TERNARY WORDS AND JACOBSTHAL NUMBERS

THOMAS KOSHY AND RALPH P. GRIMALDI

ABSTRACT. We investigate a special class of ternary words, and explore some close and interesting relationships between them and the well-known Jacobsthal numbers.

1. INTRODUCTION

1.1. Jacobsthal Numbers. The Jacobsthal numbers, named after the German mathematician Ernst Erich Jacobsthal (1882–1965), and the Jacobsthal-Lucas numbers satisfy the recurrence $x_n = x_{n-1} + 2x_{n-2}$, where $n \ge 3$. When $x_1 = 1 = x_2, x_n = J_n$, the *n*th Jacobsthal number; when $x_1 = 1$ and $x_2 = 5, x_n = j_n$, the *n*th Jacobsthal-Lucas number. It follows by the Jacobsthal recurrence that $J_0 = 0, J_{-1} = 1/2, j_0 = 2$, and $j_{-1} = -1/2$.

Both J_n and j_n can also be defined explicitly by the *Binet-like* formulas $J_n = \frac{2^n - (-1)^n}{3}$, and $j_n = 2^n + (-1)^n$, where n is any integer. Table 1 shows twelve Jacobsthal and Jacobsthal-Lucas numbers, where $-1 \le n \le 10$.

n	-1	0	1	2	3	4	5	6	7	8	9	10
J_n	1/2	0	1	1	3	5	11	21	43	85	171	341
j_n	-1/2	2	1	5	7	17	31	65	127	257	511	1025

Table 1: Jacobsthal and Jacobsthal-Lucas Numbers

Using the Binet-like formulas and Jacobsthal recurrence, we can extract an array of interesting properties [5]. For example, $J_n + J_{n+1} = 2^n$, $J_{n+1} - 2J_n = (-1)^n$, and $J_{n+1} + 2J_{n-1} = j_n$.

1.2. Formal Languages. An alphabet Σ is a finite set of symbols. A word (or string) over Σ is a finite sequence of symbols from Σ . The number of symbols in a word is its length. The word of length 0 is the empty word or null word; it is denoted by λ .

The set of all possible words over Σ , denoted by Σ^* , is the *Kleene closure* of Σ ; it is named after the American logician Stephen Kleene (1909–1994). A *language* L over Σ is a subset of Σ^* .

The concatenation of two words x and y in L, denoted by xy, is obtained by appending y at the end of x. For example, the concatenation of $x = x_1x_2...x_m$ and $y = y_1y_2...y_n$ is $xy = x_1x_2...x_my_1y_2...y_n$. The concatenation of two languages A and B over Σ , denoted by AB, is defined by $AB = \{ab|a \in A \text{ and } b \in B\}$. In particular, $A^2 = \{ab|a, b \in A\}$. More generally, $A^n = \{a_1a_2...a_n|a_i \in A, 1 \le i \le n\}$ and $A^0 = \{\lambda\}$. Then $A^* = \bigcup_{n=0}^{\infty} A^n$.

In particular, let $\Sigma = \{0, 1\}$, the *binary alphabet*; its symbols are the *bits* 0 and 1. Let $L = \{0, 01, 11\}$. There are exactly J_{n+1} words of length n in L^* , where $n \ge 1$ [3].

THE FIBONACCI QUARTERLY

2. A TERNARY VERSION

We now pursue a ternary version of the binary case, but with some added restrictions. It appeared in the final round of the 1987 Austrian Olympiad [1, 4]. It is interesting in its own right and has fascinating implications.

Let $\Sigma = \{0, 1, 2\}$. The digits 0, 1, and 2 are *ternary digits*. (In the Austrian Olympiad problem, $\Sigma = \{a, b, c\}$.) Let b_n denote the number of *ternary words* $w_n = x_1 x_2 \dots x_n$ of length n such that $x_1 = 0 = x_n$ and $x_i \neq x_{i+1}$, where $x_i \in \Sigma$ and $1 \leq i \leq n-1$. Clearly, the *reverse* w_n^R of an acceptable word $w_n = 0x_2 \dots x_{n-1}0$ is also acceptable. (*Note*: In the interest of brevity and convenience, in the rest of the article, "ternary words" will mean "ternary words with the added restrictions," when there is *no* ambiguity.)

Table 2 lists the ternary words w_n and the corresponding numbers b_n , where $1 \le n \le 6$. Notice that there are *no* ternary words of length 2 that satisfy the given conditions. Although the counts b_n do not seem to follow a pattern, the following theorem establishes a simple formula for b_n using a constructive algorithm.

n	Ternary Words w_n	b_n
1	0	1
2		0
3	010, 020	2
4	0120, 0210	2
5	01210, 02120	6
	01010, 02010	
	01020, 02020	
6	010120, 010210, 020120, 020210, 012120, 021210	10
	012010, 021010	
	012020, 021020	

Table 2: Ternary Words and Their Counts

Theorem 2.1. Let b_n denote the number of ternary words $w_n = x_1 x_2 \dots x_n$ of length n such that $x_1 = 0 = x_n$ and $x_i \neq x_{i+1}$, where $1 \le i \le n-1$. Then $b_n = 2J_{n-2}$, where $n \ge 1$.

Proof. It is easy to confirm the claim for $1 \le n \le 4$. Let w_n be an arbitrary ternary word of length $n \ge 5$. We will now employ an algorithm to construct words of length n from those of lengths n-1 and n-2.

Step 1. Replace the last digit $x_{n-1} = 0$ in w_{n-1} with 10 if $x_{n-2} = 2$; otherwise, replace it with 20.

Step 2A. Append 10 at the end of each w_{n-2} .

Step 2B. Append 20 at the end of each w_{n-2} .

Since the algorithm is reversible, it produces all desired ternary words w_n .

Step 1 yields b_{n-1} words w_n . Steps 2A and 2B produce b_{n-2} words each. Thus, $b_n = b_{n-1} + 2b_{n-2}$. This recurrence, paired with the initial conditions, gives the desired result. \Box

We will now illustrate the steps in the proof for the case n = 6.

Step 1. There are three words $w_5 = 0x_2x_3x_40$ with $x_4 = 2$; replace each $x_5 = 0$ with 10. The three remaining words have $x_4 = 1$; replace each $x_5 = 0$ with 20:

02120	01020	02020	01210	01010	02010
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
0212 10	0102 10	0202 10	0121 20	0101 20	0201 20 .

Step 2A. Append 10 at the end of each w_4 :

$$\begin{array}{cccc} 0120 & 0210 \\ \downarrow & \downarrow \\ 012010 & 021010. \end{array}$$

Step 2B. Append 20 at the end of each w_4 :

$$\begin{array}{cccc} 0120 & 0210 \\ \downarrow & \downarrow \\ 0120 \mathbf{20} & 0210 \mathbf{20} \end{array}$$

Clearly, these steps produce the $b_6 = 10$ ternary words.

The following result is an immediate consequence of the constructive algorithm.

Corollary 1. There are exactly $\frac{1}{2}b_n = J_{n-2}$ ternary words w_n that begin with 01 (or end in 10), where $n \ge 2$.

The next result follows from this corollary and we will use it several times in our discourse.

Corollary 2. There are J_{n-2} ternary words w_n that begin with 02 (or end in 20), where $n \ge 2$.

We now have the needed machinery to develop an explicit formula for the number of 0's among the b_n ternary words of length n.

2.1. Zeros Among the b_n Ternary Numbers. Let z_n denote the number of 0's among the b_n ternary words w_n of length n. For example, $z_1 = 1, z_2 = 0, z_3 = 4 = z_4, z_5 = 16$, and $z_6 = 28$; see Table 2.

Using the above constructive algorithm, we can easily develop a recurrence for z_n . Replacing x_{n-1} in w_{n-1} in Step 1 with 10 or 20 does not contribute any new 0's. So Step 1 contributes z_{n-1} 0s to z_n . Each of Steps 2A and 2B contributes $z_{n-2} + b_{n-2}$ zeros to z_n . Thus,

$$z_{n} = z_{n-1} + 2(z_{n-2} + b_{n-2})$$

= $z_{n-1} + 2z_{n-2} + 4J_{n-4}$
= $z_{n-1} + 2z_{n-2} + \frac{4}{3} \left[2^{n-4} - (-1)^{n-4} \right],$ (2.1)

where $z_1 = 1, z_2 = 0$, and $n \ge 3$.

The general solution of recurrence (2.1) is of the form $z_n = c_1 \cdot 2^n + c_2(-1)^n + An2^n + Bn(-1)^n$ [2, 6]. Substituting $An2^n$ in the recurrence $z_n = z_{n-1} + 2z_{n-2} + \left(\frac{4}{3}\right)2^{n-4}$ yields A = 1/18. Likewise, substituting $Bn(-1)^n$ in the recurrence $z_n = z_{n-1} + 2z_{n-2} - \frac{4}{3}(-1)^{n-4}$ yields B = -4/9. Thus,

$$z_n = c_1 \cdot 2^n + c_2(-1)^n + \left(\frac{n}{18}\right) 2^n - \left(\frac{4n}{9}\right) (-1)^n.$$

MAY 2017

THE FIBONACCI QUARTERLY

Using the initial conditions $z_1 = 1$ and $z_2 = 0$, this yields $c_1 = \frac{8}{54} = -c_2$. Thus,

$$z_{n} = \left(\frac{8}{54}\right) 2^{n} - \left(\frac{8}{54}\right) (-1)^{n} + \left(\frac{n}{18}\right) 2^{n} - \left(\frac{4n}{9}\right) (-1)^{n}$$

$$= \left(\frac{3n+8}{54}\right) 2^{n} - \left(\frac{24n+8}{54}\right) (-1)^{n}$$

$$= \left(\frac{3n+8}{54}\right) (J_{n} + J_{n+1}) - \left(\frac{24n+8}{54}\right) (J_{n+1} - 2J_{n})$$

$$= \left(\frac{17n+8}{18}\right) J_{n} - \left(\frac{7n}{18}\right) J_{n+1},$$
(2.2)

where $n \geq 1$.

For example, $z_{10} = \frac{178 \cdot 341}{18} - \frac{70 \cdot 683}{18} = 716.$

2.2. Nonzero Digits Among the b_n Ternary Numbers. It follows from formula (2.2) that the number of nonzero digits $nonz_n$ among the b_n ternary numbers w_n is given by

$$non z_n = nb_n - z_n$$

$$= n(2J_{n-2}) - \left[\left(\frac{17n+8}{18} \right) J_n - \left(\frac{7n}{18} \right) J_{n+1} \right]$$

$$= \left(\frac{7n}{18} \right) J_{n+1} - \left(\frac{17n+8}{18} \right) J_n + 2nJ_{n-2}.$$
(2.3)

Consequently,

the number of 1's = the number of 2's

$$= \frac{1}{2}(nb_n - z_n)$$

$$= \left(\frac{7n}{36}\right)J_{n+1} - \left(\frac{17n+8}{36}\right)J_n + nJ_{n-2}.$$
For example, $nonz_6 = \left(\frac{7\cdot6}{18}\right)J_7 - \left(\frac{17\cdot6+8}{18}\right)J_6 + 12J_4 = \frac{42\cdot43}{18} - \frac{110\cdot21}{18} + 12\cdot5 =$
as found in Table 2. Further, there are 16.1's and 16.2's

32, as found in Table 2. Further, there are 16

Next, we compute the cumulative sum of the decimal values of the b_n ternary words when considered as ternary numbers. We will accomplish this using recursion and the constructive algorithm.

2.3. Cumulative Sum of the b_n Ternary Numbers. Let S_n denote the cumulative sum of the decimal values of the b_n ternary numbers. It follows from Table 2 that $S_1 = 0 = S_2, S_3 =$ 9, $S_4 = 36$, and $S_5 = 297$. Let $w_k = 0x_2x_3 \dots x_{k-1}0$ be an arbitrary ternary number with k digits.

Step 1. Replacing x_{n-1} with 10 or 20 shifts $0x_2 \dots x_{n-2}$ two places to the left of 10, or 20, respectively. Since there are b_{n-1} ternary numbers with n-1 digits, this step contributes $3S_{n-1} + 2 \cdot 3\left(\frac{1}{2}b_{n-1}\right) + 1 \cdot 3\left(\frac{1}{2}b_{n-1}\right) = 3S_{n-1} + \left(\frac{9}{2}\right)b_{n-1} = 3S_{n-1} + 9J_{n-3}$ to the sum S_n . **Step 2A.** Appending 10 at the end of $0x_2 \dots x_{n-3}0$ shifts it two positions to the left. The contribution resulting from this operation is $3^2S_{n-2} + 1 \cdot 3b_{n-2} = 9S_{n-2} + 6J_{n-4}$.

Step 2B. Appending 20 at the end of $0x_2 \dots x_{n-3}0$ contributes $3^2S_{n-2} + 2 \cdot 3b_{n-2} = 9S_{n-2} + 3b_{n-2}$

 $12J_{n-4}$ to the grand total.

Combining these steps, we get

$$S_{n} = (3S_{n-1} + 9J_{n-3}) + (9S_{n-2} + 6J_{n-4}) + (9S_{n-2} + 12J_{n-4})$$

= $3S_{n-1} + 18S_{n-2} + 9J_{n-3} + 18J_{n-4}$
= $3S_{n-1} + 18S_{n-2} + 9J_{n-2},$ (2.4)

where $n \geq 4$.

For example, $S_5 = 3S_4 + 18S_3 + 9J_3 = 3 \cdot 36 + 18 \cdot 9 + 9 \cdot 3 = 297$.

2.4. An Explicit Formula for S_n . It follows from recurrence (2.4) that

$$S_n = 3S_{n-1} + 18S_{n-2} + 3 \cdot 2^{n-2} - 3(-1)^n.$$
(2.5)

The roots of the characteristic equation of the homogeneous recurrence $S_n = 3S_{n-1} + 18S_{n-2}$ are -3 and 6. The particular part of the solution of recurrence (2.5) corresponding to the nonhomogeneous part $3 \cdot 2^{n-2}$ has the form $A \cdot 2^n$. Substituting this in the recurrence $S_n = 3S_{n-1} + 18S_{n-2} + 3 \cdot 2^{n-2}$ yields A = -3/20. The particular part of the solution of this recurrence corresponding to the nonhomogeneous part $-3(-1)^n$ has the form $B(-1)^n$. Substituting this in the recurrence $S_n = 3S_{n-1} + 18S_{n-2} - 3(-1)^n$ yields B = 3/14.

The general solution of recurrence (2.5) is of the form

$$S_n = c_1(-3)^n + c_2 \cdot 6^n - \left(\frac{3}{20}\right)2^n + \left(\frac{3}{14}\right)(-1)^n.$$

Using the initial conditions $S_1 = 0 = S_2$, this recurrence yields $c_1 = -\frac{14}{140}$ and $c_2 = \frac{5}{140}$. Thus,

$$S_n = -\left(\frac{14}{140}\right)(-3)^n + \left(\frac{5}{140}\right)6^n - \left(\frac{3}{20}\right)2^n + \left(\frac{3}{14}\right)(-1)^n,\tag{2.6}$$

where $n \geq 1$.

For example,
$$S_5 = \frac{14 \cdot 3^5 + 5 \cdot 6^5}{140} - \frac{48 \cdot 14 + 3 \cdot 10}{140} = 297$$
, as expected.

Since $J_n + J_{n+1} = 2^n$ and $J_{n+1} - 2J_n = (-1)^n$, formula (2.6) can be rewritten in terms of Jacobsthal numbers. For convenience, we now let a = -14/140, b = 5/140, c = -3/20, and d = 3/14. Then

$$S_{n} = (3^{n}b + c)(J_{n} + J_{n+1}) + (3^{n}a + d)(J_{n+1} - 2J_{n})$$

$$= [3^{n}(a + b) + c + d]J_{n+1} + [3^{n}(b - 2a) + c - 2d]J_{n}$$

$$= \frac{1}{140} [(-3)^{n+2} + 9] J_{n+1} - \frac{1}{140} [3^{n}(-33) + 81] J_{n}$$

$$= \frac{1}{140} (11 \cdot 3^{n+1} - 81) J_{n} - \frac{1}{140} (3^{n+2} - 9) J_{n+1}.$$
(2.7)

For example, $S_4 = \frac{1}{140} (11 \cdot 3^5 - 81) \cdot 5 - \frac{1}{140} (3^6 - 9) \cdot 11 = \frac{12,960 - 7,920}{140} = 36$, again as expected.

MAY 2017

3. Inversions

Next we investigate the number of inversions in words over Σ . To begin with, let $\{a_1, a_2, \ldots, a_n\}$ be a *totally ordered* alphabet with $a_1 < a_2 < \cdots < a_n$. Let $x_1 x_2 \cdots x_k$ be a word of length k over this alphabet. For $1 \leq i < j \leq k$, call the pair x_i and x_j an *inversion* if $x_i > x_j$.

For example, let $\Sigma = \{0, 1, 2\}$, where 0 < 1 < 2. Then the word $x_1x_2x_3x_4x_5 = 01210$ contains four inversions: $x_2 > x_5, x_3 > x_4, x_3 > x_5$, and $x_4 > x_5$.

Let inv_n count the number of inversions among the b_n ternary words of length n, where $n \ge 3$. Then $inv_3 = 2$, $inv_4 = 5$, $inv_5 = 21$, $inv_6 = 56$, and $inv_7 = 164$. We will now establish that inv_n satisfies the recurrence

$$inv_n = inv_{n-1} + b_{n-1} + \frac{1}{2}\left(nonz_{n-1} - nonz_{n-2}\right) + 2inv_{n-2} + 2b_{n-2} + 2nonz_{n-2} + \frac{1}{2}nonz_{n-2},$$

where $n \geq 3$.

- 1) From Step 1 of the algorithm when the last digit x_{n-1} is replaced (by either 10 or 20), a new inversion arises. These are counted by b_{n-1} .
- 2) Also from Step 1 of the algorithm, for the case where the last digit x_{n-1} is replaced by 10 (for when $x_{n-2} = 2$), there is a new inversion for each 2 that occurs among the first n-2 digits of the b_{n-1} words that end in 20. These inversions are counted by $\frac{1}{2}(nonz_{n-1} - nonz_{n-2})$.
- 3) Šteps 2A and 2B of the algorithm each provide b_{n-2} new inversions: 10 in positions n-1 and n for Step 2A; 20 in positions n-1 and n for Step 2B.
- 4) Each of Steps 2A and 2B of the algorithm provides $nonz_{n-2}$ new inversions with the new 0 now in position n.
- 5) Finally, from Step 2A, we get $\frac{1}{2}nonz_{n-2}$ new inversions for each of the $\frac{1}{2}nonz_{n-2}$ 2s that occur among the first n-2 positions of the b_n words that end in 10. Each such 2 provides an inversion with the new 1 in position n-1.

Combining these five steps, we get

$$inv_{n} = inv_{n-1} + 2inv_{n-2} + b_{n-1} + 2b_{n-2} + \frac{1}{2}nonz_{n-1} + 2nonz_{n-2}$$

= $inv_{n-1} + 2inv_{n-2} + 2J_{n-3} + 4J_{n-4}$
+ $\frac{1}{2}\left\{(n-1)(2J_{n-3}) - \left[\left(\frac{17(n-1)+8}{18}\right)J_{n-1} - \left(\frac{7(n-1)}{18}\right)J_{n}\right]\right\}$
+ $2\left\{(n-2)(2J_{n-4}) - \left[\left(\frac{17(n-2)+8}{18}\right)J_{n-2} - \left(\frac{7(n-2)}{18}\right)J_{n-1}\right]\right\}.$

Substituting for J_n , yields

$$inv_n = inv_{n-1} + 2inv_{n-2} + \frac{1}{3}n(-1)^{n+1} + \frac{1}{12}n(2^n) + \frac{1}{3}(-1)^n - \frac{1}{12}(2^n).$$

Consequently, the general solution of the recurrence is of the form

$$inv_n = c_1(2^n) + c_2(-1)^n + An2^n + Bn^2 2^n + Cn(-1)^n + Dn^2(-1)^n.$$

Next we will determine the coefficients for the particular part of the solution.

1) To find A and B, substitute $inv_n = An2^n + Bn^22^n$ in the recurrence $inv_n = inv_{n-1} + Bn^22^n$

VOLUME 55, NUMBER 2

TERNARY WORDS AND JACOBSTHAL NUMBERS

$$2inv_{n-2} + \frac{1}{12}n(2^n) - \frac{1}{12}(2^n).$$
 After some basic algebra, this gives
$$0 = -\frac{3}{2}A(2^n) - 3Bn(2^n) + \frac{5}{2}B(2^n) + \frac{1}{12}n(2^n) - \frac{1}{12}(2^n).$$

Comparing the coefficients for 2^n and $n2^n$, we get $0 = -\frac{3}{2}A + \frac{5}{2}B - \frac{1}{12}$ and $0 = -3B + \frac{1}{12}$, so $A = -\frac{1}{108}$ and $B = \frac{1}{36}$.

2) To find C and D, substitute $inv_n = Cn(-1)^n + Dn^2(-1)^n$ in the recurrence $inv_n = inv_{n-1} + 2inv_{n-2} + \frac{1}{3}n(-1)^{n+1} + \frac{1}{3}(-1)^n$. After some simplification, this yields

$$0 = -3C(-1)^{n} - 6Dn(-1)^{n} + 7D(-1)^{n} - \frac{1}{3}n(-1)^{n} + \frac{1}{3}(-1)^{n}.$$

Comparing the coefficients for $(-1)^n$ and $n(-1)^n$, we get $0 = -3C + 7D + \frac{1}{3}$ and $0 = -6D - \frac{1}{3}$, so $C = -\frac{1}{54}$ and $D = -\frac{1}{18}$.

Consequently,

$$inv_n = c_1(2^n) + c_2(-1)^n + \left(-\frac{1}{108}\right)n2^n + \left(\frac{1}{36}\right)n^22^n + \left(-\frac{1}{54}\right)n(-1)^n + \left(-\frac{1}{18}\right)n^2(-1)^n.$$

3) The initial conditions $inv_3 = 2$ and $inv_4 = 5$ yield $c_1 = -\frac{1}{27} = -c_2$. Thus,

$$inv_n = -\frac{1}{27}(2^n) + \frac{1}{27}(-1)^n + \left(-\frac{1}{108}\right)n2^n + \left(\frac{1}{36}\right)n^22^n + \left(-\frac{1}{54}\right)n(-1)^n + \left(-\frac{1}{18}\right)n^2(-1)^n = -\frac{1}{9}J_n + \frac{n}{36}\left(J_n - J_{n+1}\right) + \frac{n^2}{36}\left(5J_n - J_{n+1}\right) = \left(\frac{5n^2 + n - 4}{36}\right)J_n - \left(\frac{n^2 + n}{36}\right)J_{n+1},$$

where $n \geq 3$.

4. Acknowledgment

The authors would like to thank the referee for his/her carefully worded comments and suggestions for improving the quality of exposition of the original version.

References

- [1] 1987 Austrian Olympiad, Crux Mathematicorum, 15 (1989), 264.
- [2] R. P. Grimaldi, Discrete and Combinatorial Mathematics, 5th edition, Pearson, Boston, Massachusetts, 2004.
- [3] R. P. Grimaldi, Binary strings and the Jacobsthal numbers, Congressus Numerantium, 174 (2005), 3–22.
- [4] R. Honsberger, From Erdös to Kiev, Mathematical Association of America, Washington, D. C., 1996.
- [5] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, **34.1** (1996), 40–54.
- [6] T. Koshy, Discrete Mathematics with Applications, Elsevier, Boston, Massachusetts, 2004.

THE FIBONACCI QUARTERLY

MSC2010: 11B37, 11B39, 11B50, 39A06

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 *E-mail address*: tkoshy@emeriti.framingham.edu

DEPARTMENT OF MATHEMATICS, ROSE-HULMAN INSTITUTE OF TECHNOLOGY, TERRE HAUTE, IN 47808 *E-mail address:* grimaldi@rose-hulman.edu