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Abstract. We investigate a special class of ternary words, and explore some close and
interesting relationships between them and the well-known Jacobsthal numbers.

1. Introduction

1.1. Jacobsthal Numbers. The Jacobsthal numbers, named after the German mathemati-
cian Ernst Erich Jacobsthal (1882–1965), and the Jacobsthal-Lucas numbers satisfy the recur-
rence xn = xn−1 + 2xn−2, where n ≥ 3. When x1 = 1 = x2, xn = Jn, the nth Jacobsthal
number; when x1 = 1 and x2 = 5, xn = jn, the nth Jacobsthal-Lucas number. It follows by
the Jacobsthal recurrence that J0 = 0, J−1 = 1/2, j0 = 2, and j−1 = −1/2.

Both Jn and jn can also be defined explicitly by the Binet-like formulas Jn =
2n − (−1)n

3
,

and jn = 2n+(−1)n, where n is any integer. Table 1 shows twelve Jacobsthal and Jacobsthal-
Lucas numbers, where −1 ≤ n ≤ 10.

Table 1: Jacobsthal and Jacobsthal-Lucas Numbers

n −1 0 1 2 3 4 5 6 7 8 9 10

Jn 1/2 0 1 1 3 5 11 21 43 85 171 341
jn −1/2 2 1 5 7 17 31 65 127 257 511 1025

Using the Binet-like formulas and Jacobsthal recurrence, we can extract an array of interest-
ing properties [5]. For example, Jn + Jn+1 = 2n, Jn+1 − 2Jn = (−1)n, and Jn+1 + 2Jn−1 = jn.

1.2. Formal Languages. An alphabet Σ is a finite set of symbols. A word (or string) over
Σ is a finite sequence of symbols from Σ. The number of symbols in a word is its length. The
word of length 0 is the empty word or null word ; it is denoted by λ.

The set of all possible words over Σ, denoted by Σ∗, is the Kleene closure of Σ; it is named
after the American logician Stephen Kleene (1909–1994). A language L over Σ is a subset of
Σ∗.

The concatenation of two words x and y in L, denoted by xy, is obtained by appending
y at the end of x. For example, the concatenation of x = x1x2 . . . xm and y = y1y2 . . . yn is
xy = x1x2 . . . xmy1y2 . . . yn. The concatenation of two languages A and B over Σ, denoted by
AB, is defined by AB = {ab|a ∈ A and b ∈ B}. In particular, A2 = {ab|a, b ∈ A}. More

generally, An = {a1a2 . . . an|ai ∈ A, 1 ≤ i ≤ n} and A0 = {λ}. Then A∗ =
∞
⋃

n=0

An.

In particular, let Σ = {0, 1}, the binary alphabet ; its symbols are the bits 0 and 1. Let
L = {0, 01, 11}. There are exactly Jn+1 words of length n in L∗, where n ≥ 1 [3].
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2. A Ternary Version

We now pursue a ternary version of the binary case, but with some added restrictions. It
appeared in the final round of the 1987 Austrian Olympiad [1, 4]. It is interesting in its own
right and has fascinating implications.

Let Σ = {0, 1, 2}. The digits 0, 1, and 2 are ternary digits. (In the Austrian Olympiad
problem, Σ = {a, b, c}.) Let bn denote the number of ternary words wn = x1x2 . . . xn of length
n such that x1 = 0 = xn and xi 6= xi+1, where xi ∈ Σ and 1 ≤ i ≤ n− 1. Clearly, the reverse
wR
n of an acceptable word wn = 0x2 . . . xn−10 is also acceptable. (Note: In the interest of

brevity and convenience, in the rest of the article, “ternary words” will mean “ternary words
with the added restrictions,” when there is no ambiguity.)

Table 2 lists the ternary words wn and the corresponding numbers bn, where 1 ≤ n ≤ 6.
Notice that there are no ternary words of length 2 that satisfy the given conditions. Although
the counts bn do not seem to follow a pattern, the following theorem establishes a simple
formula for bn using a constructive algorithm.

Table 2: Ternary Words and Their Counts

n Ternary Words wn bn

1 0 1
2 . 0
3 010, 020 2
4 0120, 0210 2
5 01210, 02120 6

01010, 02010
01020, 02020

6 010120, 010210, 020120, 020210, 012120, 021210 10
012010, 021010
012020, 021020

Theorem 2.1. Let bn denote the number of ternary words wn = x1x2 . . . xn of length n such
that x1 = 0 = xn and xi 6= xi+1, where 1 ≤ i ≤ n− 1. Then bn = 2Jn−2, where n ≥ 1.

Proof. It is easy to confirm the claim for 1 ≤ n ≤ 4. Let wn be an arbitrary ternary word of
length n ≥ 5. We will now employ an algorithm to construct words of length n from those of
lengths n− 1 and n− 2.

Step 1. Replace the last digit xn−1 = 0 in wn−1 with 10 if xn−2 = 2; otherwise, replace it
with 20.
Step 2A. Append 10 at the end of each wn−2.
Step 2B. Append 20 at the end of each wn−2.

Since the algorithm is reversible, it produces all desired ternary words wn.
Step 1 yields bn−1 words wn. Steps 2A and 2B produce bn−2 words each. Thus, bn =

bn−1 + 2bn−2. This recurrence, paired with the initial conditions, gives the desired result. �

We will now illustrate the steps in the proof for the case n = 6.
Step 1. There are three words w5 = 0x2x3x40 with x4 = 2; replace each x5 = 0 with 10. The
three remaining words have x4 = 1; replace each x5 = 0 with 20:

02120 01020 02020 01210 01010 02010
↓ ↓ ↓ ↓ ↓ ↓
021210 010210 020210 012120 010120 020120.
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Step 2A. Append 10 at the end of each w4:

0120 0210
↓ ↓
012010 021010.

Step 2B. Append 20 at the end of each w4:

0120 0210
↓ ↓
012020 021020.

Clearly, these steps produce the b6 = 10 ternary words.
The following result is an immediate consequence of the constructive algorithm.

Corollary 1. There are exactly
1

2
bn = Jn−2 ternary words wn that begin with 01 (or end in

10), where n ≥ 2. �

The next result follows from this corollary and we will use it several times in our discourse.

Corollary 2. There are Jn−2 ternary words wn that begin with 02 (or end in 20), where
n ≥ 2. �

We now have the needed machinery to develop an explicit formula for the number of 0’s
among the bn ternary words of length n.

2.1. Zeros Among the bn Ternary Numbers. Let zn denote the number of 0’s among the
bn ternary words wn of length n. For example, z1 = 1, z2 = 0, z3 = 4 = z4, z5 = 16, and
z6 = 28; see Table 2.

Using the above constructive algorithm, we can easily develop a recurrence for zn. Replacing
xn−1 in wn−1 in Step 1 with 10 or 20 does not contribute any new 0’s. So Step 1 contributes
zn−1 0s to zn. Each of Steps 2A and 2B contributes zn−2 + bn−2 zeros to zn. Thus,

zn = zn−1 + 2(zn−2 + bn−2)

= zn−1 + 2zn−2 + 4Jn−4

= zn−1 + 2zn−2 +
4

3

[

2n−4 − (−1)n−4
]

, (2.1)

where z1 = 1, z2 = 0, and n ≥ 3.
The general solution of recurrence (2.1) is of the form zn = c1·2

n+c2(−1)n+An2n+Bn(−1)n

[2, 6]. Substituting An2n in the recurrence zn = zn−1 + 2zn−2 +
(

4

3

)

2n−4 yields A = 1/18.

Likewise, substituting Bn(−1)n in the recurrence zn = zn−1 + 2zn−2 −
4

3
(−1)n−4 yields B =

−4/9. Thus,

zn = c1 · 2
n + c2(−1)n +

( n

18

)

2n −

(

4n

9

)

(−1)n.
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Using the initial conditions z1 = 1 and z2 = 0, this yields c1 =
8

54
= −c2. Thus,

zn =

(

8

54

)

2n −

(

8

54

)

(−1)n +
( n

18

)

2n −

(

4n

9

)

(−1)n

=

(

3n+ 8

54

)

2n −

(

24n+ 8

54

)

(−1)n

=

(

3n+ 8

54

)

(Jn + Jn+1)−

(

24n + 8

54

)

(Jn+1 − 2Jn)

=

(

17n+ 8

18

)

Jn −

(

7n

18

)

Jn+1, (2.2)

where n ≥ 1.

For example, z10 =
178 · 341

18
−

70 · 683

18
= 716.

2.2. Nonzero Digits Among the bn Ternary Numbers. It follows from formula (2.2)
that the number of nonzero digits nonzn among the bn ternary numbers wn is given by

nonzn = nbn − zn

= n(2Jn−2)−

[(

17n + 8

18

)

Jn −

(

7n

18

)

Jn+1

]

=

(

7n

18

)

Jn+1 −

(

17n + 8

18

)

Jn + 2nJn−2. (2.3)

Consequently,

the number of 1’s = the number of 2’s

=
1

2
(nbn − zn)

=

(

7n

36

)

Jn+1 −

(

17n + 8

36

)

Jn + nJn−2.

For example, nonz6 =

(

7 · 6

18

)

J7 −

(

17 · 6 + 8

18

)

J6 + 12J4 =
42 · 43

18
−

110 · 21

18
+ 12 · 5 =

32, as found in Table 2. Further, there are 16 1’s and 16 2’s.
Next, we compute the cumulative sum of the decimal values of the bn ternary words when

considered as ternary numbers. We will accomplish this using recursion and the constructive
algorithm.

2.3. Cumulative Sum of the bn Ternary Numbers. Let Sn denote the cumulative sum of
the decimal values of the bn ternary numbers. It follows from Table 2 that S1 = 0 = S2, S3 =
9, S4 = 36, and S5 = 297. Let wk = 0x2x3 . . . xk−10 be an arbitrary ternary number with k
digits.

Step 1. Replacing xn−1 with 10 or 20 shifts 0x2 . . . xn−2 two places to the left of 10, or 20,
respectively. Since there are bn−1 ternary numbers with n − 1 digits, this step contributes
3Sn−1 + 2 · 3

(

1

2
bn−1

)

+ 1 · 3
(

1

2
bn−1

)

= 3Sn−1 +
(

9

2

)

bn−1 = 3Sn−1 + 9Jn−3 to the sum Sn.
Step 2A. Appending 10 at the end of 0x2 . . . xn−30 shifts it two positions to the left. The
contribution resulting from this operation is 32Sn−2 + 1 · 3bn−2 = 9Sn−2 + 6Jn−4.
Step 2B. Appending 20 at the end of 0x2 . . . xn−30 contributes 32Sn−2 +2 · 3bn−2 = 9Sn−2 +
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12Jn−4 to the grand total.

Combining these steps, we get

Sn = (3Sn−1 + 9Jn−3) + (9Sn−2 + 6Jn−4) + (9Sn−2 + 12Jn−4)

= 3Sn−1 + 18Sn−2 + 9Jn−3 + 18Jn−4

= 3Sn−1 + 18Sn−2 + 9Jn−2, (2.4)

where n ≥ 4.
For example, S5 = 3S4 + 18S3 + 9J3 = 3 · 36 + 18 · 9 + 9 · 3 = 297.

2.4. An Explicit Formula for Sn. It follows from recurrence (2.4) that

Sn = 3Sn−1 + 18Sn−2 + 3 · 2n−2 − 3(−1)n. (2.5)

The roots of the characteristic equation of the homogeneous recurrence Sn = 3Sn−1 + 18Sn−2

are −3 and 6. The particular part of the solution of recurrence (2.5) corresponding to the
nonhomogeneous part 3 · 2n−2 has the form A · 2n. Substituting this in the recurrence Sn =
3Sn−1+18Sn−2+3·2n−2 yieldsA = −3/20. The particular part of the solution of this recurrence
corresponding to the nonhomogeneous part −3(−1)n has the form B(−1)n. Substituting this
in the recurrence Sn = 3Sn−1 + 18Sn−2 − 3(−1)n yields B = 3/14.

The general solution of recurrence (2.5) is of the form

Sn = c1(−3)n + c2 · 6
n −

(

3

20

)

2n +

(

3

14

)

(−1)n.

Using the initial conditions S1 = 0 = S2, this recurrence yields c1 = −
14

140
and c2 =

5

140
.

Thus,

Sn = −

(

14

140

)

(−3)n +

(

5

140

)

6n −

(

3

20

)

2n +

(

3

14

)

(−1)n, (2.6)

where n ≥ 1.

For example, S5 =
14 · 35 + 5 · 65

140
−

48 · 14 + 3 · 10

140
= 297, as expected.

Since Jn + Jn+1 = 2n and Jn+1 − 2Jn = (−1)n, formula (2.6) can be rewritten in terms of
Jacobsthal numbers. For convenience, we now let a = −14/140, b = 5/140, c = −3/20, and
d = 3/14. Then

Sn = (3nb+ c)(Jn + Jn+1) + (3na+ d)(Jn+1 − 2Jn)

= [3n(a+ b) + c+ d]Jn+1 + [3n(b− 2a) + c− 2d]Jn

=
1

140

[

(−3)n+2 + 9
]

Jn+1 −
1

140
[3n(−33) + 81] Jn

=
1

140

(

11 · 3n+1 − 81
)

Jn −
1

140

(

3n+2 − 9
)

Jn+1. (2.7)

For example, S4 =
1

140

(

11 · 35 − 81
)

· 5−
1

140

(

36 − 9
)

· 11 =
12, 960 − 7, 920

140
= 36, again

as expected.
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3. Inversions

Next we investigate the number of inversions in words over Σ. To begin with, let {a1, a2, . . . , an}
be a totally ordered alphabet with a1 < a2 < · · · < an. Let x1x2 · · · xk be a word of length k
over this alphabet. For 1 ≤ i < j ≤ k, call the pair xi and xj an inversion if xi > xj .

For example, let Σ = {0, 1, 2}, where 0 < 1 < 2. Then the word x1x2x3x4x5 = 01210
contains four inversions: x2 > x5, x3 > x4, x3 > x5, and x4 > x5.

Let invn count the number of inversions among the bn ternary words of length n, where
n ≥ 3. Then inv3 = 2, inv4 = 5, inv5 = 21, inv6 = 56, and inv7 = 164. We will now establish
that invn satisfies the recurrence

invn = invn−1 + bn−1 +
1

2
(nonzn−1 − nonzn−2) + 2invn−2 + 2bn−2 + 2nonzn−2 +

1

2
nonzn−2,

where n ≥ 3.

1) From Step 1 of the algorithm when the last digit xn−1 is replaced (by either 10 or 20),
a new inversion arises. These are counted by bn−1.

2) Also from Step 1 of the algorithm, for the case where the last digit xn−1 is replaced
by 10 (for when xn−2 = 2), there is a new inversion for each 2 that occurs among the
first n − 2 digits of the bn−1 words that end in 20. These inversions are counted by
1

2
(nonzn−1 − nonzn−2).

3) Steps 2A and 2B of the algorithm each provide bn−2 new inversions: 10 in positions
n− 1 and n for Step 2A; 20 in positions n− 1 and n for Step 2B.

4) Each of Steps 2A and 2B of the algorithm provides nonzn−2 new inversions with the
new 0 now in position n.

5) Finally, from Step 2A, we get
1

2
nonzn−2 new inversions for each of the

1

2
nonzn−2 2s

that occur among the first n − 2 positions of the bn words that end in 10. Each such
2 provides an inversion with the new 1 in position n− 1.

Combining these five steps, we get

invn = invn−1 + 2invn−2 + bn−1 + 2bn−2 +
1

2
nonzn−1 + 2nonzn−2

= invn−1 + 2invn−2 + 2Jn−3 + 4Jn−4

+
1

2

{

(n− 1)(2Jn−3)−

[(

17(n − 1) + 8

18

)

Jn−1 −

(

7(n− 1)

18

)

Jn

]}

+ 2

{

(n − 2)(2Jn−4)−

[(

17(n − 2) + 8

18

)

Jn−2 −

(

7(n− 2)

18

)

Jn−1

]}

.

Substituting for Jn, yields

invn = invn−1 + 2invn−2 +
1

3
n(−1)n+1 +

1

12
n(2n) +

1

3
(−1)n −

1

12
(2n).

Consequently, the general solution of the recurrence is of the form

invn = c1(2
n) + c2(−1)n +An2n +Bn22n + Cn(−1)n +Dn2(−1)n.

Next we will determine the coefficients for the particular part of the solution.

1) To find A and B, substitute invn = An2n + Bn22n in the recurrence invn = invn−1 +
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2invn−2 +
1

12
n(2n)−

1

12
(2n). After some basic algebra, this gives

0 = −
3

2
A(2n)− 3Bn(2n) +

5

2
B(2n) +

1

12
n(2n)−

1

12
(2n).

Comparing the coefficients for 2n and n2n, we get 0 = −
3

2
A+

5

2
B −

1

12
and 0 = −3B +

1

12
,

so A = −
1

108
and B =

1

36
.

2) To find C and D, substitute invn = Cn(−1)n + Dn2(−1)n in the recurrence invn =

invn−1 + 2invn−2 +
1

3
n(−1)n+1 +

1

3
(−1)n. After some simplification, this yields

0 = −3C(−1)n − 6Dn(−1)n + 7D(−1)n −
1

3
n(−1)n +

1

3
(−1)n.

Comparing the coefficients for (−1)n and n(−1)n, we get 0 = −3C+7D+
1

3
and 0 = −6D−

1

3
,

so C = −
1

54
and D = −

1

18
.

Consequently,

invn = c1(2
n) + c2(−1)n +

(

−
1

108

)

n2n +

(

1

36

)

n22n +

(

−
1

54

)

n(−1)n +

(

−
1

18

)

n2(−1)n.

3) The initial conditions inv3 = 2 and inv4 = 5 yield c1 = −
1

27
= −c2. Thus,

invn = −
1

27
(2n) +

1

27
(−1)n +

(

−
1

108

)

n2n +

(

1

36

)

n22n

+

(

−
1

54

)

n(−1)n +

(

−
1

18

)

n2(−1)n

= −
1

9
Jn +

n

36
(Jn − Jn+1) +

n2

36
(5Jn − Jn+1)

=

(

5n2 + n− 4

36

)

Jn −

(

n2 + n

36

)

Jn+1,

where n ≥ 3.
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