TERNARY WORDS AND JACOBSTHAL NUMBERS

THOMAS KOSHY AND RALPH P. GRIMALDI

Abstract

We investigate a special class of ternary words, and explore some close and interesting relationships between them and the well-known Jacobsthal numbers.

1. Introduction

1.1. Jacobsthal Numbers. The Jacobsthal numbers, named after the German mathematician Ernst Erich Jacobsthal (1882-1965), and the Jacobsthal-Lucas numbers satisfy the recurrence $x_{n}=x_{n-1}+2 x_{n-2}$, where $n \geq 3$. When $x_{1}=1=x_{2}, x_{n}=J_{n}$, the nth Jacobsthal number; when $x_{1}=1$ and $x_{2}=5, x_{n}=j_{n}$, the nth Jacobsthal-Lucas number. It follows by the Jacobsthal recurrence that $J_{0}=0, J_{-1}=1 / 2, j_{0}=2$, and $j_{-1}=-1 / 2$.

Both J_{n} and j_{n} can also be defined explicitly by the Binet-like formulas $J_{n}=\frac{2^{n}-(-1)^{n}}{3}$, and $j_{n}=2^{n}+(-1)^{n}$, where n is any integer. Table 1 shows twelve Jacobsthal and JacobsthalLucas numbers, where $-1 \leq n \leq 10$.

Table 1: Jacobsthal and Jacobsthal-Lucas Numbers

n	-1	0	1	2	3	4	5	6	7	8	9	10
J_{n}	$1 / 2$	0	1	1	3	5	11	21	43	85	171	341
j_{n}	$-1 / 2$	2	1	5	7	17	31	65	127	257	511	1025

Using the Binet-like formulas and Jacobsthal recurrence, we can extract an array of interesting properties [5]. For example, $J_{n}+J_{n+1}=2^{n}, J_{n+1}-2 J_{n}=(-1)^{n}$, and $J_{n+1}+2 J_{n-1}=j_{n}$.
1.2. Formal Languages. An alphabet Σ is a finite set of symbols. A word (or string) over Σ is a finite sequence of symbols from Σ. The number of symbols in a word is its length. The word of length 0 is the empty word or null word; it is denoted by λ.

The set of all possible words over Σ, denoted by Σ^{*}, is the Kleene closure of Σ; it is named after the American logician Stephen Kleene (1909-1994). A language L over Σ is a subset of Σ^{*}.

The concatenation of two words x and y in L, denoted by $x y$, is obtained by appending y at the end of x. For example, the concatenation of $x=x_{1} x_{2} \ldots x_{m}$ and $y=y_{1} y_{2} \ldots y_{n}$ is $x y=x_{1} x_{2} \ldots x_{m} y_{1} y_{2} \ldots y_{n}$. The concatenation of two languages A and B over Σ, denoted by $A B$, is defined by $A B=\{a b \mid a \in A$ and $b \in B\}$. In particular, $A^{2}=\{a b \mid a, b \in A\}$. More generally, $A^{n}=\left\{a_{1} a_{2} \ldots a_{n} \mid a_{i} \in A, 1 \leq i \leq n\right\}$ and $A^{0}=\{\lambda\}$. Then $A^{*}=\bigcup_{n=0}^{\infty} A^{n}$.

In particular, let $\Sigma=\{0,1\}$, the binary alphabet; its symbols are the bits 0 and 1. Let $L=\{0,01,11\}$. There are exactly J_{n+1} words of length n in L^{*}, where $n \geq 1[3]$.

THE FIBONACCI QUARTERLY

2. A Ternary Version

We now pursue a ternary version of the binary case, but with some added restrictions. It appeared in the final round of the 1987 Austrian Olympiad [1, 4]. It is interesting in its own right and has fascinating implications.

Let $\Sigma=\{0,1,2\}$. The digits 0,1 , and 2 are ternary digits. (In the Austrian Olympiad problem, $\Sigma=\{a, b, c\}$.) Let b_{n} denote the number of ternary words $w_{n}=x_{1} x_{2} \ldots x_{n}$ of length n such that $x_{1}=0=x_{n}$ and $x_{i} \neq x_{i+1}$, where $x_{i} \in \Sigma$ and $1 \leq i \leq n-1$. Clearly, the reverse w_{n}^{R} of an acceptable word $w_{n}=0 x_{2} \ldots x_{n-1} 0$ is also acceptable. (Note: In the interest of brevity and convenience, in the rest of the article, "ternary words" will mean "ternary words with the added restrictions," when there is no ambiguity.)

Table 2 lists the ternary words w_{n} and the corresponding numbers b_{n}, where $1 \leq n \leq 6$. Notice that there are no ternary words of length 2 that satisfy the given conditions. Although the counts b_{n} do not seem to follow a pattern, the following theorem establishes a simple formula for b_{n} using a constructive algorithm.

Table 2: Ternary Words and Their Counts

n	Ternary Words w_{n}	b_{n}
1	0	1
2	.	0
3	010,020	2
4	0120,0210	2
5	01210,02120	6
	01010,02010	
6	01020,02020	$010120,010210,020120,020210,012120,021210$
	012010,021010	10
	012020,021020	

Theorem 2.1. Let b_{n} denote the number of ternary words $w_{n}=x_{1} x_{2} \ldots x_{n}$ of length n such that $x_{1}=0=x_{n}$ and $x_{i} \neq x_{i+1}$, where $1 \leq i \leq n-1$. Then $b_{n}=2 J_{n-2}$, where $n \geq 1$.
Proof. It is easy to confirm the claim for $1 \leq n \leq 4$. Let w_{n} be an arbitrary ternary word of length $n \geq 5$. We will now employ an algorithm to construct words of length n from those of lengths $n-1$ and $n-2$.
Step 1. Replace the last digit $x_{n-1}=0$ in w_{n-1} with 10 if $x_{n-2}=2$; otherwise, replace it with 20.
Step 2A. Append 10 at the end of each w_{n-2}.
Step 2B. Append 20 at the end of each w_{n-2}.
Since the algorithm is reversible, it produces all desired ternary words w_{n}.
Step 1 yields b_{n-1} words w_{n}. Steps 2A and 2B produce b_{n-2} words each. Thus, $b_{n}=$ $b_{n-1}+2 b_{n-2}$. This recurrence, paired with the initial conditions, gives the desired result.

We will now illustrate the steps in the proof for the case $n=6$.
Step 1. There are three words $w_{5}=0 x_{2} x_{3} x_{4} 0$ with $x_{4}=2$; replace each $x_{5}=0$ with 10 . The three remaining words have $x_{4}=1$; replace each $x_{5}=0$ with 20:

TERNARY WORDS AND JACOBSTHAL NUMBERS

Step 2A. Append 10 at the end of each w_{4} :

Step 2B. Append 20 at the end of each w_{4} :

Clearly, these steps produce the $b_{6}=10$ ternary words.
The following result is an immediate consequence of the constructive algorithm.
Corollary 1. There are exactly $\frac{1}{2} b_{n}=J_{n-2}$ ternary words w_{n} that begin with 01 (or end in 10), where $n \geq 2$.

The next result follows from this corollary and we will use it several times in our discourse.
Corollary 2. There are J_{n-2} ternary words w_{n} that begin with 02 (or end in 20), where $n \geq 2$.

We now have the needed machinery to develop an explicit formula for the number of 0 's among the b_{n} ternary words of length n.
2.1. Zeros Among the b_{n} Ternary Numbers. Let z_{n} denote the number of 0 's among the b_{n} ternary words w_{n} of length n. For example, $z_{1}=1, z_{2}=0, z_{3}=4=z_{4}, z_{5}=16$, and $z_{6}=28$; see Table 2.

Using the above constructive algorithm, we can easily develop a recurrence for z_{n}. Replacing x_{n-1} in w_{n-1} in Step 1 with 10 or 20 does not contribute any new 0's. So Step 1 contributes $z_{n-1} 0$ s to z_{n}. Each of Steps 2A and 2B contributes $z_{n-2}+b_{n-2}$ zeros to z_{n}. Thus,

$$
\begin{align*}
z_{n} & =z_{n-1}+2\left(z_{n-2}+b_{n-2}\right) \\
& =z_{n-1}+2 z_{n-2}+4 J_{n-4} \\
& =z_{n-1}+2 z_{n-2}+\frac{4}{3}\left[2^{n-4}-(-1)^{n-4}\right], \tag{2.1}
\end{align*}
$$

where $z_{1}=1, z_{2}=0$, and $n \geq 3$.
The general solution of recurrence (2.1) is of the form $z_{n}=c_{1} \cdot 2^{n}+c_{2}(-1)^{n}+A n 2^{n}+B n(-1)^{n}$ $[2,6]$. Substituting $A n 2^{n}$ in the recurrence $z_{n}=z_{n-1}+2 z_{n-2}+\left(\frac{4}{3}\right) 2^{n-4}$ yields $A=1 / 18$. Likewise, substituting $B n(-1)^{n}$ in the recurrence $z_{n}=z_{n-1}+2 z_{n-2}-\frac{4}{3}(-1)^{n-4}$ yields $B=$ $-4 / 9$. Thus,

$$
z_{n}=c_{1} \cdot 2^{n}+c_{2}(-1)^{n}+\left(\frac{n}{18}\right) 2^{n}-\left(\frac{4 n}{9}\right)(-1)^{n}
$$

THE FIBONACCI QUARTERLY

Using the initial conditions $z_{1}=1$ and $z_{2}=0$, this yields $c_{1}=\frac{8}{54}=-c_{2}$. Thus,

$$
\begin{align*}
z_{n} & =\left(\frac{8}{54}\right) 2^{n}-\left(\frac{8}{54}\right)(-1)^{n}+\left(\frac{n}{18}\right) 2^{n}-\left(\frac{4 n}{9}\right)(-1)^{n} \\
& =\left(\frac{3 n+8}{54}\right) 2^{n}-\left(\frac{24 n+8}{54}\right)(-1)^{n} \\
& =\left(\frac{3 n+8}{54}\right)\left(J_{n}+J_{n+1}\right)-\left(\frac{24 n+8}{54}\right)\left(J_{n+1}-2 J_{n}\right) \\
& =\left(\frac{17 n+8}{18}\right) J_{n}-\left(\frac{7 n}{18}\right) J_{n+1}, \tag{2.2}
\end{align*}
$$

where $n \geq 1$.
For example, $z_{10}=\frac{178 \cdot 341}{18}-\frac{70 \cdot 683}{18}=716$.
2.2. Nonzero Digits Among the b_{n} Ternary Numbers. It follows from formula (2.2) that the number of nonzero digits $n o n z_{n}$ among the b_{n} ternary numbers w_{n} is given by

$$
\begin{align*}
n o n z_{n} & =n b_{n}-z_{n} \\
& =n\left(2 J_{n-2}\right)-\left[\left(\frac{17 n+8}{18}\right) J_{n}-\left(\frac{7 n}{18}\right) J_{n+1}\right] \\
& =\left(\frac{7 n}{18}\right) J_{n+1}-\left(\frac{17 n+8}{18}\right) J_{n}+2 n J_{n-2} . \tag{2.3}
\end{align*}
$$

Consequently,

$$
\text { the number of } \begin{aligned}
1 \text { 's } & =\text { the number of } 2 \text { 's } \\
& =\frac{1}{2}\left(n b_{n}-z_{n}\right) \\
& =\left(\frac{7 n}{36}\right) J_{n+1}-\left(\frac{17 n+8}{36}\right) J_{n}+n J_{n-2} .
\end{aligned}
$$

For example, $n o n z_{6}=\left(\frac{7 \cdot 6}{18}\right) J_{7}-\left(\frac{17 \cdot 6+8}{18}\right) J_{6}+12 J_{4}=\frac{42 \cdot 43}{18}-\frac{110 \cdot 21}{18}+12 \cdot 5=$ 32, as found in Table 2. Further, there are 16 1's and 16 2's.

Next, we compute the cumulative sum of the decimal values of the b_{n} ternary words when considered as ternary numbers. We will accomplish this using recursion and the constructive algorithm.
2.3. Cumulative Sum of the b_{n} Ternary Numbers. Let S_{n} denote the cumulative sum of the decimal values of the b_{n} ternary numbers. It follows from Table 2 that $S_{1}=0=S_{2}, S_{3}=$ $9, S_{4}=36$, and $S_{5}=297$. Let $w_{k}=0 x_{2} x_{3} \ldots x_{k-1} 0$ be an arbitrary ternary number with k digits.
Step 1. Replacing x_{n-1} with 10 or 20 shifts $0 x_{2} \ldots x_{n-2}$ two places to the left of 10 , or 20 , respectively. Since there are b_{n-1} ternary numbers with $n-1$ digits, this step contributes $3 S_{n-1}+2 \cdot 3\left(\frac{1}{2} b_{n-1}\right)+1 \cdot 3\left(\frac{1}{2} b_{n-1}\right)=3 S_{n-1}+\left(\frac{9}{2}\right) b_{n-1}=3 S_{n-1}+9 J_{n-3}$ to the sum S_{n}.
Step 2A. Appending 10 at the end of $0 x_{2} \ldots x_{n-3} 0$ shifts it two positions to the left. The contribution resulting from this operation is $3^{2} S_{n-2}+1 \cdot 3 b_{n-2}=9 S_{n-2}+6 J_{n-4}$.
Step 2B. Appending 20 at the end of $0 x_{2} \ldots x_{n-3} 0$ contributes $3^{2} S_{n-2}+2 \cdot 3 b_{n-2}=9 S_{n-2}+$

TERNARY WORDS AND JACOBSTHAL NUMBERS

$12 J_{n-4}$ to the grand total.
Combining these steps, we get

$$
\begin{align*}
S_{n} & =\left(3 S_{n-1}+9 J_{n-3}\right)+\left(9 S_{n-2}+6 J_{n-4}\right)+\left(9 S_{n-2}+12 J_{n-4}\right) \\
& =3 S_{n-1}+18 S_{n-2}+9 J_{n-3}+18 J_{n-4} \\
& =3 S_{n-1}+18 S_{n-2}+9 J_{n-2}, \tag{2.4}
\end{align*}
$$

where $n \geq 4$.
For example, $S_{5}=3 S_{4}+18 S_{3}+9 J_{3}=3 \cdot 36+18 \cdot 9+9 \cdot 3=297$.
2.4. An Explicit Formula for S_{n}. It follows from recurrence (2.4) that

$$
\begin{equation*}
S_{n}=3 S_{n-1}+18 S_{n-2}+3 \cdot 2^{n-2}-3(-1)^{n} . \tag{2.5}
\end{equation*}
$$

The roots of the characteristic equation of the homogeneous recurrence $S_{n}=3 S_{n-1}+18 S_{n-2}$ are -3 and 6 . The particular part of the solution of recurrence (2.5) corresponding to the nonhomogeneous part $3 \cdot 2^{n-2}$ has the form $A \cdot 2^{n}$. Substituting this in the recurrence $S_{n}=$ $3 S_{n-1}+18 S_{n-2}+3 \cdot 2^{n-2}$ yields $A=-3 / 20$. The particular part of the solution of this recurrence corresponding to the nonhomogeneous part $-3(-1)^{n}$ has the form $B(-1)^{n}$. Substituting this in the recurrence $S_{n}=3 S_{n-1}+18 S_{n-2}-3(-1)^{n}$ yields $B=3 / 14$.

The general solution of recurrence (2.5) is of the form

$$
S_{n}=c_{1}(-3)^{n}+c_{2} \cdot 6^{n}-\left(\frac{3}{20}\right) 2^{n}+\left(\frac{3}{14}\right)(-1)^{n}
$$

Using the initial conditions $S_{1}=0=S_{2}$, this recurrence yields $c_{1}=-\frac{14}{140}$ and $c_{2}=\frac{5}{140}$. Thus,

$$
\begin{equation*}
S_{n}=-\left(\frac{14}{140}\right)(-3)^{n}+\left(\frac{5}{140}\right) 6^{n}-\left(\frac{3}{20}\right) 2^{n}+\left(\frac{3}{14}\right)(-1)^{n} \tag{2.6}
\end{equation*}
$$

where $n \geq 1$.
For example, $S_{5}=\frac{14 \cdot 3^{5}+5 \cdot 6^{5}}{140}-\frac{48 \cdot 14+3 \cdot 10}{140}=297$, as expected.
Since $J_{n}+J_{n+1}=2^{n}$ and $J_{n+1}-2 J_{n}=(-1)^{n}$, formula (2.6) can be rewritten in terms of Jacobsthal numbers. For convenience, we now let $a=-14 / 140, b=5 / 140, c=-3 / 20$, and $d=3 / 14$. Then

$$
\begin{align*}
S_{n} & =\left(3^{n} b+c\right)\left(J_{n}+J_{n+1}\right)+\left(3^{n} a+d\right)\left(J_{n+1}-2 J_{n}\right) \\
& =\left[3^{n}(a+b)+c+d\right] J_{n+1}+\left[3^{n}(b-2 a)+c-2 d\right] J_{n} \\
& =\frac{1}{140}\left[(-3)^{n+2}+9\right] J_{n+1}-\frac{1}{140}\left[3^{n}(-33)+81\right] J_{n} \\
& =\frac{1}{140}\left(11 \cdot 3^{n+1}-81\right) J_{n}-\frac{1}{140}\left(3^{n+2}-9\right) J_{n+1} . \tag{2.7}
\end{align*}
$$

For example, $S_{4}=\frac{1}{140}\left(11 \cdot 3^{5}-81\right) \cdot 5-\frac{1}{140}\left(3^{6}-9\right) \cdot 11=\frac{12,960-7,920}{140}=36$, again as expected.

THE FIBONACCI QUARTERLY

3. Inversions

Next we investigate the number of inversions in words over Σ. To begin with, let $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a totally ordered alphabet with $a_{1}<a_{2}<\cdots<a_{n}$. Let $x_{1} x_{2} \cdots x_{k}$ be a word of length k over this alphabet. For $1 \leq i<j \leq k$, call the pair x_{i} and x_{j} an inversion if $x_{i}>x_{j}$.

For example, let $\Sigma=\{0,1,2\}$, where $0<1<2$. Then the word $x_{1} x_{2} x_{3} x_{4} x_{5}=01210$ contains four inversions: $x_{2}>x_{5}, x_{3}>x_{4}, x_{3}>x_{5}$, and $x_{4}>x_{5}$.

Let $i n v_{n}$ count the number of inversions among the b_{n} ternary words of length n, where $n \geq 3$. Then $i n v_{3}=2, i n v_{4}=5, i n v_{5}=21, i n v_{6}=56$, and $i n v_{7}=164$. We will now establish that $i n v_{n}$ satisfies the recurrence

$$
i n v_{n}=i n v_{n-1}+b_{n-1}+\frac{1}{2}\left(n o n z_{n-1}-n o n z_{n-2}\right)+2 i n v_{n-2}+2 b_{n-2}+2 n o n z_{n-2}+\frac{1}{2} n o n z_{n-2},
$$

where $n \geq 3$.

1) From Step 1 of the algorithm when the last digit x_{n-1} is replaced (by either 10 or 20), a new inversion arises. These are counted by b_{n-1}.
2) Also from Step 1 of the algorithm, for the case where the last digit x_{n-1} is replaced by 10 (for when $x_{n-2}=2$), there is a new inversion for each 2 that occurs among the first $n-2$ digits of the b_{n-1} words that end in 20 . These inversions are counted by $\frac{1}{2}\left(\right.$ nonz $_{n-1}-$ nonz $\left._{n-2}\right)$.
3) Steps 2 A and 2 B of the algorithm each provide b_{n-2} new inversions: 10 in positions $n-1$ and n for Step 2A; 20 in positions $n-1$ and n for Step 2B.
4) Each of Steps 2A and 2B of the algorithm provides nonz z_{n-2} new inversions with the new 0 now in position n.
5) Finally, from Step 2A, we get $\frac{1}{2} n o n z_{n-2}$ new inversions for each of the $\frac{1}{2} n o n z_{n-2} 2$ s that occur among the first $n-2$ positions of the b_{n} words that end in 10 . Each such 2 provides an inversion with the new 1 in position $n-1$.
Combining these five steps, we get

$$
\begin{aligned}
i n v_{n}= & \text { inv }_{n-1}+2 i n v_{n-2}+b_{n-1}+2 b_{n-2}+\frac{1}{2} \text { non }_{n-1}+2 \text { non }_{n-2} \\
= & \text { inv }_{n-1}+2 i n v_{n-2}+2 J_{n-3}+4 J_{n-4} \\
& +\frac{1}{2}\left\{(n-1)\left(2 J_{n-3}\right)-\left[\left(\frac{17(n-1)+8}{18}\right) J_{n-1}-\left(\frac{7(n-1)}{18}\right) J_{n}\right]\right\} \\
& +2\left\{(n-2)\left(2 J_{n-4}\right)-\left[\left(\frac{17(n-2)+8}{18}\right) J_{n-2}-\left(\frac{7(n-2)}{18}\right) J_{n-1}\right]\right\} .
\end{aligned}
$$

Substituting for J_{n}, yields

$$
i n v_{n}=i n v_{n-1}+2 i n v_{n-2}+\frac{1}{3} n(-1)^{n+1}+\frac{1}{12} n\left(2^{n}\right)+\frac{1}{3}(-1)^{n}-\frac{1}{12}\left(2^{n}\right) .
$$

Consequently, the general solution of the recurrence is of the form

$$
i n v_{n}=c_{1}\left(2^{n}\right)+c_{2}(-1)^{n}+A n 2^{n}+B n^{2} 2^{n}+C n(-1)^{n}+D n^{2}(-1)^{n} .
$$

Next we will determine the coefficients for the particular part of the solution.

1) To find A and B, substitute $i n v_{n}=A n 2^{n}+B n^{2} 2^{n}$ in the recurrence $i n v_{n}=i n v_{n-1}+$
$2 i n v_{n-2}+\frac{1}{12} n\left(2^{n}\right)-\frac{1}{12}\left(2^{n}\right)$. After some basic algebra, this gives

$$
0=-\frac{3}{2} A\left(2^{n}\right)-3 B n\left(2^{n}\right)+\frac{5}{2} B\left(2^{n}\right)+\frac{1}{12} n\left(2^{n}\right)-\frac{1}{12}\left(2^{n}\right) .
$$

Comparing the coefficients for 2^{n} and $n 2^{n}$, we get $0=-\frac{3}{2} A+\frac{5}{2} B-\frac{1}{12}$ and $0=-3 B+\frac{1}{12}$, so $A=-\frac{1}{108}$ and $B=\frac{1}{36}$.
2) To find C and D, substitute $i n v_{n}=C n(-1)^{n}+D n^{2}(-1)^{n}$ in the recurrence $i n v_{n}=$ $i n v_{n-1}+2 i n v_{n-2}+\frac{1}{3} n(-1)^{n+1}+\frac{1}{3}(-1)^{n}$. After some simplification, this yields

$$
0=-3 C(-1)^{n}-6 D n(-1)^{n}+7 D(-1)^{n}-\frac{1}{3} n(-1)^{n}+\frac{1}{3}(-1)^{n} .
$$

Comparing the coefficients for $(-1)^{n}$ and $n(-1)^{n}$, we get $0=-3 C+7 D+\frac{1}{3}$ and $0=-6 D-\frac{1}{3}$, so $C=-\frac{1}{54}$ and $D=-\frac{1}{18}$.

Consequently,
$i n v_{n}=c_{1}\left(2^{n}\right)+c_{2}(-1)^{n}+\left(-\frac{1}{108}\right) n 2^{n}+\left(\frac{1}{36}\right) n^{2} 2^{n}+\left(-\frac{1}{54}\right) n(-1)^{n}+\left(-\frac{1}{18}\right) n^{2}(-1)^{n}$.
3) The initial conditions $i n v_{3}=2$ and $i n v_{4}=5$ yield $c_{1}=-\frac{1}{27}=-c_{2}$. Thus,

$$
\begin{aligned}
i n v_{n}= & -\frac{1}{27}\left(2^{n}\right)+\frac{1}{27}(-1)^{n}+\left(-\frac{1}{108}\right) n 2^{n}+\left(\frac{1}{36}\right) n^{2} 2^{n} \\
& +\left(-\frac{1}{54}\right) n(-1)^{n}+\left(-\frac{1}{18}\right) n^{2}(-1)^{n} \\
= & -\frac{1}{9} J_{n}+\frac{n}{36}\left(J_{n}-J_{n+1}\right)+\frac{n^{2}}{36}\left(5 J_{n}-J_{n+1}\right) \\
= & \left(\frac{5 n^{2}+n-4}{36}\right) J_{n}-\left(\frac{n^{2}+n}{36}\right) J_{n+1},
\end{aligned}
$$

where $n \geq 3$.

4. Acknowledgment

The authors would like to thank the referee for his/her carefully worded comments and suggestions for improving the quality of exposition of the original version.

References

[1] 1987 Austrian Olympiad, Crux Mathematicorum, 15 (1989), 264.
[2] R. P. Grimaldi, Discrete and Combinatorial Mathematics, 5th edition, Pearson, Boston, Massachusetts, 2004.
[3] R. P. Grimaldi, Binary strings and the Jacobsthal numbers, Congressus Numerantium, 174 (2005), 3-22.
[4] R. Honsberger, From Erdös to Kiev, Mathematical Association of America, Washington, D. C., 1996.
[5] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 34.1 (1996), 40-54.
[6] T. Koshy, Discrete Mathematics with Applications, Elsevier, Boston, Massachusetts, 2004.

THE FIBONACCI QUARTERLY

MSC2010: 11B37, 11B39, 11B50, 39A06
Department of Mathematics, Framingham State University, Framingham, MA 01701
E-mail address: tkoshy@emeriti.framingham.edu
Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47808
E-mail address: grimaldi@rose-hulman.edu

