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Abstract. For the Fibonacci numbers, the summation formula
n∑

k=1

F
2
k = FnFn+1

is well-known. Its charm lies in the fact that the right side is a product of terms from the
Fibonacci sequence. In the earlier paper [5], the author presents similar formulas where, in
each case, the right side consists of arbitrarily long products of an even number of distinct
terms from the Fibonacci sequence. The formulas in question contain several parameters, and
this contributes to their generality.

In this paper, we provide additional results of a similar nature where the right side consists
of arbitrarily long products of an odd number of distinct terms from the Fibonacci sequence.
Most of the results that we present apply to a sequence that generalizes both the Fibonacci
and Lucas numbers.

1. Introduction

We begin by defining the integer sequences that occur in this paper. Let a ≥ 0 and b ≥ 0
be integers, with (a, b) 6= (0, 0). Define, for all integers n, the sequences {Hn} and

{

Hn

}

by

Hn = Hn−1 +Hn−2, H0 = a, H1 = b, (1.1)

and

Hn = Hn−1 +Hn+1.

It is an easy exercise to show that

Hn = 5Hn, (1.2)

a task that we leave to the interested reader. For (a, b) = (0, 1), we have {Hn}={Fn}, and
{

Hn

}

={Ln}, which are the Fibonacci and Lucas sequences, respectively.

Let α and β denote the two distinct real roots of x2 − x − 1 = 0. Set A = b − aβ and
B = b− aα. Then the Binet forms for {Hn} and

{

Hn

}

are, respectively,

Hn =
Aαn −Bβn

α− β
, (1.3)

and

Hn = Aαn +Bβn. (1.4)

The Binet forms for the Fibonacci and Lucas numbers are obtained from (1.3) and (1.4),
respectively, by setting A = B = 1.

The motivation for this paper comes from our earlier paper [5], in which we present eight
theorems giving formulas for sums of products of Fibonacci and Lucas numbers. For instance,
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in [5], formulas (2.1) and (2.3) are, respectively,

n
∑

k=1

FskFs(k+1) · · ·Fs(k+4m)Ls(k+2m) =
FsnFs(n+1) · · ·Fs(n+4m+1)

Fs(2m+1)
, (1.5)

n
∑

k=1

LskLs(k+1) · · ·Ls(k+4m)Fs(k+2m) =

[

LskLs(k+1) · · ·Ls(k+4m+1)

5Fs(2m+1)

]n

0

, (1.6)

where s > 0 is an even integer, and m ≥ 0 is an integer. For convenience, in (1.6) we use
familiar notation in which k is taken to be the dummy variable. For instance,

[

Fs(k+2m)

]n

0
is

to be interpreted as the difference Fs(n+2m) − Fs(0+2m).
As an instance of (1.5), take s = 2 and m = 3. Then (1.5) becomes

n
∑

k=1

F2kF2(k+1) · · ·F2(k+12)L2(k+6) =
1

377
F2nF2(n+1) · · ·F2(n+13). (1.7)

Notice that the product on the right of (1.7) consists of an even number of distinct terms
from the Fibonacci sequence. Indeed, in each of the formulas in [5], the product on the right
side consists of an even number of distinct terms from the Fibonacci/Lucas sequences. In this
paper, we supplement our results in [5] by presenting similar results in which the right side is
a product that consists of an odd number of distinct terms from one of the sequences defined
earlier in this section. As for [4] and [5], our motivation in this paper is to present closed forms
for finite sums of products of terms from Fibonacci/generalized Fibonacci sequences, where
the closed forms involve a single product or a difference of two products.

When writing [5], and its precursor [4], we were unaware that our presentation could be
streamlined with the use of the sequences {Hn} and

{

Hn

}

. Had we been aware of this, we
would have expressed (1.5) and (1.6) more generally as

n
∑

k=1

HskHs(k+1) · · ·Hs(k+4m)Hs(k+2m) =

[

HskHs(k+1) · · ·Hs(k+4m+1)

Fs(2m+1)

]n

0

, (1.8)

with the same conditions on the parameters s and m. In (1.8), {Hn} = {Fn} yields (1.5), while
the use of (1.2) shows that {Hn} = F n = {Ln} yields (1.6). In this paper, where possible, we
express our results in terms of the sequences {Hn} and

{

Hn

}

.
In Section 2, we present the three simplest results that we discovered in the course of our

research. In fact, these results are special cases of results that appear in our earlier paper [7].
We present the three results in question here only to complete the overall picture. In Section
3, we present our main results in the form of five theorems, and in Section 4 we give a proof
of one of these theorems. In Section 5, we indicate certain key identities that are required for
the proofs of the remaining theorems in Section 3.

2. The Product on the Right Side Has One Distinct Term

In this section, we present separately the summation formulas in which the product on the
right side involves only one distinct term. In this regard, for s an integer, we have

n
∑

k=1

Hs(2k−1) =

{

1
5Fs

[

H2sk

]n

0
, s 6= 0 and s even;

1
Ls

[H2sk]
n

0 , s odd,
(2.1)
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and
n
∑

k=1

(−1)kHs(2k−1) =

{

1
Ls

[

(−1)kH2sk

]n

0
, s even;

1
5Fs

[

(−1)kH2sk

]n

0
, s odd.

(2.2)

Furthermore, for any integer s 6= 0 we have
n
∑

k=1

Hs(2k−1)Hs(2k−1) =
1

F2s

[

H2
2sk

]n

0
. (2.3)

The summands in (2.1)–(2.3) are special cases of summands that occur in the recent paper
[7]. More specifically, we have the following:

• In the summand that occurs in Theorem 2.1 of [7], replace W by H and put m = −s
to obtain the summand in (2.1) above;

• In the summand that occurs in Theorem 2.2 of [7], replace W by H and put m = −s
to obtain the summand in (2.2) above;

• In the summand that occurs in Theorem 2.5 of [7], replace W by H and put (s, k,m) =
(2s,−s,−s) to obtain the summand in (2.3) above.

In fact, in [7] the summands in question contain more parameters, and involve sequences
more general than {Hn} and

{

Hn

}

. Furthermore, the corresponding finite sums depend upon
the parity of n. We include (2.1)–(2.3) in this paper to highlight their relationship with the
theorems that we present in the next section, thus rendering our presentation more complete.

We have discovered an alternating counterpart for (2.3). However, the closed form for the
associated finite sum cannot be expressed in same manner as the right sides of (2.1)–(2.3),
and so we omit this result. For a more general alternating result, see Theorem 2.6 in [7].

3. The Product on the Right Side Has 2m+ 1 Distinct Terms, m ≥ 1

In this section, we present closed forms for finite sums where the right side involves a product
of 2m+1 distinct terms, m ≥ 1. In the first three theorems, we express our results in terms of
the sequences {Hn} and

{

Hn

}

. As such, these results can be specialized to both the Fibonacci
and Lucas numbers.

Theorem 3.1. Let s 6= 0 and m ≥ 1 be integers. Then

n
∑

k=1

H2sk · · ·H2s(k+2m−1)Hs(2k+2m−1) =

[

H2sk · · ·H2s(k+2m)

Fs(2m+1)

]n

0

, s even,

n
∑

k=1

H2sk · · ·H2s(k+2m−1)Hs(2k+2m−1) =

[

H2sk · · ·H2s(k+2m)

Ls(2m+1)

]n

0

, s odd.

In Theorem 3.1, let (s,m) = (1, 1) and take Hn = Fn. Then we obtain
n
∑

k=1

F2kF2k+1F2k+2 =
1

4
F2nF2n+2F2n+4.

Theorem 3.2. Let s 6= 0 and m ≥ 1 be integers. Then

n
∑

k=1

(−1)kH2sk · · ·H2s(k+2m−1)Hs(2k+2m−1) =

[

(−1)kH2sk · · ·H2s(k+2m)

Ls(2m+1)

]n

0

, s even,

n
∑

k=1

(−1)kH2sk · · ·H2s(k+2m−1)Hs(2k+2m−1) =

[

(−1)kH2sk · · ·H2s(k+2m)

Fs(2m+1)

]n

0

, s odd.
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In Theorem 3.2, let (s,m) = (1, 1) and take Hn = Fn. We then have
n
∑

k=1

(−1)kF2kL2k+1F2k+2 =
(−1)n

2
F2nF2n+2F2n+4.

The sum that we present in our next theorem is independent of the parity of s.

Theorem 3.3. Let s 6= 0 and m ≥ 1 be integers. Then

n
∑

k=1

H2
2sk · · ·H

2
2s(k+2m−1)Hs(2k+2m−1)Hs(2k+2m−1) =

[

H2
2sk · · ·H

2
2s(k+2m)

F2s(2m+1)

]n

0

.

Setting (s,m) = (1, 1) and taking Hn = Fn in Theorem 3.3, we obtain
n
∑

k=1

F 2
2kF

2
2k+2F4k+2 =

1

8
F 2
2nF

2
2n+2F

2
2n+4.

For the two theorems that follow, s is an odd integer. We could find no analogous results
where s is even and where the right side is a product of an odd number of distinct terms.
Furthermore, the results in Theorems 3.4 and 3.5 cannot be combined into a single result that
is expressible in terms of the sequences {Hn} and

{

Hn

}

.

Theorem 3.4. Let s be an odd integer and m ≥ 1 be an integer. Then

n
∑

k=1

(−1)kF 2
sk · · ·F

2
s(k+2m−1)Fs(2k+2m−1) =

(−1)nF 2
sn · · ·F

2
s(n+2m)

Fs(2m+1)
.

In Theorem 3.4, let (s,m) = (1, 3). We then have
n
∑

k=1

(−1)kF 2
kF

2
k+1F

2
k+2F

2
k+3F

2
k+4F

2
k+5F2k+5 =

(−1)n

13
F 2
nF

2
n+1 · · ·F

2
n+6.

Theorem 3.5. Let s be an odd integer and m ≥ 1 be an integer. Then

n
∑

k=1

(−1)kL2
sk · · ·L

2
s(k+2m−1)Fs(2k+2m−1) =

[

(−1)kL2
sk
· · ·L2

s(k+2m)

5Fs(2m+1)

]n

0

.

Noting that s must be odd, in Theorem 3.5, let (s,m) = (3, 2). We then have
n
∑

k=1

(−1)kL2
3kL

2
3k+3L

2
3k+6L

2
3k+9F6k+9

=
1

3050

(

(−1)nL2
3nL

2
3n+3L

2
3n+6L

2
3n+9L

2
3n+12 − 12418350465024

)

.

4. A Sample Proof

In order to demonstrate a method of proof for all the theorems in Section 3, we now prove
Theorem 3.3. To this end, we require identities (30)–(33) in [1], which, in the notation of the
present paper are, respectively,

Hn+k +Hn−k = HnLk, k even,

Hn+k −Hn−k = HnLk, k odd,

Hn+k +Hn−k = HnFk, k odd,

Hn+k −Hn−k = HnFk, k even.

(4.1)
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For the result in Theorem 3.3, let ln = ln(s,m) denote the sum on the left side, and let
rn = rn(s,m) denote the right side. Keeping in mind that m ≥ 1, and with the use of all four
cases in (4.1), we see that

rn+1 − rn =
H2

2s(n+1) · · ·H
2
2s(n+2m)

(

H2
2s(n+2m+1) −H2

2sn

)

F2s(2m+1)
,

=
H2

2s(n+1) · · ·H
2
2s(n+2m)

(

H2s(n+2m+1) −H2sn

) (

H2s(n+2m+1) +H2sn

)

F2s(2m+1)
,

=
H2

2s(n+1) · · ·H
2
2s(n+2m)Hs(2n+2m+1)Hs(2n+2m+1)Fs(2m+1)Ls(2m+1)

F2s(2m+1)
,

= H2
2s(n+1) · · ·H

2
2s(n+2m)Hs(2n+2m+1)Hs(2n+2m+1),

= ln+1 − ln,

and this is true for n ≥ 1.
In a similar manner, we have

r1 =
H2

2s(1) · · ·H
2
2s(2m)

(

H2
2s(2m+1) −H2

2s(0)

)

F2s(2m+1)
,

=
H2

2s(1) · · ·H
2
2s(2m)

(

H2s(2m+1) −H2s(0)

) (

H2s(2m+1) +H2s(0)

)

F2s(2m+1)
,

=
H2

2s(1) · · ·H
2
2s(2m)Hs(2m+1)Hs(2m+1)Fs(2m+1)Ls(2m+1)

F2s(2m+1)
,

= H2
2s(1) · · ·H

2
2s(2m)Hs(2m+1)Hs(2m+1),

= l1.

Since r1 = l1, and rn+1 − rn = ln+1 − ln for n ≥ 1, we see that rn = ln for n ≥ 1, which
proves Theorem 3.3.

5. Concluding Comments

In the previous section, to assist in the proof of Theorem 3.3, we make use of each of the
identities in (4.1). Likewise, to prove Theorems 3.1 and 3.2, we proceed similarly, making use
of the identities in (4.1). Specifically, to prove the first sum in Theorem 3.1, we make use
of the fourth identity in (4.1), and to prove the second sum in Theorem 3.1 we make use of
the second identity in (4.1). Two prove the first sum in Theorem 3.2, we make use of the
first identity in (4.1), and to prove the second sum in Theorem 3.2 we make use of the third
identity in (4.1).

To prove Theorems 3.4 and 3.5, the identities that we require are, respectively,

F 2
sn + F 2

s(n+2m+1) = Fs(2m+1)Fs(2n+2m+1), (5.1)

L2
sn + L2

s(n+2m+1) = 5Fs(2m+1)Fs(2n+2m+1), (5.2)

where m and n are integers, and s is an odd integer.
Identity (5.1) is a consequence of the identity

F 2
n+a1

/Fa1−a2 + F 2
n+a2

/Fa2−a1 = F2n+a1+a2 , (5.3)
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in which a1 6= a2 are integers. Identity (5.3) can be found in [2]. In (5.3), replace (n, a1, a2)
by (sn, 0, s(2m + 1)) under the assumption that s is odd, to obtain (5.1). Identity (5.2) is
the dual identity of (5.1) with respect to the variable n. For an explanation of the concept
of a dual identity, see Dresel’s original article [3]. Alternatively, for readers without access to
[3], an abbreviated account of Dresel’s main ideas, including the concept of a dual identity, is
given in [6].

Finally, we mention that in the recent paper [8], Treeby derives certain special cases of some
of the theorems that occur in [5]. The interested reader may wish to explore whether Treeby’s
method can be used to derive special cases of some of our theorems in Section 3 above.
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