
ON MODULI FOR WHICH CERTAIN SECOND-ORDER LINEAR

RECURRENCES CONTAIN A COMPLETE SYSTEM

OF RESIDUES MODULO m

LAWRENCE SOMER AND MICHAL KŘÍŽEK

Abstract. Let u(a, b) denote the Lucas sequence defined by the second-order recursion re-
lation un+2 = aun+1 + bun with initial terms u0 = 0 and u1 = 1, where a and b are integers.
The positive integer m is said to be nondefective if u(a, b) contains a complete system of
residues modulo m. All possibilities for m to be nondefective are found when b = ±1. This
paper generalizes results of S. A. Burr for the Fibonacci sequence u(1, 1).

1. Introduction

Let (w) = w(a, b) denote the sequence satisfying the second-order linear recursion relation

wn+2 = awn+1 + bwn, (1.1)

where the parameters a and b and the initial terms w0 and w1 are all integers. We distinguish
two special recurrences, the Lucas sequence of the first kind (LSFK) (u) = u(a, b) with initial
terms u0 = 0 and u1 = 1, and the Lucas sequence of the second kind (LSSK) (v) = v(a, b)
with initial terms v0 = 2 and v1 = a.

The positive integer m is said to be defective with respect to w(a, b), or simply defective
if the recurrence w(a, b) is given, if w(a, b) contains an incomplete system of residues modulo
m. Otherwise, m is said to be nondefective with respect to w(a, b). In [4], Burr found all
nondefective integers m with respect to the Fibonacci sequence. This result will be given in
Theorem 2.4. In this paper, we will generalize Burr’s result by finding all nondefective integers
m with respect to the LSFK u(a,±1). In Theorem 2.6, we find all nondefective integers m
with respect to the LSFK u(a, 1). In Theorem 2.9, we will prove a similar result with respect
to the LSFK u(a,−1).

Associated with the recurrence w(a, b) is the characteristic polynomial

f(x) = x2 − ax− b (1.2)

with characteristic roots α and β and discriminant D = a2 + 4b = (α − β)2. By the Binet
formulas,

un =
αn − βn

α− β
, vn = αn + βn. (1.3)

Throughout this paper, p will denote a prime and m will denote a positive integer. It was
shown in [7, pp. 344–345] that w(a, b) is purely periodic modulo m if gcd(b,m) = 1. We will
usually take b to equal to ±1, so that w(a, b) will then automatically be purely periodic modulo
m. From here on, we assume that gcd(p, b) = gcd(m, b) = 1.

Before proceeding further, we will need the following definitions and results. The period

length λw(m) of w(a, b) modulom is the least positive integer r such that wn+r ≡ wn (mod m)
for all n ≥ 0. The restricted period length hw(m) of w(a, b) modulo m is the least positive
integer t such that wn+t ≡ Mwn (mod m) for all n ≥ 0 and some fixed residue M modulo
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m such that gcd(M,m) = 1. Here M = Mw(m) is called the multiplier of w(a, b) modulo m.
Since the LSFK u(a, b) is purely periodic modulo m and has initial terms u0 = 0 and u1 = 1,
it is easily seen that hu(m) is the least positive integer r such that ur ≡ 0 (mod m). It is

proven in [7, pp. 354–355] that hw(m) | λw(m). Let Ew(m) = λw(m)
hw(m) . Then by [7, pp. 354–355],

Ew(m) is the multiplicative order of the multiplier Mw(m) modulo m. Let h = hw(m). It
follows easily that

wn+hi ≡ M iwn (mod m). (1.4)

Given the recurrence (w), we let the set Sw(m) consist of all residues i such that 0 ≤ i ≤ m−1
and wn ≡ i (mod m) for some n. By Aw(d,m) we denote the number of times that the residue
d appears in a full period of (w) modulo m and by Nw(m) we denote the number of residues
such that 0 ≤ d ≤ m− 1 and Aw(d,m) ≥ 1. Clearly, m is nondefective with respect to (w) if
Aw(d,m) ≥ 1 for all residues d modulo m and Nw(m) = m. It is evident that m is defective
with respect to (w) if λw(m) < m.

The following results will be helpful for our future work.

Theorem 1.1. Consider the recurrence w(a, b). Suppose that m is defective. Then every

positive multiple of m is also defective.

Proof. Let tm be a multiple of m, where t ≥ 1, and suppose that m is defective. Then there
exists an integer d such that 0 ≤ d ≤ m− 1 and Aw(d,m) = 0. Then Aw(d, tm) = 0 also and
tm is defective. �

Theorem 1.1 was proved in [15] in the case of the Fibonacci sequence.

Theorem 1.2. Consider the recurrence w(a, b). Then m is nondefective with respect to w(a, b)
only if m is nondefective with respect to u(a, b).

Proof. Suppose that m is nondefective with respect to w(a, b). Since w(a, b) is purely periodic
modulo m and Aw(0,m) ≥ 1, we can assume without loss of generality that w0 ≡ 0 (mod m).
If d = gcd(w1,m) > 1, then by the recursion relation (1.1) defining w(a, b), d | wn for all n ≥ 0
and Aw(1,m) = 0, contrary to assumption. Thus, w1 ≡ c (mod m), where c is invertible
modulo m. Then by the recursion relation defining u(a, b),

un(a, b) ≡ c−1wn(a, b) (mod m)

for all n ≥ 0, and m is also nondefective with respect to u(a, b). �

Remark 1.3. By virtue of Theorem 1.2, we need only consider the LSFK u(a, b) when looking
for all possible nondefective integers m with respect to the recurrence w(a, b).

Theorem 1.4. Consider the LSFK u(a, b) with discriminant D, where gcd(a, b) = 1. Let p be

a fixed odd prime such that p ∤ b and let m be a fixed positive integer such that gcd(m, b) = 1.
Let h = hu(p) and λ = λu(p).

(i) If r | s, then ur | us.
(ii) If d = gcd(r, s), then gcd(ur, us) = |ud|.
(iii) h > 1 and h | p − (D/p), where (D/p) denotes the Legendre symbol and (D/p) = 0 if

p | D.

(iv) If (D/p) = 0, then h = p.
(v) If p ∤ D, then h | (p− (D/p))/2 if and only if (−b/p) = 1.
(vi) un ≡ 0 (mod m) if and only if hu(m) | n.
(vii) If (D/p) = 1, then λ | p− 1.
(viii) hu(mn) = lcm(hu(m), hu(n)) and λu(mn) = lcm(λu(m), λu(n)).
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Proof. We note that h > 1, since u0 = 0 and u1 = 1. Part (i) follows from the Binet formula in
(1.3). Part (ii) is proved in Theorem VI of [6]. Parts (iii) and (vii) are proved in [6, pp. 44–45]
and [12, pp. 290, 296, 297]. Part (iv) is proved in [10, p. 424], while part (v) is proved in [10,
p. 441]. Part (vi) follows from part (ii). Part (viii) follows from part (i), (ii), and (vi). �

Corollary 1.5. Consider the LSFK u(a, b) with discriminant D, where gcd(a, b) = 1. Let p
be a fixed odd prime such that p ∤ b. If (D/p) = 1, then p is defective.

Proof. By part (vii) of Theorem 1.4, λu(p) ≤ p − 1. Then Nu(p) ≤ λu(p) ≤ p − 1, and p is
defective. �

Corollary 1.6. Consider the LSFK u(a, b), where gcd(a, b) = 1. Suppose that m1 | m2, where

m2 > m1 and hu(m1) = hu(m2). Then m2 is defective. In particular, if a is even and hu(m1)
is even, then hu(m1) = hu(2m1) and 2m1 is defective.

Proof. First suppose that m1 | m2, where m2 > m1, and hu(m1) = hu(m2). By Theorem 1.4
(vi), un ≡ 0 (mod m1) if and only if un ≡ 0 (mod m2). It thus follows that m1 6∈ Su(m2),
and thus m2 is defective.

Now suppose that a is even and hu(m1) is even. Then u2 = a ≡ 0 (mod 2) and hu(2) = 2.
Then by Theorem 1.4 (viii),

hu(2m1) = lcm(hu(2), hu(m1)) = lcm(2, hu(m1)) = hu(m1).

Thus, by our argument above, m1 6∈ Su(2m1), and 2m1 is defective. �

The recurrence w(a, b) is said to be uniformly distributed (u.d.) modulo m if Aw(d1,m) =
Aw(d2,m) for all pairs (d1, d2) of residues modulo m such that 0 ≤ d1 < d2 ≤ m − 1. It is
clear that m is nondefective with respect to (w) if (w) is u.d. modulo m. Then m is said to be
purely nondefective with respect to (w) if (w) is u.d. modulo m, while the nondefective integer
m is said to be impurely nondefective with respect to (w) otherwise. In particular, 1 is always
considered to be purely nondefective with respect to (w). Theorem 1.7 due to Bumby [3] and
Webb and Long [25] completely determines all purely nondefective integers m with respect to
the LSFK u(a, b) with discriminant D. In particular, it is shown that m is purely nondefective
with respect to u(a, b) only if p | D for each prime divisor p of m.

Theorem 1.7. Consider the LSFK u(a, b) with discriminant D. Then

(i) u(a, b) is uniformly distributed modulo m if and only if it is u.d. modulo all prime

power factors of m. In particular, u(a, b) is u.d. modulo m if and only if u(a, b) is u.d.
modulo m1 for each divisor m1 of m.

(ii) u(a, b) is u.d. modulo p if and only if p | D.

(iii) u(a, b) is u.d. modulo pe for e ≥ 2 only if u(a, b) is u.d. modulo p.
(iv) If p ≥ 5, then u(a, b) is u.d. modulo pe for e ≥ 2 if and only if u(a, b) is u.d. modulo p.
(v) If p = 2, then u(a, b) is u.d. modulo 2e for e ≥ 2 if and only if a ≡ 2 (mod 4) and

b ≡ 3 (mod 4).
(vi) If p = 3, then u(a, b) is u.d. modulo 3e for e ≥ 2 if and only if a ≡ ±1 (mod 3) and

b ≡ −1 (mod 3), but a2 6≡ −b (mod 9).
(vii) If u(a, b) is u.d. modulo pe for some e ≥ 1, then hu(p

e) = pe and

Eu(p
e) = Au(d, p

e) =

{

1, if p = 2,

ordpa/2, if p ≥ 3;

where d is any residue such that 0 ≤ d ≤ pe − 1 and ordper denotes the multiplicative

order of r modulo pe.
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(viii) If b = 1, then u(a, b) is u.d. modulo p only if p = 2 or p ≡ 1 (mod 4).

Proof. Parts (i)–(vii) follow from the results in [3] and [25]. Part (vii) is also proved in [23].
We now prove part (viii). Suppose that u(a, 1) is u.d. modulo p. By part (ii), D = a2 +4 ≡ 0
(mod p), which implies that either p = 2 or

(

−4
p

)

=
(

−1
p

)

= 1 if p is odd. By the law of

quadratic reciprocity, p ≡ 1 (mod 4) if p is odd. �

Corollary 1.8. Consider the LSFK u(a, b).

(i) If u(a, b) is u.d. modulo p, but u(a, b) is not u.d. modulo p2, then pe is defective for

all e ≥ 2.
(ii) If b = 1 and p is an odd prime such that u(a, b) is u.d. modulo pe for some e ≥ 1, then

Eu(p
e) = Au(d, p

e) = 4 (1.5)

for all d ∈ {0, 1, 2, . . . , pe − 1}.
(iii) Suppose that b = −1 and p is an odd prime such that u(a, b) is u.d. modulo p. This

occurs if and only if a ≡ ±2 (mod p). Moreover, if u(a, b) is u.d. modulo pe for some

e ≥ 1, then

Eu(p
e) = Au(d, p

e) =

{

1, if a ≡ 2 (mod p),

2, if a ≡ −2 (mod p);
(1.6)

for all d ∈ {0, 1, 2 . . . , pe − 1}.
Proof. (i) By Theorem 1.7 (iv), we need to consider only the cases in which p = 2 or p = 3. By
Theorem 1.7 (v) and (vi) and Corollary 1.6, it suffices to prove that if p ∈ {2, 3} and u(a, b)
is u.d. modulo p, but u(a, b) is not u.d. modulo p2, then p2 is defective. First suppose that
p = 2. Then by Theorem 1.7 (ii) and (v), u(a, b) is u.d. modulo 2, but u(a, b) is not u.d.
modulo 2e for some e ≥ 2, if and only if b is odd and a is even, but it is not the case that
a ≡ 2 (mod 4) and b ≡ 3 (mod 4). If a ≡ 0 (mod 4) and b ≡ 1 (mod 2), then u2 = a ≡ 0
(mod 4) and hu(2) = hu(4) = 2. It then follows from Corollary 1.6 that 2 6∈ Su(4) and thus
4 is defective. Now suppose that a ≡ 2 (mod 4) and b ≡ 1 (mod 4). By inspection, one sees
that 3 6∈ Su(4) and 4 is again defective.

We now consider the case in which u(a, b) is u.d. modulo 3, but u(a, b) is not u.d. modulo
3e for some e ≥ 2. By Theorem 1.7 (ii) and (vi), this occurs if and only if a ≡ ±1 (mod 3)
and b ≡ −a2 (mod 9). Then u1 = 1, u2 = a ≡ ±1 (mod 3), and u3 = a2 + b ≡ 0 (mod 9).
Therefore, hu(3) = hu(9) = 3 and by Corollary 1.6, 3 6∈ Su(9) and 9 is defective.

(ii) Suppose that u(a, b) is u.d. modulo pe for some e ≥ 1. Then by Theorem 1.7 (iii),
u(a, b) is u.d. modulo p. Moreover, by Theorem 1.7 (ii), p | D = a2 + 4. Hence,

a2

4
≡

(a

2

)2
≡ −1 (mod p).

Thus, ordpa/2 = 4 and (1.5) holds by Theorem 1.7 (vii).
(iii) Suppose that b = −1 and u(a,−1) is u.d. modulo p. Then D = a2 − 4 ≡ 0 (mod p)

and a ≡ ±2 (mod p). Then (1.6) holds by Theorem 1.7 (vii). �

Theorem 1.9. Consider the LSFK u(a, b) with discriminant D.

(i) m is purely nondefective only if p | D for each prime divisor p of m.

(ii) 2 is impurely nondefective if and only if a ≡ b ≡ 1 (mod 2), in which case hu(2) =
λu(2) = 3.

(iii) m is impurely nondefective only if (D/p) = −1 for some odd prime divisor p of m or

2 | m and 2 is impurely nondefective.
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Proof. Part (i) follows from Theorem 1.7 (i)–(iii). Part (ii) follows by inspection. Part (iii)
follows from parts (i) and (ii), Theorem 1.1, Corollary 1.5, and Corollary 1.8 (i). �

2. Previous Results and the Main Theorems

Shah [15] proved that the prime p is defective with respect to the Fibonacci sequence
{Fn} = u(1, 1) if p ≡ ±1 (mod 10) or p ≡ 13 or 17 (mod 20), while 2, 3, 5, and 7 are
nondefective with respect to the Fibonacci sequence. Bruckner [2] proved the remaining cases
that p is defective with respect to {Fn} if p > 7 with p ≡ 3 or 7 (mod 20). Somer [17] partially
generalized the results of Shah and Bruckner by showing that p is defective with respect to
u(a, 1) if p > 7, p ∤ D = a2+4, and p 6≡ 1 or 9 (mod 20). Schinzel [14], completely generalized
the results of Shah and Bruckner by proving Theorem 2.1 below.

Theorem 2.1. Consider the LSFK u(a, 1). Then p is defective if p > 7 and p ∤ D = a2 + 4.

Li [11] also proved Theorem 2.1 by extending the methods of Somer [17].
Somer [19] also obtained similar results in Theorem 2.2 to those in Theorem 2.1 by consid-

ering the LSFK u(a,−1).

Theorem 2.2. Consider the LSFK u(a,−1). Then p is defective if p ≥ 5 and p ∤ D = a2 − 4.

Remark 2.3. By Theorems 1.1 and 2.1, one sees that m can be nondefective with respect to
the LSFK u(a, 1) only if p ≤ 7 or p | a2 + 4 for each prime divisor p of m. It similarly follows
from Theorem 2.2 that p can be nondefective with respect to u(a,−1) only if p = 2 or 3 or
p | a2 − 4 for each prime factor p of m.

Burr [4] generalized the results of Shah and Bruckner by completely determining all nonde-
fective integers m with respect to the Fibonacci sequence.

Theorem 2.4. Consider the Fibonacci sequence {Fn}. Then m is nondefective if and only if

m has one of the following forms:

5k, 2 · 5k, 4 · 5k, 3j · 5k, 6 · 5k, 7 · 5k, 14 · 5k, (2.1)

where k ≥ 0 and j ≥ 1. Moreover, m is purely nondefective if and only if m is of the form 5k.

Theorem 2.5 due to Avila and Chen [1] complements Theorem 2.4 by finding all nondefective
integers m for the Lucas sequence {Ln} = v(1, 1).

Theorem 2.5. Consider the Lucas sequence {Ln}. Then m is nondefective if and only if m
is equal to one of the following numbers:

2, 4, 6, 7, 14, 3k,

where k ≥ 0.

Theorems 2.6 and 2.9 below generalize Burr’s result for the LSFK’s u(a, 1) and u(a,−1).

Theorem 2.6. Consider the LSFK u(a, 1) with discriminant D = a2 + 4. Let L be the set

of integers ℓ ≥ 1 such that each prime divisor of ℓ also divides a2 + 4 and 4 ∤ ℓ. Then m is

nondefective only if m is of the form

ℓ, 2ℓ (ℓ odd), 3kℓ (ℓ odd), 4ℓ (ℓ odd), 5kℓ (ℓ odd), 6ℓ (ℓ odd), 7ℓ (ℓ odd), or 14ℓ (ℓ odd),
(2.2)

where k ≥ 0, ℓ ∈ L, and either m/ℓ = 1 or m/ℓ 6∈ L. Moreover the following hold:

(i) ℓ ∈ L only if ℓ = 1 or each odd prime divisor of ℓ is congruent to 1 modulo 4.
(ii) m is purely nondefective if and only if m = ℓ for some ℓ ∈ L and a is even if 2 | m.
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(iii) 2ℓ (ℓ odd) is impurely nondefective if and only if a is odd. In particular, 2ℓ (ℓ odd) is

nondefective no matter what value a has.

(iv) 3ℓ is impurely nondefective if and only if ℓ is odd and a ≡ ±1 (mod 3).
(v) 3kℓ is impurely nondefective for k ≥ 2 if and only if ℓ is odd, and a ≡ ±1 or ±2

(mod 9).
(vi) 4ℓ is impurely nondefective if and only if ℓ is odd and a ≡ ±1 (mod 4).
(vii) If 5 ∤ a2 + 4, then 5ℓ is impurely nondefective if and only if ℓ is odd and a ≡ ±2

(mod 5).
(viii) If 5 ∤ a2+4, then 5kℓ is impurely nondefective for k ≥ 2 if and only if ℓ is odd, a ≡ ±2

(mod 5), but a 6≡ ±7 (mod 25).
(ix) 6ℓ is impurely nondefective if and only if ℓ is odd and a ≡ ±1 (mod 6).
(x) 7ℓ is impurely nondefective if and only if ℓ is odd, and a ≡ ±1 or ±3 (mod 7).
(xi) 14ℓ is impurely nondefective if and only if ℓ is odd, and a ≡ ±1 or ±3 (mod 14).

Theorem 2.6 will be proved in Section 4. Corollary 2.7 below will determine all those integers
a for which m is nondefective with respect to u(a, 1) if and only if m is purely nondefective.
Corollary 2.8 will find all integers a for which there are nondefective integers with respect to
u(a, 1) satisfying each of the possible forms given in Theorem 2.6.

Corollary 2.7. Consider the LSFK u(a, 1). Then the integer m is nondefective if and only

if m is purely nondefective exactly when

a ≡ 0, 30, 54, 84, 96, 114, 126, 156, or 180 (mod 210).

Proof. This follows from Theorem 2.6 and the Chinese Remainder Theorem. �

Corollary 2.8. Consider the LSFK u(a, 1). Then there exists a nondefective integer m sat-

isfying each of the possible cases in Theorem 2.6 if and only if a ≡ 1 (mod 2), a ≡ ±1,±2
(mod 9), a ≡ ±2,±3,±8,±12 (mod 25), and a ≡ ±1,±3 (mod 7). The least such integer in

absolute value is ±17.

Proof. This follows from Theorem 2.6 and the use of the Chinese Remainder Theorem. �

Theorem 2.9. Consider the LSFK u(a,−1) with discriminant D = a2 − 4. Let L′ be the set

of odd integers ℓ′ ≥ 1 such that each prime divisor of ℓ′ divides a2 − 4 and is greater than

or equal to 5. In particular, p | ℓ′ if and only if p ≥ 5 and a ≡ ±2 (mod p). Then m is

nondefective only if m is of the form

2i3jℓ′, (2.3)

where i ≥ 0, j ≥ 0, and ℓ′ ∈ L′. Moreover, the following hold:

(i) m = 2i3jℓ′ is purely nondefective if and only if 2i and 3j are both purely nondefective.

Moreover, 2 is purely nondefective if and only if a is even; and 3 is purely nondefective

if and only if a ≡ ±1 (mod 3). Further, 2i is purely nondefective for i ≥ 2 if and only

if a ≡ 2 (mod 4), while 3j is purely nondefective for j ≥ 2 if and only if a ≡ ±2 or ±4
(mod 9).

(ii) If a = ±2 then D = 0 and all positive integers m are purely nondefective. Furthermore,

un = n for all n ≥ 0 if a = 2, while un = (−1)n+1n for n ≥ 0 if a = −2.
(iii) m is impurely nondefective if and only if m = 2ℓ′, 3ℓ′, or 6ℓ′.
(iv) 2ℓ′ is impurely nondefective if and only if a is odd. In particular, 2ℓ′ is nondefective

for any integer a.
(v) 3ℓ′ is impurely nondefective if and only if a ≡ 0 (mod 3). In particular, 3ℓ′ is nonde-

fective for any integer a.
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(vi) 6ℓ′ is impurely nondefective if and only if a ≡ 3 (mod 6).

Theorem 2.9 will be proved in Section 4.

Corollary 2.10. Consider the LSFK u(a,−1). Then the integer m is nondefective if and only

if m is purely nondefective exactly when a ≡ 2 or 4 (mod 6).

Proof. This follows from Theorem 2.9 and application of the Chinese Remainder Theorem. �

Corollary 2.11. Consider the LSFK u(a,−1). Then there exists a nondefective integer m
satisfying each of the possible cases in Theorem 2.9 if and only if a ≡ 3 (mod 6).

Proof. This follows from Theorem 2.9 and the Chinese Remainder Theorem. �

3. Further Results and Definitions

The following definitions and results will be needed for the proofs of our main theorems,
Theorem 2.6 and Theorem 2.9.

Theorem 3.1. Let u(a, 1) be a LSFK with discriminant D. Let p be an odd prime. Then

(i) Eu(p) = 1, 2, or 4.
(ii) Eu(p) = 1 if and only if hu(p) ≡ 2 (mod 4). Moreover, if Eu(p) = 1, then (D/p) = 1.
(iii) Eu(p) = 2 if and only if hu(p) ≡ 0 (mod 4). Moreover, if Eu(p) = 2, then (D/p) =

(−1/p).
(iv) Eu(p) = 4 if and only if hu(p) is odd. Moreover, if Eu(p) = 4, then p ≡ 1 (mod 4).
(v) If p ≡ 3 (mod 4) and (D/p) = 1, then hu(p) ≡ 2 (mod 4), Eu(p) = 1, and Mu(p) ≡ 1

(mod p).
(vi) If p ≡ 3 (mod 4) and (D/p) = −1, then hu(p) ≡ 0 (mod 4), Eu(p) = 2, and Mu(p) ≡

−1 (mod p).
(vii) If p ≡ 1 (mod 4) and (D/p) = −1, then hu(p) is odd and Eu(p) = 4.

This follows from Lemma 3 and Theorem 13 of [16].

Theorem 3.2. Let u(a,−1) be a LSFK with discriminant D. Let p be an odd prime. Then

(i) Eu(p) = 1 or 2.
(ii) If λu(p) is odd, then hu(p) is odd, Eu(p) = 1, and Mu(p) ≡ 1 (mod p).
(iii) If λu(p) ≡ 2 (mod 4), then hu(p) is odd, Eu(p) = 2, and Mu(p) ≡ −1 (mod p).
(iv) If λu(p) ≡ 0 (mod 4), then hu(p) is even, Eu(p) = 2, and Mu(p) ≡ −1 (mod p).

This follows Theorem 16 of [16].

Lemma 3.3. Consider the LSFK u(a, 1) with discriminant D. Let p be an odd prime.

(i) If p ≡ 3 (mod 4) and p is nondefective, then hu(p) = p+ 1.
(ii) If p ≡ 1 (mod 4) and p is impurely nondefective, then hu(p) = (p+ 1)/2.

Proof. (i) Suppose that p ≡ 3 (mod 4) and p is nondefective. By Theorem 1.7 (viii), p is
impurely nondefective. Then by Theorem 1.9 (iii), (D/p) = −1. Thus, hu(p) | p + 1 by
Theorem 1.4 (iii). Since p ≡ 3 (mod 4), it follows by the law of quadratic reciprocity that
(−1/p) = −1. Thus by Theorem 1.4 (v), hu(p) ∤ (p + 1)/2. Therefore, if hu(p) 6= p + 1, then
hu(p) ≤ (p+ 1)/3. However, by Theorem 3.1 (vi), Eu(p) = 2. Thus,

λu(p) = Eu(p) · hu(p) ≤ 2
p+ 1

3
< p.

Hence, Nu(p) ≤ λu(p) < p, and p is defective in this case. Consequently hu(p) = p+ 1.
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(ii) Suppose that p ≡ 1 (mod 4) and p is impurely nondefective. Then by Theorem 1.9 (iii),
(D/p) = −1. Since p ≡ 1 (mod 4), we see by the law of quadratic reciprocity that (−1/p) = 1.
Then by Theorem 1.4 (iii) and (v), hu(p) | (p + 1)/2. Suppose that hu(p) 6= (p + 1)/2. Since
p ≡ 1 (mod 4), it follows that p + 1 ≡ 2 (mod 4). Thus, hu(p) ≤ (p + 1)/6. By Theorem 3.1
(i), Eu(p) ≤ 4. Hence,

Nu(p) ≤ λu(p) = Eu(p) · hu(p) ≤ 4
p + 1

6
< p.

Therefore, hu(p) = (p+ 1)/2. �

Recall that a Mersenne prime is a prime of the form 2q − 1, where q is a prime.

Lemma 3.4. Consider the LSFK u(a, 1) with discriminant D and let p be a Mersenne prime.

If (D/p) = −1, then hu(p) = p+ 1.

Proof. If follows from the fact that p is a Mersenne prime that p ≡ 3 (mod 4). Thus, (−1/p) =
−1. It now follows from Theorem 1.4 (iii) and (v) that hu(p) | p + 1 and hu(p) ∤ (p + 1)/2.
Since p+ 1 = 2q for some prime q, we see that hu(p) = p+ 1. �

Lemma 3.5. Consider the LSFK u(a, 1) with discriminant D. Suppose that p ∈ {3, 7} and

that (D/p) = −1. Then p is impurely nondefective.

Proof. By Lemma 3.4, hu(p) = p+1. By Theorem 8 (v) of [18], it follows that p is nondefective.
We now see by Theorem 1.7 (ii) that p is in fact impurely nondefective. �

Theorem 3.6. Let e > 1. Consider the LSFK u(a, b). Let p be an odd prime. Suppose that

hu(p
2) 6= hu(p). Then the following hold:

(i) λu(p
2) 6= λu(p).

(ii) hu(p
e) = pe−1hu(p).

(iii) λu(p
e) = pe−1λu(p).

(iv) Eu(p
e) = Eu(p).

Proof. Part (i) follows from the discussion in [5, p. 697]. Part (ii) is proved in [6, p. 42] and
part (iii) is proved in [24, pp. 619–620]. Part (iv) follows from parts (ii) and (iii). �

Given the recurrence w(a, b), we define the function

∆(n)w = w2
n+1 − awnwn+1 − bw2

n. (3.1)

The recurrence w(a, b) is said to be p-regular if ∆0(w) 6≡ 0 (mod p); otherwise, the recurrence
is called p-irregular. We note that w(a, b) is p-irregular if and only if w(a, b) also satisfies a
recursion relation modulo p of order less than two. It is well-known and proved in Lemma 2.1
of [22] that if w(a, b) is p-regular, then

∆(n)(w) = (−b)n∆(0)(w), (3.2)

(see also [9, p. 723]).

Theorem 3.7. Suppose that the recurrence w(a, b) and w′(a, b) are both p-regular. Then

λw(p) = λw′(p), hw(p) = hw′(p), Ew(p) = Ew′(p),

and

Mw(p) ≡ Mw′(p) (mod p).

This is proved in [5, p. 695].
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Theorem 3.8. Let p be a fixed prime. Consider the LSFK u(a, b) and the LSSK v(a, b) with

discriminant D. Then

(i) u(a, b) is p-regular. In particular, if b = 1, then

∆(n)(u) = (−1)n. (3.3)

(ii) v(a, b) is p-regular if and only if p ∤ D.

Proof. (i) We note that

∆(0)(u) = u21 − au0u1 − bu20 = 12 − a · 0 · 1− b · 02 ≡ 1 (mod p). (3.4)

Thus, u(a, b) is p-regular. Moreover, if b = 1, then equation (3.3) follows from (3.4) and (3.2).
(ii) We observe that

∆(0)(v) = v21 − av0v1 − bv20 = a2 − a · 2 · a− b · 22 = −a2 − 4b = −D.

Thus v(a, b) is p-regular if and only if p ∤ D. �

Definition 3.9. The recurrences w(a, b) and w′(a, b) are called pe-equivalent for e ≥ 1 if there

exists an integer c and a fixed t such that gcd(c, pe) = 1 and

w′

n ≡ cwn+t (mod pe) (3.5)

for all n ≥ 0.

Definition 3.10. The recurrences w(a, b) and w′(a, b) are said to be cyclically pe-equivalent
for e ≥ 1 if there exists a fixed integer t such that

w′

n ≡ wn+t (mod pe) (3.6)

for all n ≥ 0.

Remark 3.11. It is clear that if two recurrences are cyclically pe-equivalent, then they are
pe-equivalent. It is also evident that both pe-equivalence and cyclic pe-equivalence are indeed
equivalence relations on the set of recurrences w(a, b) modulo pe. It is easily seen that if w(a, b)
and w′(a, b) are cyclically pe-equivalent, then

Aw′(d, pe) = Aw(d, p
e) (3.7)

for all d ∈ {0, 1, 2, . . . , pe − 1}.
Lemma 3.12. Suppose that w(a, b) and w′(a, b) are pe-equivalent recurrences. Then w(a, b)
and w′(a, b) are either both p-regular or both p-irregular.

This is proved in [5, p. 694]

Lemma 3.13. Suppose that w′(a, b) and w(a, b) are both p-regular recurrences and that w′(a, b)
is pe-equivalent to w(a, b). Suppose further that

w′

n ≡ cwn+t (mod pe) for all n ≥ 0,

where gcd(c, pe) = 1 and t is a fixed integer. Let M = Mw(p
e). Then w′(a, b) is also cyclically

pe-equivalent to w(a, b) if and only if

c ≡ M i (mod pe)

for some i ∈ {0, 1, . . . , Ew(p
e)− 1}.

Proof. This follows from the definition of Mw(p) and from (1.4). �
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Lemma 3.14. Let F(a, b) denote the set of all p-regular recurrences w(a, b). Let D = a2 +
4b. In particular, u(a, b) ∈ F(a, b). Suppose that hu(p

2) 6= hu(p). Then the number of pe-
equivalence classes T (a, b, pe) of F(a, b) for any e ≥ 1 is given by

T (a, b, pe) =
p− (D/p)

hu(p)
. (3.8)

Proof. By Theorem 3.8 (i), u(a, b) ∈ F(a, b), and by Theorem 1.4 (iii), hu(p) | (p − D/p).
Equation (3.8) follows from Theorem 2.14 and Corollary 2.15 in [5]. �

Lemma 3.15. Let p be an odd prime and let e ≥ 1 be a fixed integer. Consider the LSFK

u(a, 1) with discriminant D. Suppose that (D/p) = −1, hu(p) = p + 1, and hu(p
2) 6= hu(p).

Then p ≡ 3 (mod 4). Suppose that w(a, 1) is a p-regular recurrence. Then w(a, 1) is cyclically
pe-equivalent to u(a, 1) if and only if

∆(0)(w) ≡ ±1 (mod pe). (3.9)

Proof. The fact that p ≡ 3 (mod 4) follows from Theorem 1.4 (iii) and (v) and the observation
that (−1/p) = −1 if and only if p ≡ 3 (mod 4). First suppose that congruence (3.9) holds.
By equation (3.8) in the statement of Lemma 3.14, there is only one pe-equivalence class
of p-regular recurrences in F(a, b). Since u(a, 1) is p-regular by Theorem 3.8 (i), w(a, 1) is
pe-equivalent to u(a, 1). Thus,

wn(a, 1) ≡ cun+t(a, 1) (mod pe) (3.10)

for some fixed integer t, some integer c such that gcd(c, pe) = 1, and all n ≥ 0. Then by (3.1),
(3.3), (3.9), and (3.10),

∆(0)(w) = w2
1 − aw0w1 − bw2

0 ≡ (cut+1)
2 − acutcut+1 − b(cut)

2

= c2∆(t)(u) = (−1)tc2 ≡ ±1 (mod pe). (3.11)

Let M = Mu(p
e). It follows from Theorem 3.1 (vi) and Theorem 3.6 (iv) that

Eu(p
e) = Eu(p) = 2. (3.12)

Hence,

M ≡ −1 (mod pe). (3.13)

Then

M2 ≡ 1 (mod pe). (3.14)

Since p ≡ 3 (mod 4), there exists no solution to the congruence

x2 ≡ −1 (mod pe). (3.15)

Thus, by (3.11) and (3.13)–(3.15), c ≡ M i (mod pe) for some i ∈ {0, 1}. It now follows from
Lemma 3.13 that w(a, 1) is cyclically pe-equivalent to u(a, 1).

Now assume that w(a, 1) is cyclically pe-equivalent to u(a, 1). Then by Lemma 3.13 and
(3.13),

wn(a, 1) ≡ M iun+t(a, 1) ≡ (−1)iun+t(a, 1) (mod pe) (3.16)

for some fixed integer t and some i ∈ {0, 1}. Thus by (3.11) and (3.16),

∆(0)(w) ≡ (M i)2∆(t)(u) ≡ (−1)2i(−1)t ≡ ±1 (mod pe).

�
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By Remark 2.3, one sees that m can be nondefective with respect to the LSFK u(a, 1) only
if m is of the form m = m1ℓ, where p ≤ 7 and p ∤ a2 + 4 for each prime divisor p of m1,
whereas q | a2 + 4 for each prime factor q of ℓ. Similarly, by Remark 2.3, m is nondefective
with respect to the LSFK u(a,−1) only if m is of the form m = m2ℓ

′, where p ≤ 3 for each
prime divisor p of m2, while q ≥ 5 and q | a2 − 4 for each prime q dividing ℓ′. The remaining
results of this section will mostly examine exactly which integers having the forms given above
are purely nondefective or impurely nondefective with respect to u(a, 1) or u(a,−1).

Theorem 3.16. Consider the LSFK u(a, b) with discriminant D. Suppose that pe is purely

nondefective for e ≥ 1. Then p | D and

λ(pe) = peE, (3.17)

where E = Eu(p). Let m be an integer and let λ = λu(m). Suppose that p ∤ λ. Then

A(d,m · pe) = E

gcd(λ,E)
·Au(d,m) (3.18)

for all d ∈ {0, 1, . . . ,mpe − 1}.
Proof. The fact that p | D follows from Theorem 1.7 (ii) and (iii), while equation (3.17) is
proved in Theorem 1.7 (vii). Equation (3.18) is proved in [8]. �

Corollary 3.17. Consider the LSFK u(a, b) with discriminant D = a2 + 4b, where b = ±1.
Suppose that ℓ is purely nondefective and that p ≥ 5 for each prime p dividing ℓ. Then p | D
for each prime divisor p of ℓ. Suppose also that m is impurely nondefective and let λ = λu(m).
Suppose further that gcd(m,D) = 1. Then

gcd(λ, ℓ) = 1,

and mℓ is also impurely nondefective.

Proof. The result is obvious if ℓ = 1, so we now suppose that ℓ > 1. Let ℓ = pe11 pe22 · · · perr ,
where r ≥ 1 and p1 < p2 < · · · < pr. First suppose that b = 1. By Theorem 1.7 and Corollary
1.8 (ii),

pi | D, pi ≡ 1 (mod 4), and Eu(p
ei
i ) = 4 (3.19)

for 1 ≤ i ≤ r. By Remark 2.3, p | m only if p ≤ 7. It now follows from Theorem 1.4, Theorem
1.1, Corollary 1.6, Theorem 1.9 (ii) and (iii), and Theorem 3.6 that 5 ∤ ℓ if 5 | m and p | λ(m)
only if p ≤ 7. We now see from (3.19) that

gcd(λ, ℓ) = 1. (3.20)

If r = 1, then by Theorem 3.16, (3.19), (3.20), and the fact that m is impurely nondefective,
we have that

Au(d,mpe11 ) =
Eu(p

e1
1 )

gcd(λ,Eu(p
e1
1 ))

·Au(d,m) =
4

gcd(λ, 4)
·Au(d,m) ≥ g1 (3.21)

for all d ∈ {0, 1, . . . ,mpe11 − 1} and some positive integer g1 such that g1 | 4. Hence, mpe11 is
impurely nondefective by Theorem 1.7 (i)–(iii).

Now suppose that r = 2. Then by Theorem 1.4 (viii), Theorem 1.7 (vii), and Corollary 1.8
(ii),

λ(mpe11 ) = lcm(λ(m), λ(pe11 )) = lcm(λ(m), 4pe11 ) | 4λ(m)pe11 . (3.22)

Since gcd(λ(m), ℓ) = 1 by (3.20) and 2 < p1 < p2, we see from (3.22) that

4 | λ(mpe11 ) and gcd(λ(mpe11 ), p2) = 1. (3.23)
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Hence, by Theorem 3.16, (3.19), (3.21), and (3.23),

A(d,mpe11 pe22 ) =
E(pe22 )

gcd(λ(mpe11 ), E(p2))
A(d,mpe11 ) =

4

4
g1A(d,m) ≥ g1 (3.24)

for all d ∈ {0, 1, . . . ,mpe11 pe22 − 1} and some integer g1 such that g1 | 4. Therefore, mpe11 pe22 is
impurely nondefective. Iterating the above argument r times when r > 2, we see that

A(d,mℓ) = g1A(d,m) ≥ g1 (3.25)

for all d ∈ {0, 1, . . . ,ml−1} and some integer g1 such that g1 | 4. Consequently, ml is impurely
nondefective as desired.

Now suppose that b = −1. Then by Remark 2.3, p | m only if p = 2 or 3. Moreover, by
Theorem 1.7 and Corollary 1.8 (iii),

pi | D and Eu(p
e1
i ) = 1 or 2 (3.26)

for 1 ≤ i ≤ r. It now follows from Theorems 1.4 and 1.1, Corollary 1.6, Theorem 1.9 (ii) and
(iii), and Theorem 3.6 that p | λ(m) only if p = 2 or 3. We now see from (3.26) that

gcd(λ, l) = 1. (3.27)

It now follows from (3.26), (3.27), and a completely similar argument to that given above for
the case in which b = 1 that

Au(d,mℓ) = g2Au(d,m) ≥ g2 (3.28)

for all d ∈ {0, 1, . . . ,ml − 1} and some integer g2 for which g2 | 2. Thus ml is impurely
nondefective as desired. �

In contrast to Corollary 3.17, we see in Theorem 3.18 that mℓ is defective with respect to
the LSFK u(a, 1) with discriminant D if m is impurely nondefective, ℓ is purely nondefective,
gcd(m,D) = 1, and 2 | ℓ.
Theorem 3.18. Consider the LSFK u(a, 1) with discriminant D. Suppose that ℓ is purely

nondefective and that 2 | ℓ. Moreover, let m be impurely nondefective and gcd(m,D) = 1.
Then mℓ is defective.

Proof. Since ℓ is purely nondefective and 2 | ℓ, it follows from Theorem 1.7 (i)–(iii) that 2 | D,
which implies that hu(2) = 2 and a is even. Since gcd(m,D) = 1, we see that m is odd. By
Remark 2.3, the only primes which can divide m are 3 or 5 or 7. To show that mℓ is defective,
it suffices by Theorem 1.1 to show that 2p is defective, when p = 3 or 5 or 7, and p | m.

Suppose that p ∈ {3, 7} and p | m. Then p is impurely nondefective by Theorem 1.1 and
Theorem 1.7 (ii). It then follows by Lemma 3.3 (i) that hu(p) = p+1, and thus hu(p) is even.
It now follows from Corollary 1.6 that 2p is defective.

We now suppose that p = 5 and p | m. Then p is impurely nondefective and we see by
Lemma 3.3 (ii) that hu(p) = (p + 1)/2 = 3. Then Eu(5) = 4 and λu(5) = 12 by Theorem 3.1
(iv). We will show that 3 and 7 6∈ Su(10), and thus 10 is defective. We first observe that by
Theorem 1.4 (viii),

hu(10) = lcm(hu(2), hu(5)) = lcm(2, 3) = 6 (3.29)

and
λu(10) = lcm(λu(2), λu(5)) = lcm(2, 12) = 12. (3.30)

Thus,

Eu(10) =
λu(10)

hu(10)
=

12

6
= 2, (3.31)
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and consequently,
Mu(10) ≡ 9 (mod 10). (3.32)

Since hu(2) = 2 and hu(5) = 3, we observe that 2 | un if 2 | n and 5 | un if 3 | n. Moreover,
u1 = 1 and

u11 = u13 − au12 ≡ 1− a · 0 ≡ 1 (mod 10).

Thus, un can be congruent to 3 or 7 modulo 10 for 0 ≤ n ≤ λu(10) − 1 = 11 only if n = 5 or
7. However, by (3.29) and (3.32), hu(10) = 6 and Mu(10) ≡ 9 (mod 10). Hence, by (1.4),

u7 ≡ 9u1 ≡ 9 (mod 10) and u5 ≡ u7 − au6 ≡ 9− a · 0 ≡ 9 (mod 10). (3.33)

Therefore, by (3.33), we find that 3 and 7 6∈ Su(10), and 10 is defective. �

Let P (m) denote the largest prime factor of m. By virtue of Remark 2.3, Corollary 3.17,
and Theorem 3.18, given the LSFK u(a, b) with discriminant D, where b = ±1, in searching
for impurely nondefective integers m with respect u(a, b), we need only examine those m for
which gcd(m,D) = 1 and additionally P (m) ≤ 7 when b = 1 and P (m) ≤ 3 when b = −1.

Theorem 3.19. Consider the LSFK u(a, 1) with discriminant D = a2+4. Then 3 is impurely

nondefective if and only if a ≡ ±1 (mod 3), while 3e is impurely nondefective for e ≥ 2 if and

only if a ≡ ±1 or ±2 (mod 9).

Proof. We observe by Theorem 1.9 (iii) and Lemma 3.5 that 3 is impurely nondefective if and
only if (D/3) = ((a2 + 4)/3) = −1. By inspection, we find that ((a2 + 4)/3) = −1 if and only
if a ≡ ±1 (mod 3).

We now assume that e ≥ 2. By Theorems 1.1 and 1.7, 3e is impurely nondefective only
if a is impurely nondefective. By Theorem 1.1, Corollary 1.6, Lemma 3.3 (i), and our above
discussion, 9 is impurely nondefective only if a ≡ ±1 (mod 3), hu(3) = 3 + 1 = 4, and
hu(3) 6= hu(9). However, if a ≡ 4 (mod 9), then

u4 = a3 + 2a = a(a2 + 2) ≡ a(7 + 2) ≡ 0 (mod 9),

and hu(3) = hu(9) = 4. Hence, we see that a ≡ ±1 (mod 3) and hu(3) 6= hu(9) if and only if
a ≡ ±1 or ±2 (mod 9).

Suppose that, in fact, a ≡ ±1 or ±2 (mod 9). We will prove that 3e is impurely nondefective
for e ≥ 2. It suffices to show that for any integer r such that 0 ≤ r ≤ 3e − 1, there exists a
p-regular recurrence w(a, 1) such that w0 ≡ r (mod 3e) and w(a, 1) is cyclically 3e-equivalent
to u(a, 1). Then by (3.7),

Au(r, p
e) = Aw(r, p

e) ≥ 1

and 3e is impurely nondefective with respect to u(a, 1). Since ((a2 + 4)/3) = −1, hu(3) = 4,
and hu(3

2) 6= hu(3), we see by Lemma 3.15 that w(a, 1) is cyclically 3e-equivalent to u(a, 1) if
and only if

∆(0)(w) ≡ ±1 (mod 3e). (3.34)

We thus seek to find an integer s such that for the recurrence w(a, 1) with initial terms w0 = r
and w1 = s,

∆(0)(w) = s2 − ars− r2 ≡ ±1 (mod 3e). (3.35)

First suppose that r ≡ 1 (mod 3). We will determine an integer s such that

∆(0)(w) = s2 − ars− r2 ≡ −1 (mod 3e). (3.36)

Then by the quadratic formula,

s ≡ ar ±
√
a2r2 + 4r2 − 4

2
(mod 3e). (3.37)
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Hence, congruence (3.37) has a solution s if and only if there exists an integer y such that

y2 ≡ a2r2 + 4r2 − 4 (mod 3e). (3.38)

Note that

a2r2 + 4r2 − 4 ≡ (±1)2(±1)2 + 1(±1)2 − 1 ≡ 1 (mod 3). (3.39)

Consider the function g(x) = x2 − 1. Then g(1) ≡ 0 (mod 3) and g′(1) = 2 6≡ 0 (mod 3).
Therefore, by Hensel’s lemma (see Theorem 2.23 in [13, p. 87]), there exists an integer y
satisfying (3.38). Thus, congruence (3.37) has a solution.

Now suppose that r ≡ 0 (mod 3). We now search for an integer s such that

s2 − ars− r2 ≡ 1 (mod 3e). (3.40)

Then

s ≡ ar ±
√
a2r2 + 4r2 + 4

2
(mod 3e). (3.41)

Observe that

a2r2 + 4r2 + 4 ≡ a2(0)2 + 1(0)2 + 1 ≡ 1 (mod 3).

By the same argument as given above, congruence (3.41) has a solution s, and the proof is
complete. �

The proof of Theorem 3.19 generalizes and slightly corrects the proof of Lemma 2 in [4],
showing that 3e is nondefective for e ≥ 1 with respect to the Fibonacci sequence.

Theorem 3.20. Let p be a fixed odd prime. Consider the recurrences u(a, b) and v(a, b). Let

h = hu(p) and λ = λu(p). Then v(a, b) is p-equivalent to u(a, b) if and only if h is even.

This is proved in Lemma 2 (i) of [20].

Theorem 3.21. Let e > 1, ε ∈ {−1, 1}, and p be an odd prime. Consider the p-regular
recurrence w(a, ε) with discriminant D. Suppose that p ∤ D and hu(p

2) 6= hu(p). Suppose

further that w(a, ε) is not p-equivalent to v(a, ε). Then

Aw(d, p
e) = Aw(d, p) for all d ∈ {0, 1, . . . , pe − 1}.

This follows from Theorem 3.6 (i) of this paper and from Theorem 6.5, 6.8, and 6.9 of [5].

Theorem 3.22. Consider the LSFK u(a, 1) with discriminant D = a2+4. Then 5 is impurely

nondefective if and only if a ≡ ±2 (mod 5), while 5e is impurely nondefective for e ≥ 2 if and

only if a ≡ ±2 (mod 5) and a 6≡ ±7 (mod 25).

Proof. It follows from Theorem 1.9 (iii) and Lemma 3.3 (ii) that 5 is impurely nondefective
only if (D/5) = −1 and hu(5) = (5 + 1)/2 = 3. If hu(5) = 3, it follows from Theorem 3.1 (iv)
that if M = Mu(5), then

Eu(5) = ord5(M) = 4.

Thus, by (1.4),

u0 = 0 and u1+3i ≡ M iu1 ≡ M i · 1 (mod 5)

for 0 ≤ i ≤ 3. Hence, Nu(5) = 5 and 5 is impurely nondefective. By inspection,
(

D

5

)

=

(

a2 + 4

5

)

= −1

if and only if a ≡ ±2 (mod 5). Thus, 5 is impurely nondefective if and only if a ≡ ±2 (mod 5).
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Now it follows from Theorems 3.20 and 3.21 and our above argument that if e ≥ 2, hu(5) = 3,
hu(25) 6= hu(5), and d ∈ {0, 1, . . . , 5e − 1}, then

Au(d, 5
e) = Au(d, 5) ≥ 1. (3.42)

We note that u3 = a2 + 1. By inspection, we see that hu(5) = 3 and hu(25) 6= hu(5) if and
only if a ≡ ±2 (mod 5) and a 6≡ ±7 (mod 25). Hence, by (3.42), 5e is impurely nondefective
for e ≥ 2 exactly when a ≡ ±2 (mod 5) and a 6≡ ±7 (mod 25). �

Lemma 3.23. Consider the LSFK u(a, 1) with discriminant D = a2 + 4.

(i) 4 is impurely nondefective if and only if a ≡ ±1 (mod 4).
(ii) 6 is impurely nondefective if and only if a ≡ ±1 (mod 6).
(iii) 7 is impurely nondefective if and only if a ≡ ±1 or ±3 (mod 7).
(iv) 14 is impurely nondefective if and only if a ≡ ±1 or ±3 (mod 14).

Proof. (i) By Theorem 1.7 (ii) and Corollary 1.8 (i), 4 is impurely nondefective only if 2 ∤ D,
which occurs if and only if a ≡ ±1 (mod 4). By inspection 4 is indeed impurely nondefective
if a ≡ ±1 (mod 4).

(ii) By Theorem 1.1, 6 is impurely nondefective only if 3 is nondefective. By Theorem
1.7 (viii) and Theorem 3.19, 3 is nondefective if and only if a ≡ ±1 (mod 3), in which case,
3 is impurely nondefective. Moreover, by Lemmas 3.3 and 3.5, 3 is impurely nondefective
if and only if hu(3) = 4. It now follows from Corollary 1.6 that 6 is defective if a is even.
Thus, 6 is impurely nondefective only if a ≡ ±1 (mod 6). By inspection, 6 is in fact impurely
nondefective when a ≡ ±1 (mod 6).

(iii) By Theorem 1.9 (iii) and Lemma 3.5, 7 is impurely nondefective if and only if (D/7) =
((a2 + 4)/7) = −1. By inspection, we find that ((a2 + 4)/7) = −1 if and only if a ≡ ±1 or ±3
(mod 7).

(iv) By Theorem 1.1, 14 is nondefective only if 7 is nondefective. By Theorem 1.7 (ii) and
part (iii) of this lemma, 7 is nondefective if and only if 7 is also impurely nondefective, which
occurs if and only if a ≡ ±1 or ±3 (mod 7). Moreover, if 7 is impurely nondefective, then by
Lemma 3.3 (i), hu(7) = 8. Hence, by Corollary 1.6, we see that 14 is defective if a is even.
Therefore, 14 is impurely nondefective only if a ≡ ±1 or ±3 (mod 14). By inspection, we
observe that 14 is indeed impurely nondefective when a ≡ ±1 of ±3 (mod 14). �

Lemma 3.24. Consider the LSFK u(a,−1) with discriminant D = a2 − 4.

(i) 3 is impurely nondefective if and only if a ≡ 0 (mod 3).
(ii) 6 is impurely nondefective if and only if a ≡ 3 (mod 6).

Proof. (i) By Theorem 1.9 (iii), 3 is impurely nondefective only if (D/3) = −1, which occurs
only if a ≡ 0 (mod 3). By inspection, 3 is indeed impurely nondefective when a ≡ 0 (mod 3).

(ii) If a ≡ ±2 (mod 6), then both 2 and 3 divide D, which implies by Theorem 1.7 (i) that
6 is purely nondefective. If a ≡ 0 or ±1 (mod 6), then we see by inspection that 2, 3, and
4 6∈ Su(6) and 6 is defective. By examination, we find that 6 is indeed impurely nondefective
when a ≡ 3 (mod 6). �

Lemma 3.25. Consider the LSFK u(a, 1) with discriminant D = a2 + 4. Then

(i) 8 is defective,

(ii) 21 is defective,

(iii) 12 is defective,

(iv) 28 is defective,

(v) If 5 ∤ D then 10 is defective,
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(vi) 18 is defective.

Proof. (i) First suppose that a is even. Then 2 is purely nondefective. It now follows from
Theorem 1.7 (v) and Corollary 1.8 (ii) that 2e is defective for e ≥ 2.

Now suppose that is odd. Then a2 ≡ 1 (mod 8). We note by the Binet formulas (1.3) that
u3 = a2 + 1 ≡ 2 (mod 8) and u6 = u3v3 = (a2 + 1)a(a2 + 3) ≡ 2 · a · 4 ≡ 0 (mod 8). Thus,
hu(4) = hu(8) = 6. It now follows from Corollary 1.6 that 8 is defective in this case, too.

(ii) By Theorem 1.1, 21 is nondefective only if both 3 and 7 are nondefective. By Lemma 3.3
(i), 3 is nondefective only if hu(3) = 4, while 7 is nondefective only if hu(7) = 8. By Theorem
3.1 (iii), it follows that λu(3) = 8 and λu(7) = 16. Then by Theorem 1.4 (viii),

λu(21) = lcm(λu(3), λu(7)) = lcm(8, 16) = 16.

Thus,

Nu(21) ≤ λu(21) = 16 < 21,

and 21 is defective.
(iii) and (iv) We prove the more general result that if p ≡ 3 (mod 4), then 4p is defective.

By Theorem 1.1, 4p is nondefective only if 4 and p are both nondefective. By Lemma 3.3 (i),
if p is nondefective, then hu(p) = p + 1 ≡ 0 (mod 4). If follows from the proof of part (i) of
this lemma that 4 is nondefective only if a is odd, in which case, hu(2) = 3 and hu(4) = 6.
Then by Theorem 1.4 (viii),

hu(2p) = lcm(hu(2), hu(p)) = lcm(3, hu(p)) = hu(4p) = lcm(hu(4), hu(p)) = lcm(6, hu(p)).

We now see by Corollary 1.6 that 4p is defective.
(v) Since 5 ∤ D, we see by Theorem 1.1 and Theorem 1.7 (ii) that 10 is nondefective

only if 2 is nondefective and 5 is impurely nondefective. It follows from Lemma 3.3 (ii) that
hu(5) = (5 + 1)/2 = 3. If a is even, it was shown in the proof of Theorem 3.18 that 10 is
defective. Now suppose that a is odd. Then by Theorem 1.9 (ii), hu(2) = 3. We now see that

hu(10) = lcm(hu(2), hu(5)) = lcm(3, 3) = 3 = hu(5).

It now follows from Corollary 1.6 that 10 is defective in this case also.
(vi) It follows from Theorem 1.1 and Theorem 1.7 (i) and (viii) that 18 is nondefective only

if both 6 and 9 are impurely nondefective. By Theorem 3.19 and Lemma 3.23 (ii) 9 is impurely
nondefective if and only if a ≡ ±1 or ±2 (mod 9), while 6 is impurely nondefective if and only
if a ≡ ±1 (mod 6). If a ≡ ±1 or ±2 (mod 9), we find that hu(3) = 4 and hu(9) = 12, whereas
if a ≡ ±1 (mod 6), we see that hu(2) = 3. Then

hu(18) = lcm(hu(2), hu(9)) = lcm(3, 12) = 12 = hu(9).

It now follows from Corollary 1.6 that 18 is defective. �

Lemma 3.26. Consider the LSFK u(a, 1) with discriminant D = a2 +4. Suppose that 5 ∤ D.

Then

(i) 15 is defective,

(ii) 35 is defective.

Proof. (i) Suppose that 15 is nondefective and 5 ∤ D. Then by Theorem 1.1 and Theorem
1.7 (ii) and (viii), both 3 and 5 are impurely nondefective. By Lemma 3.3, hu(3) = 4 and
hu(5) = 3. It now follows from Theorem 3.1 (iii) and (iv) that λu(3) = 8 and λu(5) = 12.
Hence, by Theorem 1.4 (viii),

hu(15) = lcm(hu(3), hu(5)) = lcm(4, 3) = 12 (3.43)
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and

λu(15) = lcm(λu(3), λu(5)) = lcm(8, 12) = 24. (3.44)

We note by the above observations that

u13 = u1+4hu(5) = u1+3hu(3) = u1+hu(15). (3.45)

Noting that u1 = 1 and applying (1.4), we now find that

u13 ≡ [Mu(5)]
4u1 ≡ 1 (mod 5), u13 ≡ [Mu(3)]

3u1 ≡ (−1)3 ≡ −1 (mod 3),

and

u13 ≡ Mu(15)u1 ≡ Mu(15) (mod 15).

Hence, Mu(15) ≡ 1 (mod 5) andMu(15) ≡ −1 (mod 3). By the Chinese Remainder Theorem,
it follows that Mu(15) ≡ 11 (mod 15).

We now show that there exists a residue 3s modulo 15 such that 0 < 3s < 15 and 3s 6∈
Su(15). Since hu(3) = 4 and hu(15) = 12, we see that un ≡ 3s (mod 15) for 0 < 3s < 15 and
0 ≤ n < λu(15) = 24 only if n ∈ {4, 8, 16, 20}. Then u4 ≡ 3s1 and u8 ≡ 3s2 (mod 15). But
then

u16 = u4+hu(15) ≡ M(15)u4 ≡ 11(3s1) ≡ 3s1 ≡ u4 (mod 15).

Similarly,

u20 ≡ 3s2 ≡ u8 (mod 15).

Thus, there exists an integer 3s3 such that 1 ≤ s3 ≤ 4 and 3s3 6∈ Su(15). Hence, 15 is defective.
(ii) Suppose that 5 ∤ D and 35 is nondefective. Then by Theorem 1.1 and Theorem 1.7 (ii)

and (viii), both 5 and 7 are impurely nondefective. By Lemma 3.3 and Theorem 3.1 (iii) and
(iv), we have hu(5) = 3, λu(5) = 12, and hu(7) = 8, λu(7) = 16. It now follows by Theorem
1.4 (viii) that

hu(35) = lcm(hu(5), hu(7)) = lcm(3, 8) = 24

λu(35) = lcm(λu(5), λu(7)) = lcm(12, 16) = 48.

It now follows from a completely similar argument to that given in part (i) that there exists
a residue 7t such that 0 < 7t < 35 and 7t 6∈ Su(35). Thus, 35 is defective. �

Lemma 3.27. Consider the LSFK u(a, 1). Suppose that p ≡ 7 (mod 8) and h = hu(p) = p+1.
Then

A(uh/2, p) = 1.

Proof. This follows from Theorem 7 (vii) and Lemma 12 (ii) of [18]. �

Lemma 3.28. Consider the LSFK u(a, 1). Let p be an odd prime such that hu(p) is even and

hu(p
2) 6= hu(p). Let h = hu(p) and λ = λu(p). Let n be a fixed integer such that 0 ≤ n ≤ λ−1.

Then there exists a fixed integer M such that M ≡ 1 (mod p), 1 ≤ M ≤ p2 − 1, and

un+λi ≡ M iun (mod p2)

for all i ≥ 0. Moreover,

uh/2+λi ≡ uh/2 (mod p2)

for all i ≥ 0.

Proof. This follows from Theorem 3.5 of [5], Theorem 4.1 of [21], and the fact that h | λ. �

Lemma 3.29. Consider the LSFK u(a, 1). Then 49 is defective.
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Proof. Suppose that 49 is nondefective. Then by Theorem 1.1, Corollary 1.6, and Lemma 3.3
(i), 7 is nondefective, hu(49) 6= hu(7), and hu(7) = 8. Then by Theorem 3.1 (iii), λu(7) = 16.
Since hu(49) 6= hu(7), we see by Theorem 3.6 that

hu(49) = 7hu(7) = 56 and λu(49) = 7λu(7) = 112. (3.46)

Let h = hu(7) = 8 and λ = λu(7) = 16. Then by Lemmas 3.27 and 3.28,

Au(uh/2, 7) = Au(u4, 7) = 1 (3.47)

and

uh/2+λi = u4+16i ≡ u4 (mod 49) (3.48)

for 0 ≤ i ≤ 6. Let d ≡ u4 (mod 7), but d 6≡ u4 (mod 49), where d ∈ {0, 1, . . . , 48}. Since
λu(7) = 16 and λu(49) = 112, we see by (3.47) and (3.48) that un ≡ d (mod 49) for some n
such that 0 ≤ n < λ(49) = 112 only if n = 4 + 16i for some i ∈ {0, 1, . . . , 6}. However by
(3.48),

u4+16i ≡ u4 6≡ d (mod 49)

for 0 ≤ i ≤ 6. Thus, d 6∈ Su(49) and 49 is defective. �

Example 3.30. Consider the Fibonacci sequence {Fn} = u(1, 1). We show that if d ≡ F4 ≡ 3
(mod 7), but d 6≡ 3 (mod 49), then d 6∈ SF (49). The first 18 terms of {Fn} modulo 7 are

0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1.

Thus, hF (7) = 8 and λF (7) = 16. Moreover, F8 = 21, and thus, hF (7) 6= hF (49). Further, by
inspection, A(F4, 7) = A(3, 7) = 1. We additionally observe that F4+16i is indeed congruent
to 3 (mod 49) for i ∈ {0, 1, . . . , 6}. In particular,

F4 = 3, F20 = 6765, F36 = 14930352,

F52 = 32951280099, F68 = 72723460248141,

F84 = 160500643816367088, F100 = 354224848179261915075,

which are all in fact congruent to 3 modulo 49.

Lemma 3.31. Consider the LSFK u(a,−1) with discriminant D = a2 − 4. Then

(i) 4 is defective if 2 ∤ D,

(ii) 12 is defective if 2 ∤ D or 3 ∤ D,

(iii) 9 is defective if 3 ∤ D,

(iv) 18 is defective if 2 ∤ D or 3 ∤ D.

Proof. (i) We note that 2 ∤ D if and only if a ≡ ±1 (mod 4). By inspection, we see that if
a ≡ ±1 (mod 4), then hu(2) = hu(4) = 3, and 4 is defective by Corollary 1.6.

(ii) If 2 ∤ D, then 4 is defective by part (i). It now follows from Theorem 1.1 that 12 is
defective. Now suppose that 3 ∤ D. Then a ≡ 0 (mod 3). Suppose that 12 is nondefective.
Then by Theorem 1.1 and Theorem 1.7 (i) and (ii), 6 is impurely nondefective. By Lemma
3.24 (ii), this occurs if and only if a ≡ 3 (mod 6). Thus, a ≡ ±1 (mod 4), and by the proof of
part (i), we see that 4 is defective. Hence, 12 is also defective by Theorem 1.1.

(iii) Suppose that 3 ∤ D. Then a ≡ 0 (mod 3). By inspection, we see that 2, 4, 5, and
7 6∈ Su(9), and 9 is defective.

(iv) If 3 ∤ D, then by part (iii), 9 is defective and thus 18 is defective. We now suppose
that 2 ∤ D, 3 | D, and 18 is nondefective. Then 6 is nondefective by Theorem 1.1. Moreover,
a is odd and a ≡ ±1 (mod 3), which implies that a ≡ ±1 (mod 6). Since 2 ∤ D, it follows
from Theorem 1.7(i) and (ii) that 6 is impurely nondefective. However, by Lemma 3.24 (ii),
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6 is impurely nondefective if and only if a ≡ 3 (mod 6). Hence, 18 is defective by Theorem
1.1. �

4. Proofs of the Main Theorems

Proof of Theorem 2.6. It follows from Theorems 1.1, 2.1, and 3.18, and from Lemmas 3.25,
3.26, and 3.29 that m is nondefective only if m satisfies one of the forms given in (2.2). Part
(i) follows from Theorem 1.7 (viii) while part (ii) follows from part (i) and Theorem 1.7 (i)–
(v). Part (iii) follows from Corollary 1.8 (i), Theorem 1.9 (ii), and Corollary 3.17 and Lemma
3.23 (i). Parts (iv) and (v) follow from Corollary 3.17 and Theorem 3.19. Part (vi) follows
from Corollary 3.17 and Lemma 3.23 (i). Parts (vii) and (viii) follow from Corollary 3.17 and
Theorem 3.22. Part (ix) follows from Corollary 3.17 and Lemma 3.23 (ii). Parts (x) and (xi)
follow from Corollary 3.17 and Lemma 3.23 (iii) and (iv). �

Proof of Theorem 2.9. It follows from Theorems 1.1, 2.2, and 3.18, and Lemma 3.31 that
m is nondefective only if m has one of the forms given in (2.3). We note by Theorem 1.7 (ii)
that 3 is purely nondefective if and only if 3 | D = a2 − 4, which occurs if and only if a ≡ ±1
(mod 3). Part (i) now follows from Theorem 1.7 (i)–(vi).

Suppose that a = ±2. Then D = 0 and it follows by induction that un = n for n ≥ 0
if a = 2, while un = (−1)n+1n for n ≥ 0 if a = −2. Part (ii) now follows from Theorem
1.7 (i)-(vi). Part (iii) follows from Theorem 1.7, Corollary 3.17, and Lemma 3.31. Part (iv)
follows from Theorem 1.9 (ii) and Corollary 3.17. Part (v) follows from Lemma 3.24 (i) and
Corollary 3.17, while part (vi) follows from Lemma 3.24 (ii) and Corollary 3.17. �

5. Concluding Remarks

Except for this paper and the paper [1], which appeared in 2013, all the papers cited in this
article concerning second-order recurrences having a complete system of residues appeared
before 2000. We encourage interested readers to investigate this problem for more general
recurrences than those treated in this paper.
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Number Theory in Progress, Vol. 2, (Zakopane-Kościelisko, 1997), de Gruyter, Berlin, 1999, 691–719.

[6] R. D. Carmichael, On the numerical factors of arithmetic forms αn
±βn, Ann. of Math., 15 (1913), 30–70.

[7] R. D. Carmichael, On sequences of integers defined by recurrence relations, Quart. J. Pure Appl. Math.,
48 (1920), 343–372.

[8] E. Jacobson, The distribution of residues for two-term recurrence sequences, The Fibonacci Quarterly, 28.3
(1990), 227–229.

[9] R. R. Laxton, On groups of linear recurrences I, Duke Math. J., 36 (1969), 721–736.
[10] D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math., 31 (1930), 419–448.

AUGUST 2017 227



THE FIBONACCI QUARTERLY

[11] H.-C. Li, Complete and reduced systems of second-order recurrences modulo p, The Fibonacci Quarterly,
38.3 (2000), 272–281.
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