}, \quad 6 \leq i \leq n+2 .
$$

This system can then be rewritten as

$$
a_{i-2,5}=a_{i, 5}-a_{i-1,5}-a_{i-3,4}-a_{i-4,3}-a_{i-5,2}-F_{i-6}, \quad 6 \leq i \leq n+2 .
$$

When we sum these $n-3$ equations we find that

$$
\begin{aligned}
& \sum_{i=4}^{n} a_{i, 5}=\sum_{i=5}^{n} a_{i, 5}=a_{n+2,5}-a_{5,5}-\sum_{i=3}^{n-1} a_{i, 4}-\sum_{i=2}^{n-2} a_{i, 3}-\sum_{i=1}^{n-3} a_{i, 2}-\sum_{i=0}^{n-4} F_{i} \\
& =a_{n+2,5}-1-\left[a_{n+1,4}-a_{n, 3}\right]-\left[a_{n, 3}-a_{n-1,2}\right]-\left[a_{n-1,2}-a_{n-2,1}\right]-\left[F_{n-2}-1\right] \\
& =a_{n+2,5}-a_{n+1,4}
\end{aligned}
$$

(vi) So now we assume that for $2 \leq k \leq r, \sum_{i=k}^{n} a_{i, k}=a_{n+2, k}-a_{n+1, k-1}$, and consider the following system of $n-(k-2)=n-(r+1-2)=n-r+1$ equations.

$$
\begin{aligned}
a_{i, r+1}= & a_{i-1, r+1}+a_{i-2, r+1}+a_{i-3, r}+a_{i-4, r-1} \\
& -\cdots-a_{i-r, 3}-a_{i-(r+1), 2}-F_{i-(r+2)}, \quad r+2 \leq i \leq n+2
\end{aligned}
$$

Summing these $n-r+1$ equations and simplifying then leads us to

$$
\begin{aligned}
\sum_{i=r}^{n} a_{i, r+1}= & \sum_{i=r+1}^{n} a_{i, r+1}=a_{n+2, r+1}-a_{r+1, r+1}-\sum_{i=r-1}^{n-1} a_{i, r} \\
& -\sum_{i=r-2}^{n-2} a_{i, r-1}-\ldots-\sum_{i=2}^{n-(r-2)} a_{i, 3}-\sum_{i=1}^{n-(r-1)} a_{i, 2}-\sum_{i=0}^{n-r} F_{i} \\
= & a_{n+2, r+1}-1-\left[a_{n+1, r}-a_{n, r-1}\right]-\left[a_{n, r-1}-a_{n-1, r-2}\right] \\
& -\ldots-\left[a_{n-r+4,3}-a_{n-r+3,2}\right]-\left[a_{n-r+3,2}-a_{n-r+2,1}\right] \\
& -\left[F_{n-r+2}-1\right]=a_{n+2, r+1}-a_{n+1, r} .
\end{aligned}
$$

5. The Sum of All the Row Entries

We see from Table 1 that for $1 \leq n \leq 12, \sum_{k=1}^{n} a_{n, k}=2^{n-1}$. Assuming that this pattern continues for all $1 \leq n \leq r-1$, we consider the following for the row where $n=r$.

$$
\begin{aligned}
a_{r, 1} & =a_{r-1,1}+a_{r-2,1} \\
a_{r, 2} & =a_{r-1,2}+a_{r-2,2}+a_{r-3,1} \\
a_{r, 3} & =a_{r-1,3}+a_{r-2,3}+a_{r-3,2}+a_{r-4,1} \\
\quad & \\
a_{r, i} & =a_{r-1, i}+a_{r-2, i}+a_{r-3, i-1}+\cdots+a_{r-i-1,1} \\
\quad & \\
a_{r, r-2} & =a_{r-1, r-2}+a_{r-2, r-2}+a_{r-3, r-3}+\cdots+a_{1,1} \\
a_{r, r-1} & =a_{r-1, r-1} .
\end{aligned}
$$

Upon adding the entries in the given columns we now find that

$$
\begin{aligned}
\sum_{k=1}^{r} a_{r, k} & =\sum_{k=1}^{r-1} a_{r, k}+1 \\
& =\sum_{k=1}^{r-1} a_{r-1, k}+\sum_{k=1}^{r-2} a_{r-2, k}+\sum_{k=1}^{r-3} a_{r-3, k}+\cdots+\sum_{k=1}^{1} a_{1, k}+1 \\
& =\left(2^{r-2}+2^{r-3}+2^{r-4}+\cdots+2^{0}\right)+1=2^{r-1}
\end{aligned}
$$

Consequently we find that for a given value of $n \geq 1$, exactly half of the subsets of [n] are k-extraordinary for some (unique) k, where $1 \leq k \leq n$. This suggests that we could have arrived at this result by counting those subsets of $[n]$ which are not k-extraordinary for each $1 \leq k \leq n$. The first such subset would be \emptyset, the null set. For $k=1$, only $\{1\}$ is 1 -extraordinary and the $n-1$ subsets $\{m\}$, for $2 \leq m \leq n$, are not 1 -extraordinary - nor are they k-extraordinary for $k>1$ since a k-extraordinary subsets needs to contain at least k elements. In general, for $1 \leq i \leq n-1$, the $\binom{n-1}{i}$ subsets of size i which do not contain i cannot be i-extraordinary because here the i th smallest element is greater than i. Nor can such a subset be k-extraordinary for $k \neq i$. If $k<i$ the subset has too many elements, while if $k>i$, then it has too few. Therefore, it follows from the binomial theorem that the number of subsets of $[n]$ which are not k-extraordinary for some $1 \leq k \leq n$ is $\sum_{i=0}^{n-1}\binom{n-1}{i}=2^{n-1}$.

Acknowledgment

The author wishes to express his gratitude to the referee for her/his comments and suggestions, since they definitely helped to improve the exposition in this article.

References

[1] R. A. Brualdi, Introductory Combinatorics, fifth edition, Upper Saddle River, NJ, Pearson Prentice Hall, 2010.
[2] R. P. Grimaldi, Discrete and Combinatorial Mathematics, fifth edition. Boston, Massachusetts, Pearson Addison Wesley, 2004.
[3] R. P. Grimaldi, Extraordinary subsets, The Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.
[4] R. P. Grimaldi and J. H. Rickert, A partial order for extraordinary subsets, Congressus Numerantium, 215 (2013), 17-32.

THE FIBONACCI QUARTERLY

[5] T. Koshy, Fibonacci and Lucas Numbers with Applications. New York, NY, John Wiley \& Sons, 2001.
MSC2010: 11B37, 11B50, 11B65
Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803
E-mail address: ralph.grimaldi@rose-hulman.edu

