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Abstract. In this paper, we present closed forms for certain finite sums of weighted products
of generalized Fibonacci numbers. Indeed, we present seven multi-parameter families of such
finite sums, all of which we believe to be new. In each of these families, the number of factors
in the summand is governed by the size of the integer parameter j ≥ 1, and can be made as
large as we please.

We present our main results in terms of sequences that generalize the Fibonacci/Lucas
numbers. Consequently, each of our main results can be specialized to involve the Fi-
bonacci/Lucas numbers. For instance, as a consequence of one of our main results, it follows
that

n∑

i=1

2i−1
FiFi+2 = 2nFnFn+1.

Here the weight term in the summand is 2i−1.

1. Introduction

We begin by establishing the notation for the sequences that feature in this paper. Let
a ≥ 0 and b ≥ 0 be integers, with (a, b) 6= (0, 0). For p a positive integer, we define, for all
integers n, the sequences {Wn} and

{

W n

}

by

Wn = pWn−1 +Wn−2, W0 = a, W1 = b, (1.1)

and
W n = Wn−1 +Wn+1.

We leave to the reader the simple task of showing that

Wn =
(

p2 + 4
)

Wn. (1.2)

For (a, b, p) = (0, 1, 1), we have {Wn}={Fn}, and
{

Wn

}

={Ln}, which are the Fibonacci
and Lucas sequences, respectively. Allowing p to be an arbitrary positive integer, and taking
(a, b) = (0, 1), we write {Wn}={Un}, and

{

Wn

}

={Vn}, which are integer sequences that
generalize the Fibonacci and Lucas numbers, respectively.

When p = 1, and a and b are arbitrary, we write {Wn}={Hn}. Thus, {Hn} and
{

Hn

}

satisfy the same recurrence as {Fn}, and are generalizations of {Fn} and {Ln}, respectively.
Let α and β denote the two distinct real roots of x2 − px − 1 = 0. Set A = b − aβ and

B = b− aα. Then the Binet forms for {Wn} and
{

W n

}

are, respectively,

Wn =
Aαn −Bβn

α− β
, (1.3)

and
W n = Aαn +Bβn. (1.4)

Note that the closed forms for all the sequences that we consider in this paper can be obtained
from (1.3) and (1.4).
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The finite sum
n
∑

i=0

2iLi = 2n+1Fn+1 (1.5)

is identity 236 in Benjamin and Quinn [1]. In a recent paper, Sury [7] attracts much attention
by proving (1.5) with the use of a simple polynomial identity. Kwong [4] then proves (1.5)
quickly and elegantly with the use of generating functions. In a recent paper, Bhatnagar [2]
lists several finite sums, put forward by other authors, as analogues of (1.5). One such formula
that replaces 2i by 3i is

n
∑

i=0

3i (Li + Fi+1) = 3n+1Fn+1, (1.6)

given by Marques [5] in a sightly different form.
Notice that in (1.6) one of the factors in the summand is not a product. The same can be

said of similar formulas that Bhatnagar [2] lists in Section 1 of his paper. In this paper, we
give seven multi-parameter analogues of (1.5), and in all cases each factor in the summand is
a product of terms from generalized Fibonacci sequences. Indeed, the length of each product
in question (see Section 2) is specified by the parameter j, which can be arbitrarily large.

In all the sums that we present in this paper, we take the lower limit of summation to
be 1 instead of 0. This serves to make our formulas much more succinct. In each of our
main results, the factors in the summand are drawn from the sequences {Wn},

{

Wn

}

, {Hn},

or
{

Hn

}

. Accordingly, each of our main results can be specialized to the Fibonacci/Lucas

numbers. Where possible, we express our results in terms of the sequences {Wn} and
{

Wn

}

,
thus making these results as general as possible. However, some of our results apply only for
the case p = 1, so we express these results in terms of {Hn} and

{

Hn

}

.
In Section 2, we define the seven finite sums of weighted products of generalized Fibonacci

numbers that are the topic of this paper. In Section 3, we give the closed forms of these seven
sums, and provide a sample proof. In Section 4, we give several special cases of our main
results for the Fibonacci/Lucas numbers.

2. The Finite Sums

As stated in the introduction, for the remainder of this paper we take the lower limit of
summation to be i = 1, and the upper limit of summation to be n ≥ 1. Furthermore, j ≥ 1
and k ≥ 1 are assumed to be integers. We now define seven finite sums of weighted products
whose closed forms we give in the next section. The first three finite sums involve sequences
generated by the recurrence given in (1.1), in which p ≥ 1 is an arbitrary integer. These finite
sums are

S1(n, j, k) =

n
∑

i=1

U i−1
jk−1Wki · · ·Wk(i+j−2)Wk(i+j−1)−1,

S2(n, j, k) =

n
∑

i=1

U i−1
jk+1Wki · · ·Wk(i+j−2)Wk(i+j−1)+1,

S3(n, j, k) =

n
∑

i=1

V i−1
jk Wki · · ·Wk(i+j−2)Wk(i+2j−1).

Next, we define four finite sums that involve sequences generated by the recurrence given
in (1.1), in which p = 1. These finite sums are
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S4(n, j, k) =

n
∑

i=1

F i−1
jk+2Hki · · ·Hk(i+j−2)Hk(i+j−1)+2,

S5(n, j, k) =

n
∑

i=1

Li−1
jk+1Hki · · ·Hk(i+j−2)Hk(i+j−1)+1,

S6(n, j, k) =
n
∑

i=1

F i−1
jk−2Hki · · ·Hk(i+j−2)Hk(i+j−1)−2,

S7(n, j, k) =
n
∑

i=1

Li−1
jk−1Hki · · ·Hk(i+j−2)Hk(i+j−1)−1.

Each of the finite sums that we define above has a so-called weight term. For instance, for
S1(n, j, k) the weight term is U i−1

jk−1. Now, excluding the weight term, the length of the product

in each of the finite sums Si(n, j, k), 1 ≤ i ≤ 7, is j. When j ≥ 2, it is easy to write down each
summand. For example, when j = 2 the summand of S1(n, j, k) is U

i−1
2k−1WkiWk(i+1)−1.

When j = 1, the summand of each of the Si(n, j, k) is to be interpreted as the product of
the weight term, and the last term in the product that defines the summand. For instance,
for j = 1 the summand in S2(n, j, k) is to be interpreted as U i−1

k+1Wki+1.

3. The Closed Forms and a Sample Proof

In this section, we give the closed forms for each of the finite sums defined in Section 2. We
present our main results in three theorems, where the parities of j and k need to be considered.
To present our results, we employ some customary notation. Specifically, in all that follows,
we take i to be the dummy variable. For instance, [Wki]

n
m means Wkn −Wkm. At the end of

this section we also provide a sample proof. Our first theorem applies to the sequence defined
in (1.1).

Theorem 3.1. Suppose j ≥ 1 and k ≥ 1 are such that the product jk is even. Then

S1(n, j, k) =
1

Ujk

[

U i
jk−1Wki · · ·Wk(i+j−1)

]n

0
, (3.1)

S2(n, j, k) =
1

Ujk

[

U i
jk+1Wki · · ·Wk(i+j−1)

]n

0
, (3.2)

S3(n, j, k) =
[

V i
jkWki · · ·Wk(i+j−1)

]n

0
. (3.3)

Our next two theorems apply to the sequence defined in (1.1) only when p = 1.

Theorem 3.2. Suppose j ≥ 1 and k ≥ 1 are such that the product jk is even. Then

S4(n, j, k) =
1

Fjk

[

F i
jk+2Hki · · ·Hk(i+j−1)

]n

0
, (3.4)

S5(n, j, k) =
1

Fjk

[

Li
jk+1Hki · · ·Hk(i+j−1)

]n

0
. (3.5)

In our next theorem, j must be odd. Accordingly, excluding the weight term, the number
of generalized Fibonacci factors in the summand is odd.
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Theorem 3.3. Suppose j ≥ 1 and k ≥ 1 are such that the product jk is odd. Then

S6(n, j, k) =
1

Fjk

[

F i
jk−2Hki · · ·Hk(i+j−1)

]n

0
, (3.6)

S7(n, j, k) =
1

Fjk

[

Li
jk−1Hki · · ·Hk(i+j−1)

]n

0
. (3.7)

We conclude this section with a proof of (3.1). The method of proof that we employ can
also be used to prove each of (3.2)–(3.7).

A key identity that we require for the proof of (3.1) is

Ujk−1Wk(n+j) − UjkWk(n+j)−1 = (−1)jkWkn, (3.8)

which is true for all integers j, k, and n. Upon substituting the Binet forms for the four terms
on the left side of (3.8), then expanding and factoring, we obtain

−(αβ)jk−1
(

Aαkn −Bβkn
)

α− β
, (3.9)

where A and B are given in the introduction. Since αβ = −1, (3.8) follows from (3.9).
Denote the right side of (3.1) by r(n, j, k). Then the difference r(n + 1, j, k) − r(n, j, k) is

given by

Un
jk−1Wk(n+1) · · ·Wk(n+j−1)

(

Ujk−1Wk(n+j) −Wkn

)

Ujk

.

Since jk is assumed to be even, by (3.8) we then have

r(n+ 1, j, k) − r(n, j, k) = Un
jk−1Wk(n+1) · · ·Wk(n+j−1)Wk(n+j)−1

= S1(n+ 1, j, k) − S1(n, j, k).
(3.10)

In light of (3.10), to complete the proof of (3.1) it is enough to prove that

r(1, j, k) = S1(1, j, k). (3.11)

We consider the cases j = 1 and j ≥ 2 separately. For j = 1, to prove (3.11) we are required
to prove that

Uk−1Wk − UkWk−1 = W0, for k even. (3.12)

Next, we consider the case j ≥ 2. Writing down both sides of (3.11), canceling terms that are
common to both sides, and rearranging, we see that we are required to prove

Ujk−1Wjk − UjkWjk−1 = W0, for jk even. (3.13)

Now both (3.12) and (3.13) follow from (3.8). This completes the proof of (3.1).
For the proof of each of (3.2)–(3.7), we require an identity that is analogous to (3.8). To

assist the interested reader, we record these identities below. They are, respectively,

Ujk+1Wk(n+j) − UjkWk(n+j)+1 = (−1)jkWkn,

VjkWk(n+j) −Wk(n+2j) = (−1)jkWkn,

Fjk+2Hk(n+j) − FjkHk(n+j)+2 = (−1)jkHkn,

Ljk+1Hk(n+j) − FjkHk(n+j)+1 = (−1)jkHkn,

Fjk−2Hk(n+j) − FjkHk(n+j)−2 = (−1)jk+1Hkn,

Ljk−1Hk(n+j) − FjkHk(n+j)−1 = (−1)jk+1Hkn.
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4. Special Cases of (3.1)–(3.7)

It is instructive to consider certain special cases of (3.1)–(3.7). Here, we need to keep in
mind the last two paragraphs of Section 2.

In (3.2) and (3.3) take {Wn} to be {Fn}, and in (3.5) take {Hn} to be {Fn}. In each of
these three cases, let (j, k) = (2, 1). Then (3.2), (3.3), and (3.5) become, respectively,

n
∑

i=1

2i−1FiFi+2 = 2nFnFn+1,

n
∑

i=1

3i−1FiFi+3 = 3nFnFn+1,

n
∑

i=1

4i−1FiLi+2 = 4nFnFn+1.

In (3.6), let j ≥ 3 be odd, and take k = 1. Then we obtain

n
∑

i=1

F i−1
j−2FiFi+1 · · ·Fi+j−2Fi+j−3 =

1

Fj

× Fn
j−2Fn · · ·Fn+j−1. (4.1)

For j = 3, (4.1) becomes
n
∑

i=1

F 2
i Fi+1 =

1

2
× FnFn+1Fn+2,

a result first found by Block [3].
We now consider two special cases of (3.7). When (j, k) = (1, 1) and {Hn} is {Fn}, (3.7)

becomes
n
∑

i=1

2i−1Li−1 = 2nFn,

which is equivalent to (1.5). Next let (j, k) = (1, 1), and take Hn = F n = Ln. Then by (1.2)

we see that Hn = Fn = 5Fn, and (3.7) becomes

n
∑

i=1

2i−1Fi−1 =
1

5

[

2iLi

]n

0
=

1

5
(2nLn − 2) . (4.2)

We have not seen (4.2) in the literature, and so we offer (4.2) as a counterpart to (1.5).
Staying with (3.7), taking (j, k) = (1, 3), and specializing {Hn} to {Fn}, we obtain

n
∑

i=1

3i−1L3i−1 =
1

2
× 3nF3n.

Finally for (3.7), recall that FnLn = F2n, and take (j, k) = (3, 1). Then specializing {Hn} to
{Fn}, we have

n
∑

i=1

3i−1FiF2i+2 =
1

2
× 3nFnFn+1Fn+2.

We leave the task of writing down further special cases of (3.1)–(3.7) to the interested reader.
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5. Concluding Comments

Results analogous to those presented here, where the right side contains squared terms, can
be found in [6]. In [6], all the sums have weight terms of 1 or (−1)i. Similar results with
weight terms other than 1 or (−1)i seem to be rare. Indeed, we have discovered only two such
results. These results are

n
∑

i=1

22i−2Hi+2H i−1 =
[

22iH2
i

]n

0
,

n
∑

i=1

32i−2H2
i H

2
i+1Hi+3H i+1 =

1

4

[

32iH2
i H

2
i+1H

2
i+2

]n

0
.

When we replace {Hn} by {Fn}, the two sums above become, respectively,
n
∑

i=1

22i−2Fi+2Li−1 = 22nF 2
n , (5.1)

n
∑

i=1

32i−2F 2
i F

2
i+1Fi+3Li+1 =

1

4
× 32nF 2

nF
2
n+1F

2
n+2. (5.2)

The sum (5.1) occurs in the recent paper of Treeby [8]. We have not managed to find results
similar to (5.1) and (5.2) where the right side contains cubes or higher powers.
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