LINEAR RECURRENCES ORIGINATING FROM POLYNOMIAL TREES

CHRISTIAN BALLOT, CLARK KIMBERLING, AND PETER J. C. MOSES

Abstract

Let T^{*} be the set of polynomials in x generated by these rules: $0 \in T^{*}$, and if $p \in T^{*}$, then $p+1 \in T^{*}$ and $x p \in T^{*}$. Let $g(0)=\{0\}, g(1)=\{1\}, g(2)=\{2, x\}$, and so on, so that the cardinality of $g(n)$ is given by $G_{n}=2^{n-1}$ for $n \geq 1$, and T^{*} can be regarded as a tree whose nth generation consists of nodes labeled by the polynomials in $g(n)$. Let $T(r)$ be the subtree of T^{*} obtained by substituting r for x and deleting duplicates. For various choices of r, the cardinality sequence G_{n} satisfies a linear recurrence relation.

1. Introduction

Let T^{*} be the set of polynomials in x generated by these rules: $0 \in T^{*}$, and if $p \in T^{*}$, then $p+1 \in T^{*}$ and $x p \in T^{*}$. We regard T^{*} as a tree that grows in successive generations: $g(0)=\{0\}, g(1)=\{1\}, g(2)=\{2, x\}$,

$$
\begin{aligned}
g(3) & =\left\{3,2 x, x+1, x^{2}\right\} \\
g(4) & =\left\{4,3 x, 2 x+1,2 x^{2}, x+2, x^{2}+x, x^{2}+1, x^{3}\right\}
\end{aligned}
$$

and so on, as in Figure 1.
The purpose of this article is to describe T^{*} and some of its subtrees. To see that the polynomials in T^{*} accrue without duplication, suppose instead that there is a duplicate, q, and assume that it is the first duplicate to occur. Write $q=p$, where p occurs before q. If $p=x p_{1}$ and $q=x q_{1}$ then $p_{1}=q_{1}$, contrary to the firstness of q, and likewise if $p=p_{1}+1$ and $q=q_{1}+1$. The remaining case is that $p(x)=x p_{1}(x)$ and $q(x)=q_{1}(x)+1$ (or vice versa), but then $p(0)=0$ and $q(0)>0$; this contradiction implies that that there are no duplicates, so that $|g(n)|=2^{n-1}$ for $n \geq 1$.

Next, we shall show for $n>0$ that the number of polynomials of degree k in $g(n)$ is the binomial coefficient $C(n-1, k)$ for $k \in[0, n-1]$. As a first inductive step, $C(1-1,0)$ counts the polynomials of degree 0 in $g(1)=\{1\}$. Assume for arbitrary $m \geq 1$ that the number of polynomials of degree k in $g(m)$ is $C(m-1, k)$ for $k \in[0, m-1]$, and suppose that $h \in[0, m]$. Every $p(x)$ in $g(m+1)$ that has degree h is of one of two kinds: $p(0)>0$ or $p(0)=0$. There are $C(m-1, h)$ polynomials $p(x)-1$ in $g(m)$ for which $p(0)>0$, together with $C(m-1, h-1)$ polynomials $p(x) / x$ in $g(m)$ for which $p(0)=0$. Therefore, the number of polynomials in $g(m+1)$ of degree h is

$$
C(m-1, h)+C(m-1, h-1)=C(m, h),
$$

which finishes an inductive proof.
A third easily proved property of T^{*} is that it consists precisely of the polynomials all of whose coefficients are in the set $\mathbb{Z}_{\geq 0}=\{0,1,2, \ldots\}$. This follows from the obvious fact that if $p(x) \in T^{*}$ and $c \in \mathbb{Z}_{\geq 0}$, then $x p(x)+c \in T^{*}$.

For arbitrary $p(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ in T^{*}, it is easy to determine the generation $g(n)$ that contains $p(x)$: count a_{0} steps from $p(x)$ back to $p(x)-a_{0}$; then 1 step back to $\left(p(x)-a_{0}\right) / x=a_{m} x^{m-1}+a_{m-1} x^{m-2}+\cdots+a_{1}$; then a_{1} steps back to $a_{m} x^{m-2}+a_{m-1} x^{m-3}+$ $\cdots+a_{2}$; and so on, until reaching 0 , for a total of $a_{0}+1+a_{1}+1+\cdots+a_{m-1}+1+a_{m}$ steps. That is,

THE FIBONACCI QUARTERLY

Figure 1. The tree T^{*}, generations $g(0)$ to $g(5)$
$p(x) \in g(p(1)+m)$. For example, the number of steps from 0 to the m th Fibonacci polynomial, $F_{m}(x)$, is $m+F_{m}$, since $F_{m}(1)=F_{m}$. (Here, $F_{m}(x)$ is defined by the recurrence $F_{m}(x)=$ $x F_{m-1}(x)+F_{m-2}(x)$ with $F_{0}(x)=0, F_{1}(x)=1$, and F_{m} is defined by $F_{m}=F_{m-1}+F_{m-2}$ with $F_{2}=F_{1}=1$.)

Another easily proved property of T^{*} that involves Fibonacci numbers arises when we ask how many even polynomials are in $g(n)$. Recall that $p(x)$ is even if $p(-x)=p(x)$ and odd if $p(-x)=-p(x)$. Let u_{n} be the number of odd polynomials in $g(n)$, and v_{n} the number of even. Starting with $u_{1}=0$ and $v_{1}=1$, we have $v_{n}=v_{n-1}+u_{n-1}$ and $u_{n}=v_{n-1}$. Consequently, $u_{n}=F_{n-1}$ and $v_{n}=F_{n}$. As a corollary, suppose that $\sqrt{2}$ is substituted for x in T^{*}; then the number of rationals (integers, actually) in $g(n)$ is F_{n}.

POLYNOMIAL TREES

The rest of this article concerns subtrees of T^{*}, which appear in various guises, which we shall call (1) polynomial form, (2) numeric form; and (3) tuple form. For the first of these, suppose that

$$
q(x)=x^{m}-q_{m-1} x^{m-1}-\cdots-q_{1} x-q_{0}
$$

is a fixed polynomial of degree $m \geq 1$. Then the substitution of

$$
q_{m-1} x^{m-1}+\cdots+q_{1} x+q_{0}
$$

for x^{m} throughout T^{*} produces a labeling of T^{*} that includes duplicates. We consider two methods for their removal. In the first, the order in which the substitutions in each generation $g(n)$ are made is "top-to-bottom"; i.e., with reference to Figure 1, starting at n and proceeding down to x^{n-1}. The other order is "bottom-to-top". The two trees that result need not be isomorphic, as we shall see in Section 2. For the top-to-bottom order, we denote the resulting tree by $T(q(x))$. The bottom-to-top tree we denote by $\widehat{T}(q(x))$. Note that $T(q(x))$ can be regarded as $T^{*} \bmod q(x)$.

Next, suppose that r is a nonzero complex number. Substituting r for x in T^{*} gives a tree whose nodes are numbers, and, after top-to-bottom deletion of all duplicates, we are left with a tree which we denote by $T(r)$. Likewise, bottom-to-top deletion of duplicates yields a tree $\widehat{T}(r)$. If r is a zero of an irreducible polynomial $q(x)$, then $T(r)$ is isomorphic to $T(q(x))$, and $\widehat{T}(r)$ is isomorphic to $\widehat{T}(q(x))$. If r is a zero of a reducible polynomial, then $T(r)$ is isomorphic to a subtree of $T(q(x))$, and $\widehat{T}(r)$ is isomorphic to a subtree of $\widehat{T}(q(x))$. We call $T(r)$ and $\widehat{T}(r)$ numeric forms of a subtree of T^{*}.

In Sections 2 and 3, we discuss two particular examples of trees and see, for instance, that although $T(r)$ and $\widehat{T}(r)$ have much in common, they need not be isomorphic. Much of the paper henceforth studies the sequence $\left(G_{n}\right)_{n \geq 0}$, where $G_{n}=|g(n)|$ and $g(n)$ is the nth generation of the tree $T(r)$, for various r. We either prove or conjecture that the sequences $\left(G_{n}\right)$ are linear recurrences of special types that depend on r. In Section 4, we prove that (G_{n}) is (eventually) a linear recurrence for all $r=\sqrt{d}, d \geq 2$ an integer. Section 5 contains numeric tables for G_{n} corresponding to various specific trees, and a list of recurrence conjectures for $\left(G_{n}\right)$ in six cases of families of trees. Section 6 deals with the trees $T(1 / d)$ and $T(-d)$ for which we also prove or state theorems. Mathematica programs are given in a seventh section.

Before continuing, we summarize the main results of this introduction as a theorem.
Theorem 1.1. Let $g(n)$ be the nth generation of the tree T^{*}, and G_{n} the cardinality of $g(n)$. Then
(1) $G_{n}=2^{n-1}$ for $n \geq 1$.
(2) The number of polynomials of degree k in $g(n)$ is $C(n-1, k)$.
(3) T^{*} consists of the polynomials that have nonnegative integer coefficients.
(4) If $p(x)$ has degree m, then $p(x) \in g(p(1)+m)$.
(5) The number of odd polynomials in $g(n)$ is F_{n-1}, and of even, F_{n}.

2. Examples: T (golden ratio)

Example 2.1. Let $q(x)=x^{2}-x-1$ and $r=(1+\sqrt{5}) / 2$. The tree $T(r)$ grows as in Figure 2.

Example 2.2. Let $q(x)=x^{2}-x-1$ and $r=(1+\sqrt{5}) / 2$. The tree $\widehat{T}(r)$ grows as in Figure 3.

THE FIBONACCI QUARTERLY

Figure 2. The tree $T((1+\sqrt{5}) / 2)$, generations $g(0)$ to $g(5)$

Figure 3. The tree $\widehat{T}((1+\sqrt{5}) / 2)$, generations $g(0)$ to $g(5)$

Figure 4. The tree $T(1,1)$, generations $g(0)$ to $g(5)$

Continuing with $r=(1+\sqrt{5}) / 2$, let $g(n)$ be the nth generation of $T(r)$ and let $\widehat{g}(n)$ be the nth generation of $\widehat{T}(r)$. Figures 2 and 3 show that $g(n)=\widehat{g}(n)$ for $n=0,1, \ldots, 5$, and it is clear by induction that $g(n)=\widehat{g}(n)$ for all $n \geq 0$. Consider next the sizes of these generations: for those shown in the two figures, we have $G_{n}=1,1,2,3,5,8, \cdots$. In a bad moment, one might expect the sequence to continue with $13,21,34$, but actually the next three terms are 12, 18, 25. The sequence is A252864 in the Online Encyclopedia of Integer Sequences [5]. Stoll [4] conjectured that

$$
G_{n}=G_{n-1}+G_{n-3} \text { for } n \geq 12
$$

Although $T(r)=\widehat{T}(r)$ as sets, it is easy to see that as trees, $T(r)$ and $\widehat{T}(r)$ are not isomorphic. For example, $T(r)$ has the path from 3 to $r+3$ in which three consecutive nodes each have outdegree 1 , but $\widehat{T}(r)$ has no such path.

We turn now to a third way to represent a subtree of T^{*}, mentioned in Section 1 as tuple form. Write

$$
q(x)=x^{2}-q_{1} x-q_{0} .
$$

The tree $T=T\left(q_{1}, q_{0}\right)$ is defined as follows: $(0,0) \in T$, and if $(j, k) \in T$, then $(j, k+1) \in T$ and $\left(j q_{1}+k, j q_{0}\right) \in T$, with duplicates removed as they occur (here, using the top-to-bottom method). As an example, take $q_{1}=q_{0}=1$. It is easy to see that every ordered pair of nonnegative integers occurs exactly once in $T(1,1)$. We write (j, k) as $j k$ and note that $T(1,1)$ grows as in Figure 4. Of course, $T(1,1)$ is isomorphic to the tree in Figure 2. Clearly, $T(1,1)$ results from $T(r)$, for $r=(1+\sqrt{5}) / 2$, by replacing each $j r+k$ by (j, k).

THE FIBONACCI QUARTERLY

3. Example: $T(i)$

Here, we take $\left(q_{1}, q_{0}\right)=(0,-1)$, corresponding to $q(x)=x^{2}+1$ and $r=i$. Every Gaussian integer occurs exactly once in this tree, $T(i)$. We wish to determine which numbers are in each generation $g(n)$. It is convenient to work with nodes represented as vectors (j, k), with these rules of generation: $(j, k) \rightarrow(j, k+1)$ and $(j, k) \rightarrow(k,-j)$. There are nine easily verifiable types of containment:

C0: $\quad(0,0) \in g(0)$
C1: $(n-1,0) \in g(n)$ for $n \geq 2$
C2: $(0, n) \in g(n)$ for $n \geq 1$
C3: $(3-n, 0) \in g(n)$ for $n \geq 4$
C4: $(0,2-n) \in g(n)$ for $n \geq 3$
C5: $\quad j \geq 1, k \geq 1, j+k+1 \leq n \Longrightarrow(j, k) \in g(n)$ for $n \geq 3$
C6: $\quad j \geq 1, k \geq 1, j+k+3 \leq n \Longrightarrow(-j, k) \in g(n)$ for $n \geq 5$
C7: $\quad j \geq 1, k \geq 1, j+k+3 \leq n \Longrightarrow(-j,-k) \in g(n)$ for $n \geq 5$
C8: $\quad j \geq 1, k \geq 1, j+k+2 \leq n \Longrightarrow(j,-k) \in g(n)$ for $n \geq 4$
Taking all the containments together gives the results in Table 1.

Table 1. Counting nodes in $g(n)$ of $T(i)$																
n	C0	C 1	C 2	C 3	C 4	C 5	C 6	C 7	C 8	G_{n}						
0	1	0	0	0	0	0	0	0	0	1						
1	0	1	0	0	0	0	0	0	0	1						
2	0	1	1	0	0	0	0	0	0	2						
3	0	1	1	1	0	1	0	0	0	4						
4	0	1	1	1	1	2	0	0	1	7						
5	0	1	1	1	1	3	1	1	2	11						
6	0	1	1	1	1	4	2	2	3	15						
7	0	1	1	1	1	5	3	3	4	19						
8	0	1	1	1	1	6	4	4	5	23						

The nine contaiment types enable an easy proof that for $n \geq 4$, the number of nodes in $g(n)$ is $4 n-9$, as stated without proof in [2].
4. The tree $T(\sqrt{d})$, d not a square, yields a Recurrence of order d

Here we prove that, for the tree $T(\sqrt{d}), d$ not a square, the nth generation cardinality, G_{n}, is the sum of the previous d generation cardinalities $G_{n-i}, 1 \leq i \leq d$, for n large enough. The proof is a rewriting and a generalization of the elegant method of proof used by Michael Stoll in the case $d=2$ in [4].

Let $d \geq 2$ be an integer, but not a square integer. Denote the set of numbers $a+b \sqrt{d}$, where a and b are nonnegative integers, by $\mathbb{Z}_{\geq 0}[\sqrt{d}]$.

For a number x in $\mathbb{Z}_{\geq 0}[\sqrt{d}]$ define the length of $x, \ell(x)$, as the minimal number of steps needed to obtain x from 0 , where two steps are allowed, namely $y \mapsto y+1$ and $y \mapsto y \sqrt{d}$. Clearly $g(n)=\{x ; \ell(x)=n\}$. Note that every number x of the prescribed form $a+b \sqrt{d}$ has a unique expansion of the form

$$
\begin{equation*}
c_{0}+c_{1} \sqrt{d}+c_{2} \sqrt{d}^{2}+\cdots+c_{k} \sqrt{d}^{k}, \tag{4.1}
\end{equation*}
$$

where the c_{i} 's are in $\{0,1, \ldots, d-1\}$ and $c_{k}>0$. When convenient, we write k_{x} for k and, if $k \geq 1, c_{x}^{-}$for c_{k-1}.

To see that (4.1) holds, write both a and b in base d and use $d=\sqrt{d}^{2}$. The uniqueness of the writing comes from the uniqueness of the d-ary expansion of any nonnegative integer and the fact that $a+b \sqrt{d}=a^{\prime}+b^{\prime} \sqrt{d}, a, b, a^{\prime}$ and b^{\prime} integers, implies $a=a^{\prime}$ and $b=b^{\prime}$.
Lemma 4.1. Suppose $d \geq 2$. Let $x=c_{0}+c_{1} \sqrt{d}+c_{2} \sqrt{d}^{2}+\cdots+c_{k} \sqrt{d}^{k}$, where $c_{i} \in\{0,1, \ldots, d-$ $1\}, 0 \leq i \leq k$, and $c_{k} \neq 0$. Then $\ell(x)=\ell^{\prime}(x)$ unless $d=2$ and $x=1$ or $\sqrt{2}$, where

$$
\ell^{\prime}(x):= \begin{cases}k+s(x), & \text { if } d \geq 3 \\ k+s(x)+c_{k-1}-1, & \text { if } d=2\end{cases}
$$

with the convention that $c_{-1}=0$ if $k=0$, and $s(x)=\sum_{i=0}^{k} c_{i}$.
Proof. Since the set of x 's of the form $a+b \sqrt{d}$, where a and b are nonnegative integers, is countable and these numbers can be listed in increasing order, we can use a proof by induction. Note that, for $d=2, \ell(2)=2=\ell^{\prime}(2)$ and $\ell(1+\sqrt{2})=3=\ell^{\prime}(1+\sqrt{2})$. So, when $d=2$, assume $x>1+\sqrt{2}$ with consequently $k_{x} \geq 2$, and assume $x>1$ when $d \geq 3$. By the inductive hypothesis we have, in case $x-1$ and x / \sqrt{d} are of the prescribed form $a+b \sqrt{d}$, with a and b nonnegative integers, that $\ell(x-1)=\ell^{\prime}(x-1)$ and $\ell(x / \sqrt{d})=\ell^{\prime}(x / \sqrt{d})$. If $c_{0} \geq 1$ in x, then clearly $\ell(x)=\ell(x-1)+1=\ell^{\prime}(x-1)+1=\ell^{\prime}(x)$, where the last equality holds because $k_{x-1}=k_{x}$ and $s(x-1)=s(x)-1$, and $c_{x-1}^{-}=c_{x}^{-}$when $d=2$ because $k_{x} \geq 2$. If $c_{0}=0$, then either $a=0$ or $a=c_{2 m} d^{m}+$ (possibly) higher terms $c_{2 i} d^{i},\left(i>m \geq 1\right.$ and $\left.c_{2 m} \neq 0\right)$, where $x=a+b \sqrt{d}$. Then

$$
\begin{equation*}
\ell(x) \leq \ell(x / \sqrt{d})+1=\ell^{\prime}(x / \sqrt{d})+1=\ell^{\prime}(x) . \tag{4.2}
\end{equation*}
$$

If $a=0$, then (4.2) is an equality because $x-1 \notin \mathbb{Z}_{\geq 0}[\sqrt{d}]$. Assume $a>0$. Since $\ell(x)=$ $1+\min \{\ell(x / \sqrt{d}), \ell(x-1)\}$, we have, from (4.2), $\ell^{\prime}(x)=\ell(x)$ if $\ell(x / \sqrt{d}) \leq \ell(x-1)$, that is, if $\ell^{\prime}(x)-1 \leq \ell^{\prime}(x-1)$. Now

$$
a-1=(d-1) \sum_{i=0}^{m-1} d^{i}+\left(c_{2 m}-1\right) d^{m}+\cdots
$$

Suppose first $d \geq 3$. Then, $\ell^{\prime}(x-1)=k_{x-1}+(s(x)+m(d-1)-1)$. But $k_{x-1} \geq k_{x}-2$ with equality iff $k_{x}=2 m, c_{2 m}=1$ and $c_{x}^{-}=0$. Hence, $\ell^{\prime}(x-1) \geq\left(k_{x}+s(x)\right)+m(d-1)-3 \geq \ell^{\prime}(x)-1$ with equality in the latter inequality iff $d=3$ and $m=1$.

Suppose now $d=2$. If $k_{x-1}=k_{x}$, then $\ell^{\prime}(x-1) \geq k_{x}+(s(x)+m-1)-1 \geq k_{x}+s(x)-1 \geq$ $\ell^{\prime}(x)-1$. Suppose $k_{x-1}<k_{x}$. If $m=1$, then, since $x>1+\sqrt{2}$ and $c_{0}=0$, we find that $x=\sqrt{2}+2$. Thus, $\ell^{\prime}(x-1)=3 \geq 4-1=\ell^{\prime}(x)-1$. Hence, we may now assume $m \geq 2$. If $k_{x-1}=k_{x}-2$, then $c_{x}^{-}=0$ and $\ell^{\prime}(x-1) \geq 2 m-2+(s(x)+m-1)-1 \geq 2 m+s(x)-2=\ell^{\prime}(x)-1$. If $k_{x-1}=k_{x}-1$, then $c_{x}^{-}=1$ and $\ell^{\prime}(x-1)=2 m-1+(s(x)+m-1)+0 \geq 2 m+s(x)=$ $\ell^{\prime}(x)>\ell^{\prime}(x)-1$.

Definition. For $i=0, \ldots, d-1$, write S^{i} for the set of x in $\mathbb{Z}_{\geq 0}[\sqrt{d}]$ with $c_{0} \equiv i(\bmod d)$, and S_{n}^{i} for $g(n) \cap S^{i}$.

Consider the following $2 d-1$ conditional steps

$$
x \in S^{d-1} \mapsto x \sqrt{d} \in S^{0}, \text { and } x \in S^{i} \nearrow_{x \sqrt{d} \in S^{0},} \quad(0 \leq i \leq d-2)
$$

THE FIBONACCI QUARTERLY

Lemma 4.2. If $d \geq 3$, then there is exactly one path from 0 to x that uses the steps in (4.3) for all x in $\mathbb{Z}_{\geq 0}+\mathbb{Z}_{\geq 0} \sqrt{d}$, and this path is minimal, i.e., it contains $\ell(x)$ steps. If $d=2$, then for all x satisfying $\bar{\ell}(x) \geq 3$, there is a unique minimal path from one of the three nodes 3 , $2 \sqrt{2}$ and $1+\sqrt{2}$ in $g(3)$ to x using the steps (4.3).

Proof. The existence of a path is easily seen to be true as the steps in (4.3) allow moving from any $c_{1}+c_{2} \sqrt{d}+\cdots+c_{k} \sqrt{d}^{k-1}$ to $c_{0}+c_{1} \sqrt{d}+c_{2} \sqrt{d}^{2}+\cdots+c_{k} \sqrt{d}^{k}$ for any $c_{0}, 0 \leq c_{0}<d$. The uniqueness can be seen by observing that all nonzero $x \in \mathbb{Z}_{\geq 0}[\sqrt{d}]$ have at most one predecessor using any of the $2 d-1$ functions described in (4.3), namely x / \sqrt{d} if $x \in S^{0}$, and $x-1$ otherwise. Suppose $d \geq 3$. Each of the $2 d-1$ steps in (4.3) produces an increment of 1 in the ℓ^{\prime} function. Since $\ell^{\prime}(0)=0$, this path reaches x in $\ell^{\prime}(x)$ steps. By Lemma 4.1, $\ell^{\prime}(x)=\ell(x)$ so that this path to x is minimal. If $d=2$, then applying one the three steps in (4.3) to some x with $\ell(x) \geq 3$ also increases ℓ^{\prime} by 1 . (This is not true before the third generation as $\sqrt{2} \mapsto 1+\sqrt{2}$ is a step in (4.3), but $\ell^{\prime}(1+\sqrt{2})=3$ and $\ell^{\prime}(\sqrt{2})=1$.)

Theorem 4.3. Let $d \geq 2$ be a non-square integer. Consider the tree generated by the two steps $x \mapsto 1+x$ and $x \mapsto x \sqrt{d}$ starting with $x=0$. Then, with G_{k} denoting the cardinality of the generation $g(k)$, we find that

$$
G_{n+d}=\sum_{i=0}^{d-1} G_{n+i},
$$

for all $n \geq 3$, if $d=2$, and for all $n \geq 1$, if $d \geq 3$.
Proof. Suppose either $d=2$ and $n \geq 5$, or, $d \geq 3$ and $n \geq d+1$, then, by (4.3) and Lemma 4.2, we see that

$$
G_{n}=S_{n-1}^{d-1}+2 \sum_{i=0}^{d-2} S_{n-1}^{i}=G_{n-1}+\sum_{i=0}^{d-2} S_{n-1}^{i} .
$$

But $S_{n-1}^{0}=G_{n-2}, S_{n-1}^{1}=S_{n-2}^{0}=G_{n-3}, S_{n-1}^{2}=S_{n-2}^{1}=S_{n-3}^{0}=G_{n-4}, \cdots, S_{n-1}^{d-2}=S_{n-2}^{d-3}=$ $\cdots=S_{n+1-d}^{0}=G_{n-d}$. Thus, $G_{n}=\sum_{i=1}^{d} G_{n-i}$.

Remark. When $d=2$, we find that $G_{n}=L_{n-1}$ for all $n \geq 3$, where L_{k} is the k th Lucas number. When $d \geq 3$ and not a square, then $G_{i}=2^{i-1}$ for $1 \leq i \leq d-1$ and $G_{d}=2^{d}-1$. For $d=3,\left(G_{n}\right)$ was seen as a companion to the tribonacci sequence and G_{n} proved to count compositions of n into parts 1 or $2(\bmod 3)$ in [3]. More generally, for all $d \geq 3, G_{n}$ was proved to count compositions of n into parts $1,2, \cdots, d-1(\bmod d)$ in [1, Theorem 8].

Remark. If $d=m^{2}$ for some integer $m \geq 2$, then it was shown in [2, Theorem 2.1] that $G_{n+m}=\sum_{i=0}^{m-1} G_{n+i}$, for all $n \geq 2$, with $G_{i}=2^{i-1}, 1 \leq i \leq m-1$, and $G_{m}=2^{m-1}-1$. However, the method used for proving Theorem 4.3 also works for the case $d=m^{2}$ provided we use the m-ary representation of positive integers. We briefly illustrate this for $m=3$. For x a positive integer, write

$$
x=c_{0}+c_{1} 3+c_{2} 3^{2}+\cdots+c_{k} 3^{k}
$$

where the c_{i} 's are 0,1 or 2 , and $c_{k} \neq 0$. Define $\ell^{\prime}(x):=k+s(x)$, where $s(x)=\sum_{i=0}^{k} c_{i}$. Then we can show inductively that $\ell(x)=\ell^{\prime}(x)$. Denote the positive integers congruent to i $(\bmod 3)$ by S^{i}, and the intersection of S^{i} with $g(n)$ by S_{n}^{i}. Then we may observe that with
the five steps

$$
x \in S^{2} \mapsto 3 x \in S^{0}, \text { and } x \in S^{i} \nearrow^{1+x \in S^{i+1},} \quad(i=0 \text { or } 1),
$$

there is a unique minimal path from 0 to every positive integer x (each $x \in \mathbb{Z}_{\geq 1}$ has a unique predecessor, namely $x / 3$ if $x \in S^{0}$ and $x-1$ if $x \in S^{1} \cup S^{2}$). Then, for $n \geq 4$, $G_{n}=S_{n}^{0}+S_{n}^{1}+S_{n}^{2}=G_{n-1}+S_{n-1}^{0}+S_{n-1}^{1}=G_{n-1}+G_{n-2}+S_{n-2}^{0}=G_{n-1}+G_{n-2}+G_{n-3}$.

5. More examples

Recalling that $q(x)$ in Example 4 is simply $x^{2}-2$, it is natural to discover that for other choices of $q(x)=x^{2}-q_{1} x-q_{0}$, the resulting generations $g(n)$ appear to have linearly recurrent cardinality sequences $\left(G_{n}\right)$. Some proofs of the computer-detected recurrences reported in Table 5 and 6 might be challenging. Most of the entries in the column headed "linear recurrence" are conjectured as "eventual"; i.e., the recurrence applies after some unspecified number of initial terms. An alternative way to represent these recurrences, including initial terms, is by Mathematica, as in Program 5 in Section 7. The number of initial terms before linear recurrence applies is quite remarkable in some cases. For example, for $q(x)=x^{2}+x-1$, linear recurrence applies after 24 initial terms, as indicated by the following Mathematica code:

$$
\begin{aligned}
& \operatorname{Join}[\{1,1,2,4,7,11,16,23,31,43,62,90,131,191,279,408,597,873,1279 \text {, } \\
& 1874,2746\} \text {, LinearRecurrence }[\{1,0,1\},\{4023,5896,8641\}, 30]]
\end{aligned}
$$

Table 5. Linear recurrences for $\left(G_{n}\right)$		
$q(x)$	G_{n}	linear recurrence
$x^{2}-1$	$1,1,2,4,4,5,6,7,8,9,10$,	$2,-1$
$x^{2}-2$	$1,1,2,3,4,7,11,18,29$,	1,1
$x^{2}-3$	$1,1,2,3,6,11,20,37,68$,	$1,1,1$
$x^{2}-4$	$1,1,2,4,7,14,27,52,100$,	$1,1,1,1$
$x^{2}-x+1$	$1,1,2,4,7,11,16,22,28,34,40$,	$2,-1$
$x^{2}-2 x+1$	$1,1,2,4,7,11,16,22,29,37,46$,	$3,-3,1$
$x^{2}-3 x+1$	$1,1,2,4,7,13,23,42,75,136$,	$1,2,-1$
$x^{2}-4 x+1$	$1,1,2,4,8,15,29,56,107,206$,	$1,1,2,-1$
$x^{2}-5 x+1$	$1,1,2,4,8,16,31,61,120,236$,	$1,1,1,2,-1$
$x^{2}-x-1$	$1,1,2,3,5,8,12,18,25$,	$1,0,1$
$x^{2}-3 x-1$	$1,1,2,4,8,15,29,55,104$,	$1,1,1,0,1$
$x^{2}-5 x-1$	$1,1,2,4,8,16,32,63,125,247$,	$1,1,1,1,1,0,1$
$x^{2}-2 x-1$	$1,1,2,4,7,13,23,40,70,123$,	$2,-1,1$
$x^{2}-4 x-1$	$1,1,2,4,8,16,31,61,119,232$,	$2,-1,2,-1,1$
$x^{2}-6 x-1$	$1,1,2,4,8,16,32,64,127,253$,	$2,-1,2,-1,2,-1,-1,1$

For each $q(x)$ in Table 5, an unspecified but compelling number of terms satisfying the conjectured recurrence were checked. For example, for $q(x)=x^{2}-x+1$, the number of terms checked for the recurrence was 142 , beginning with $G_{8}=28$. Also, regarding Table 5, note, for example, that the tree $T\left(x^{2}-4\right)$ contains isomorphic images of $T(2)$ and $T(-2)$ as proper subtrees.

THE FIBONACCI QUARTERLY

Table 6. Linear recurrences for $\left(G_{n}\right)$		
$q(x)$	G_{n}	(conjectured) linear recurrence
$x^{2}-3 x+2$	$1,1,2,4,8,15,27,47,80,134,222$,	$3,-2,-1,1$
$x^{2}-4 x+2$	$1,1,2,4,8,15,29,55,105,200,381$,	$1,2,0,-1$
$x^{2}-5 x+2$	$1,1,2,4,8,16,31,61,120,235,461$,	$1,1,2,0,-1$
$x^{2}-6 x+2$	$1,1,2,4,8,16,32,63,125,248,492$,	$1,1,1,2,0,-1$
$x^{2}-4 x+3$	$1,1,2,4,8,16,31,59,111,207,384$,	$3,-2,0,-1,1$
$x^{2}-5 x+3$	$1,1,2,4,8,16,31,61,119,233,455$,	$1,2,0,0,-1$
$x^{2}-6 x+3$	$1,1,2,4,8,16,32,63,125,248,491$,	$1,1,2,0,0,-1$
$x^{2}-7 x+3$	$1,1,2,4,8,16,32,64,127,253,504$,	$1,1,1,2,0,0,-1$

For each $q(x)$ in Table 6, a number of terms satisfying the conjectured recurrence were checked. For example, for $q(x)=x^{2}-3 x+2$, the number of terms checked for the recurrence was 37 , beginning with $G_{4}=8$. Tables 5 and 6 suggest that patterns associated with each form of equation depend on two cases: (1) two real zeros, or (2) two nonreal zeros, and the examples in the two tables are arranged in groups that suggest the following conjectures:

1. If $q(x)=x^{2}-k x+1$, where $k>2$, then $\left(G_{n}\right)$ satisfies the linear recurrence with coefficients

$$
(\overbrace{1,1, \ldots, 1}^{k-2 \text { terms }}, 2,-1) \text {, and initial terms }\left(1,1,2, \ldots, 2^{k-1}, 2^{k}-1\right) .
$$

2. If $q(x)=x^{2}-(2 k+1) x-1$, where $k>0$, then $\left(G_{n}\right)$ satisfies the linear recurrence with coefficients

$$
(\overbrace{1,1, \ldots, 1}^{2 k+1}, 0,1) \text {, and initial terms }\left(1,1,2, \ldots, 2^{2 k+1}, 2^{2 k+2}-1\right) .
$$

3. If $q(x)=x^{2}-2 k x-1$, where $k>1$, then $\left(G_{n}\right)$ satisfies the linear recurrence with coefficients

$$
(\overbrace{2,-1,2,-1, \ldots, 2,-1}^{2 k \text { terms }}, 1), \text { and initial terms }\left(1,1,2, \ldots, 2^{2 k}, 2^{2 k+1}-1\right) .
$$

4. If $q(x)=x^{2}-k x+2$, where $k>3$, then $\left(G_{n}\right)$ satisfies the linear recurrence with coefficients

$$
(\overbrace{1,1, \ldots, 1}^{k-3 \text { terms }}, 2,0,-1) \text {, and initial terms }\left(1,1,2, \ldots, 2^{k-1}, 2^{k}-1\right) .
$$

5. If $q(x)=x^{2}-k x+3$, where $k>4$, then $\left(G_{n}\right)$ satisfies the linear recurrence with coefficients

$$
(\overbrace{1,1, \ldots, 1}^{k-4 \text { terms }}, 2,0,0,-1), \text { and initial terms }\left(1,1,2, \ldots, 2^{k-1}, 2^{k}-1\right) .
$$

6. If $q(x)=x^{2}-k x+(k-1)$, where $k>2$, then $\left(G_{n}\right)$ satisfies the linear recurrence with coefficients

$$
\begin{aligned}
& (3,-2, \overbrace{0,0, \ldots, 0}^{k-3 \text { terms }},-1,1), \text { and initial terms } \\
& \left(1,1,2, \ldots, 2^{k}, 2^{k+1}-1,2^{k+2}-5,2^{k+3}-17\right) .
\end{aligned}
$$

6. The trees $T(1 / d)$ and $T(-d)$

Suppose that $d \geq 2$. Recall that $T(1 / d)$ is obtained by substituting $1 / d$ for x in the polynomial tree T^{*} and using top-to-bottom deletion of duplicates. Equivalently, starting with 0 , we successively apply the following rules for growing a tree T^{\prime} : if $x \in T^{\prime}$, then $x+1 \in T^{\prime}$ and $x / d \in T^{\prime}$, with duplicates removed as they occur. The resulting tree T^{\prime} is $T(1 / d)$. It is inductively clear that $T(1 / d)$ consists of 0 and all rational numbers a / d^{i} such that a and d are relatively prime positive integers. We note without proof another way to generate successive generations $g(n)$, without duplicates during the process, as follows: $g(0)=\{0\}$, and for $n \geq 1$,

$$
g(n)=\{x+1: x \in g(n-1)\} \cup\{x / d: x \in g(n-1) \text { and } x<d\} .
$$

Theorem 6.1. Suppose that $d \geq 2$. For the tree $T(1 / d)$, the cardinality sequence $\left(G_{n}\right)$ satisfies the linear recurrence equation

$$
\begin{equation*}
G_{n}=G_{n-1}+G_{n-2}+\cdots+G_{n-d}, \tag{6.1}
\end{equation*}
$$

with initial values

$$
\left(G_{0}, G_{1}, \ldots, G_{d}\right)=\left(1,1,2,2^{2}, \ldots, 2^{d-1}\right)
$$

Proof. The initial values are inherited from T^{*}. We have

$$
G_{d+1}=2^{d}-1=2^{d-1}+2^{d-2}+\cdots+2^{0}=G_{d}+G_{d-1}+\cdots+G_{1},
$$

which serves as a first inductive step. Suppose for arbitrary $n \geq d+1$ that (6.1) holds. It is easy to see that if, for some w in $g(n)$, one of the numbers $w+1$ or w / d is not in $g(n+1)$ because it is already in an earlier $g(m)$, then that number is $x / d+1$ for some x in $g(n-d)$. Specifically, the number arises from x as follows:

$$
x \rightarrow x+1 \rightarrow x+2 \rightarrow \cdots \rightarrow x+d \rightarrow(x+d) / d
$$

which is already in $g(n-d+2)$, as indicated by

$$
x \rightarrow x / d \rightarrow x / d+1 .
$$

Therefore,

$$
\begin{aligned}
G_{n+1} & =2 G_{n}-\#\{w \in g(n): w \geq d\} \\
& =2 G_{n}-\#\{w \in g(n): w=x+d \text { for some } x \text { in } g(n-d)\} \\
& =2 G_{n}-G_{n-d} \\
& =G_{n}+\left(G_{n-1}+G_{n-2}+\cdots+G_{n-d}\right)-G_{n-d} \\
& =G_{n}+G_{n-1}+\cdots+G_{n+1-d},
\end{aligned}
$$

so that (6.1) holds for all $n \geq d+1$.

THE FIBONACCI QUARTERLY

Note that G_{n} in Theorem 6.1 can be counted by the number of fractions having denominators $1, d, d^{2}, \ldots, d^{n-1}$. For example, for $d=3$, the fractions in $g(7)$ are counted as $1+2+6+$ $14+14+6+1$; i.e., 1 fraction with denominator 1 , and 2 with denominator 3 , and 6 with denominator 3^{2}, etc. The seven summands are identical to row 7 of a tribonacci triangle (A224598 in [5]).

As a corollary to Theorem 6.1, the generation sizes for the tree $T(1 / 2)$ comprise the classical Fibonacci sequence: $G_{n}=F_{n+1}$ for $n \geq 0$.

Theorem 6.2. Suppose that $d \geq 2$. For the tree $T(-d)$, the sequence $\left(G_{n}\right)$ satisfies the linear recurrence (6.1) beginning at $G_{2 d+2}$.

A proof of Theorem 6.2 is omitted. Note, in particular, that the tree $T(-2)$ has $\left(G_{n}\right)=$ $(1,1,2,4,5,8,13, \ldots)$, obtained by substituting 4 for 3 in the Fibonacci sequence. Initial values of $\left(G_{n}\right)$, for selected values of d, are shown in Table 7 .

Table 7. Initial values of $\left(G_{n}\right)$	
d	$\left(G_{0}, G_{1}, \ldots, G_{2 d+1}\right)$
2	$(1,1,2,4,5,8)$
3	$(1,1,2,4,8,14,25,46)$
4	$(1,1,2,4,8,16,30,58,111,214)$
5	$(1,1,2,4,8,16,32,62,122,240,471,926)$
6	$(1,1,2,4,8,16,32,64,126,250,496,984,1951,3870)$
7	$(1,1,2,4,8,16,32,64,128,254,506,1008,2008,4000,7967,15870)$

7. MATHEMATICA PROGRAMS

This section shows Mathematica (version ≥ 7) code used to generate trees and sequences found elsewhere in the article. These may prove useful for further research.

Program 1 generates the polynomial tree T^{*}
Expand [NestList [DeleteDuplicates [Flatten[Map[\{\#+1, x*\#\}\&,\#] ,1]]\&,\{1\},7]]
Program 2 draws Figure 1
$\mathrm{f}:=\{\#+1, \mathrm{x} \#\} \&$;
graph=Most[Flatten[Map[Thread[\{\#,\#\}->f[\#]]\&,Flatten[Nest[f, 0, 4]]]]]
$\mathrm{t}=$ TreePlot [Expand [graph] , Left, 0 , VertexLabeling->True, ImageSize->400]
Program 3 generates the tree $T(r)$
r=Sqrt [2] ; z=10;
$\mathrm{t}=$ Expand [NestList [DeleteDuplicates [Flatten [Map[\{\#+1,r*\#\}\&,\#] , 1]] \&, \{0\}, z]];
$\mathrm{s}[0]=\mathrm{t}[$ [1]] ;
$\mathrm{s}\left[\mathrm{n}_{-}\right]:=\mathrm{s}[\mathrm{n}]=$ Union $\left.[\mathrm{t}[\mathrm{n}+1]], \mathrm{s}[\mathrm{n}-1]\right]$
$\mathrm{g}\left[\mathrm{n}_{\mathrm{l}}\right]:=$ Complement $[\mathrm{s}[\mathrm{n}], \mathrm{s}[\mathrm{n}-1]]$;
Column[Table[g[n],\{n,z\}]]
Table[Length[g[n]],\{n,z\}]
Program 4 generates the tree $T(1 / d)$ as in Theorem 6.1

```
\(d=3 ; g[0]=\{0\} ; g[1]=\{1\} ;\)
\(\mathrm{g}\left[\mathrm{n} \_\right]:=\mathrm{g}[\mathrm{n}]=\) Union[1+g[n-1], (1/d) Select[g[n-1] ,\#<d\&]]
\(\mathrm{u}=\) Table[g[n], \(\{\mathrm{n}, 0,7\}]\)
Map [Length, u]
```

Program 5 generates the sequence $(g(n))$ for $q(x)=x^{2}-3 x+2$, as in Table 6
LinearRecurrence $[\{3,-2,-1,1\},\{1,1,2,4\}, 30]$

References

[1] C. Ballot, 'On a family of recurrences that includes the Fibonacci and the Narayana recurrences', preprint, 2017, http://arxiv.org/abs/1704.04476.
[2] C. Kimberling and P. Moses, 'The infinite Fibonacci tree and other trees generated by rules', Fibonacci Quart., 52.5 (2014), 136-149.
[3] N. Robbins, 'On Tribonacci numbers and 3-regular compositions', Fibonacci Quart., 52.1, (2014), 16-19.
[4] M. Stoll, http://mathoverflow.net/questions/195207/a-possibly-surprising-appearance-of-lucas-numbers, 30 January 2015.
[5] Online Encyclopedia of Integer Sequences, https://oeis.org/
Université de Caen Normandie, Laboratoire L.M.N.O., Boulevard du Maréchal Juin, 14032 Caen, France.

E-mail address: christian.ballot@unicaen.fr
Department of Mathematics, University of Evansville, 1800 Lincoln Avenue, Evansville, IndiANA 47272 , USA.

E-mail address: ck6@evansville.edu
Engineering Division Moparmatic Co., 1154 Evesham Road, Astwood Bank, Nr. Redditch, Worcestershire, B96 6DT, UK.

E-mail address: mows@mopar.freeserve.co.uk

