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Abstract. Let T ∗ be the set of polynomials in x generated by these rules: 0 ∈ T ∗, and if
p ∈ T ∗, then p + 1 ∈ T ∗ and xp ∈ T ∗. Let g(0) = {0}, g(1) = {1}, g(2) = {2, x}, and so on,
so that the cardinality of g(n) is given by Gn = 2n−1 for n ≥ 1, and T ∗ can be regarded as
a tree whose nth generation consists of nodes labeled by the polynomials in g(n). Let T (r)
be the subtree of T ∗ obtained by substituting r for x and deleting duplicates. For various
choices of r, the cardinality sequence Gn satisfies a linear recurrence relation.

1. Introduction

Let T ∗ be the set of polynomials in x generated by these rules: 0 ∈ T ∗, and if p ∈ T ∗,
then p + 1 ∈ T ∗ and xp ∈ T ∗. We regard T ∗ as a tree that grows in successive generations:
g(0) = {0}, g(1) = {1}, g(2) = {2, x},

g(3) = {3, 2x, x + 1, x2}
g(4) = {4, 3x, 2x + 1, 2x2, x + 2, x2 + x, x2 + 1, x3},

and so on, as in Figure 1.
The purpose of this article is to describe T ∗ and some of its subtrees. To see that the

polynomials in T ∗ accrue without duplication, suppose instead that there is a duplicate, q,
and assume that it is the first duplicate to occur. Write q = p, where p occurs before q. If
p = xp1 and q = xq1 then p1 = q1, contrary to the firstness of q, and likewise if p = p1 + 1 and
q = q1 + 1. The remaining case is that p(x) = xp1(x) and q(x) = q1(x) + 1 (or vice versa),
but then p(0) = 0 and q(0) > 0; this contradiction implies that that there are no duplicates,
so that |g(n)| = 2n−1 for n ≥ 1.

Next, we shall show for n > 0 that the number of polynomials of degree k in g(n) is the
binomial coefficient C(n− 1, k) for k ∈ [0, n− 1]. As a first inductive step, C(1− 1, 0) counts
the polynomials of degree 0 in g(1) = {1}. Assume for arbitrary m ≥ 1 that the number of
polynomials of degree k in g(m) is C(m− 1, k) for k ∈ [0,m− 1], and suppose that h ∈ [0,m].
Every p(x) in g(m+ 1) that has degree h is of one of two kinds: p(0) > 0 or p(0) = 0. There
are C(m−1, h) polynomials p(x)−1 in g(m) for which p(0) > 0, together with C(m−1, h−1)
polynomials p(x)/x in g(m) for which p(0) = 0. Therefore, the number of polynomials in
g(m + 1) of degree h is

C(m− 1, h) + C(m− 1, h− 1) = C(m,h),

which finishes an inductive proof.
A third easily proved property of T ∗ is that it consists precisely of the polynomials all of

whose coefficients are in the set Z≥0 = {0, 1, 2, . . .}. This follows from the obvious fact that if
p(x) ∈ T ∗ and c ∈ Z≥0, then xp(x) + c ∈ T ∗.

For arbitrary p(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0 in T ∗, it is easy to determine the

generation g(n) that contains p(x): count a0 steps from p(x) back to p(x)−a0; then 1 step back
to (p(x)−a0)/x = amxm−1+am−1x

m−2+· · ·+a1; then a1 steps back to amxm−2+am−1x
m−3+

· · ·+a2; and so on, until reaching 0, for a total of a0+1+a1+1+· · ·+am−1+1+am steps. That is,
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Figure 1. The tree T ∗, generations g(0) to g(5)

p(x) ∈ g(p(1)+m). For example, the number of steps from 0 to the mth Fibonacci polynomial,
Fm(x), is m + Fm, since Fm(1) = Fm. (Here, Fm(x) is defined by the recurrence Fm(x) =
xFm−1(x) + Fm−2(x) with F0(x) = 0, F1(x) = 1, and Fm is defined by Fm = Fm−1 + Fm−2
with F2 = F1 = 1.)

Another easily proved property of T ∗ that involves Fibonacci numbers arises when we ask
how many even polynomials are in g(n). Recall that p(x) is even if p(−x) = p(x) and odd if
p(−x) = −p(x). Let un be the number of odd polynomials in g(n), and vn the number of even.
Starting with u1 = 0 and v1 = 1, we have vn = vn−1 + un−1 and un = vn−1. Consequently,
un = Fn−1 and vn = Fn. As a corollary, suppose that

√
2 is substituted for x in T ∗; then the

number of rationals (integers, actually) in g(n) is Fn.
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The rest of this article concerns subtrees of T ∗, which appear in various guises, which we
shall call (1) polynomial form, (2) numeric form; and (3) tuple form. For the first of these,
suppose that

q(x) = xm − qm−1x
m−1 − · · · − q1x− q0

is a fixed polynomial of degree m ≥ 1. Then the substitution of

qm−1x
m−1 + · · ·+ q1x + q0

for xm throughout T ∗ produces a labeling of T ∗ that includes duplicates. We consider two
methods for their removal. In the first, the order in which the substitutions in each generation
g(n) are made is “top-to-bottom”; i.e., with reference to Figure 1, starting at n and proceeding
down to xn−1. The other order is “bottom-to-top”. The two trees that result need not be
isomorphic, as we shall see in Section 2. For the top-to-bottom order, we denote the resulting

tree by T (q(x)). The bottom-to-top tree we denote by T̂ (q(x)). Note that T (q(x)) can be
regarded as T ∗ mod q(x).

Next, suppose that r is a nonzero complex number. Substituting r for x in T ∗ gives a tree
whose nodes are numbers, and, after top-to-bottom deletion of all duplicates, we are left with
a tree which we denote by T (r). Likewise, bottom-to-top deletion of duplicates yields a tree

T̂ (r). If r is a zero of an irreducible polynomial q(x), then T (r) is isomorphic to T (q(x)), and

T̂ (r) is isomorphic to T̂ (q(x)). If r is a zero of a reducible polynomial, then T (r) is isomorphic

to a subtree of T (q(x)), and T̂ (r) is isomorphic to a subtree of T̂ (q(x)). We call T (r) and

T̂ (r) numeric forms of a subtree of T ∗.

In Sections 2 and 3, we discuss two particular examples of trees and see, for instance,

that although T (r) and T̂ (r) have much in common, they need not be isomorphic. Much of
the paper henceforth studies the sequence (Gn)n≥0, where Gn = |g(n)| and g(n) is the nth
generation of the tree T (r), for various r. We either prove or conjecture that the sequences
(Gn) are linear recurrences of special types that depend on r. In Section 4, we prove that (Gn)

is (eventually) a linear recurrence for all r =
√
d, d ≥ 2 an integer. Section 5 contains numeric

tables for Gn corresponding to various specific trees, and a list of recurrence conjectures for
(Gn) in six cases of families of trees. Section 6 deals with the trees T (1/d) and T (−d) for
which we also prove or state theorems. Mathematica programs are given in a seventh section.

Before continuing, we summarize the main results of this introduction as a theorem.

Theorem 1.1. Let g(n) be the nth generation of the tree T ∗, and Gn the cardinality of g(n).
Then

(1) Gn = 2n−1 for n ≥ 1.

(2) The number of polynomials of degree k in g(n) is C(n− 1, k).

(3) T ∗ consists of the polynomials that have nonnegative integer coefficients.

(4) If p(x) has degree m, then p(x) ∈ g
(
p(1) + m

)
.

(5) The number of odd polynomials in g(n) is Fn−1, and of even, Fn.

2. Examples: T (golden ratio)

Example 2.1. Let q(x) = x2 − x − 1 and r = (1 +
√

5)/2. The tree T (r) grows as in
Figure 2.

Example 2.2. Let q(x) = x2 − x − 1 and r = (1 +
√

5)/2. The tree T̂ (r) grows as in
Figure 3.
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Figure 2. The tree T ((1 +
√

5)/2), generations g(0) to g(5)

Figure 3. The tree T̂ ((1 +
√

5)/2), generations g(0) to g(5)
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Figure 4. The tree T (1, 1), generations g(0) to g(5)

Continuing with r = (1 +
√

5)/2, let g(n) be the nth generation of T (r) and let ĝ(n) be the

nth generation of T̂ (r). Figures 2 and 3 show that g(n) = ĝ(n) for n = 0, 1, . . . , 5, and it is
clear by induction that g(n) = ĝ(n) for all n ≥ 0. Consider next the sizes of these generations:
for those shown in the two figures, we have Gn = 1, 1, 2, 3, 5, 8, · · · . In a bad moment, one
might expect the sequence to continue with 13, 21, 34, but actually the next three terms are
12, 18, 25. The sequence is A252864 in the Online Encyclopedia of Integer Sequences [5]. Stoll
[4] conjectured that

Gn = Gn−1 + Gn−3 for n ≥ 12.

Although T (r) = T̂ (r) as sets, it is easy to see that as trees, T (r) and T̂ (r) are not isomorphic.
For example, T (r) has the path from 3 to r + 3 in which three consecutive nodes each have

outdegree 1, but T̂ (r) has no such path.

We turn now to a third way to represent a subtree of T ∗, mentioned in Section 1 as tuple
form. Write

q(x) = x2 − q1x− q0.

The tree T = T (q1, q0) is defined as follows: (0, 0) ∈ T, and if (j, k) ∈ T, then (j, k + 1) ∈ T
and (jq1 + k, jq0) ∈ T, with duplicates removed as they occur (here, using the top-to-bottom
method). As an example, take q1 = q0 = 1. It is easy to see that every ordered pair
of nonnegative integers occurs exactly once in T (1, 1). We write (j, k) as jk and note that
T (1, 1) grows as in Figure 4. Of course, T (1, 1) is isomorphic to the tree in Figure 2. Clearly,
T (1, 1) results from T (r), for r = (1 +

√
5)/2, by replacing each jr + k by (j, k).
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3. Example: T (i)

Here, we take (q1, q0) = (0,−1), corresponding to q(x) = x2 + 1 and r = i. Every Gaussian
integer occurs exactly once in this tree, T (i). We wish to determine which numbers are in each
generation g(n). It is convenient to work with nodes represented as vectors (j, k), with these
rules of generation: (j, k) → (j, k + 1) and (j, k) → (k,−j). There are nine easily verifiable
types of containment:

C0: (0, 0) ∈ g(0)
C1: (n− 1, 0) ∈ g(n) for n ≥ 2
C2: (0, n) ∈ g(n) for n ≥ 1
C3: (3− n, 0) ∈ g(n) for n ≥ 4
C4: (0, 2− n) ∈ g(n) for n ≥ 3
C5: j ≥ 1, k ≥ 1, j + k + 1 ≤ n =⇒ (j, k) ∈ g(n) for n ≥ 3
C6: j ≥ 1, k ≥ 1, j + k + 3 ≤ n =⇒ (−j, k) ∈ g(n) for n ≥ 5
C7: j ≥ 1, k ≥ 1, j + k + 3 ≤ n =⇒ (−j,−k) ∈ g(n) for n ≥ 5
C8: j ≥ 1, k ≥ 1, j + k + 2 ≤ n =⇒ (j,−k) ∈ g(n) for n ≥ 4

Taking all the containments together gives the results in Table 1.

Table 1. Counting nodes in g(n) of T (i)
n C0 C1 C2 C3 C4 C5 C6 C7 C8 Gn

0 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 1
2 0 1 1 0 0 0 0 0 0 2
3 0 1 1 1 0 1 0 0 0 4
4 0 1 1 1 1 2 0 0 1 7
5 0 1 1 1 1 3 1 1 2 11
6 0 1 1 1 1 4 2 2 3 15
7 0 1 1 1 1 5 3 3 4 19
8 0 1 1 1 1 6 4 4 5 23

The nine contaiment types enable an easy proof that for n ≥ 4, the number of nodes in g(n)
is 4n− 9, as stated without proof in [2].

4. The tree T (
√
d ), d not a square, yields a recurrence of order d

Here we prove that, for the tree T (
√
d), d not a square, the nth generation cardinality, Gn,

is the sum of the previous d generation cardinalities Gn−i, 1 ≤ i ≤ d, for n large enough. The
proof is a rewriting and a generalization of the elegant method of proof used by Michael Stoll
in the case d = 2 in [4].

Let d ≥ 2 be an integer, but not a square integer. Denote the set of numbers a+b
√
d, where

a and b are nonnegative integers, by Z≥0[
√
d ].

For a number x in Z≥0[
√
d ] define the length of x, `(x), as the minimal number of steps

needed to obtain x from 0, where two steps are allowed, namely y 7→ y + 1 and y 7→ y
√
d.

Clearly g(n) = {x; `(x) = n}. Note that every number x of the prescribed form a + b
√
d has

a unique expansion of the form

c0 + c1
√
d + c2

√
d
2

+ · · ·+ ck
√
d
k
, (4.1)

where the ci’s are in {0, 1, . . . , d− 1} and ck > 0. When convenient, we write kx for k and,
if k ≥ 1, c−x for ck−1.
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To see that (4.1) holds, write both a and b in base d and use d =
√
d
2
. The uniqueness of

the writing comes from the uniqueness of the d-ary expansion of any nonnegative integer and
the fact that a + b

√
d = a′ + b′

√
d, a, b, a′ and b′ integers, implies a = a′ and b = b′.

Lemma 4.1. Suppose d ≥ 2. Let x = c0+c1
√
d+c2

√
d
2
+· · ·+ck

√
d
k
, where ci ∈ {0, 1, . . . , d−

1}, 0 ≤ i ≤ k, and ck 6= 0. Then `(x) = `′(x) unless d = 2 and x = 1 or
√

2, where

`′(x) :=

{
k + s(x), if d ≥ 3,

k + s(x) + ck−1 − 1, if d = 2,

with the convention that c−1 = 0 if k = 0, and s(x) =
∑k

i=0 ci.

Proof. Since the set of x’s of the form a + b
√
d, where a and b are nonnegative integers, is

countable and these numbers can be listed in increasing order, we can use a proof by induction.
Note that, for d = 2, `(2) = 2 = `′(2) and `(1 +

√
2) = 3 = `′(1 +

√
2). So, when d = 2,

assume x > 1+
√

2 with consequently kx ≥ 2, and assume x > 1 when d ≥ 3. By the inductive
hypothesis we have, in case x − 1 and x/

√
d are of the prescribed form a + b

√
d, with a and

b nonnegative integers, that `(x − 1) = `′(x − 1) and `(x/
√
d) = `′(x/

√
d). If c0 ≥ 1 in x,

then clearly `(x) = `(x− 1) + 1 = `′(x− 1) + 1 = `′(x), where the last equality holds because
kx−1 = kx and s(x− 1) = s(x)− 1, and c−x−1 = c−x when d = 2 because kx ≥ 2. If c0 = 0, then

either a = 0 or a = c2mdm+ (possibly) higher terms c2id
i, (i > m ≥ 1 and c2m 6= 0), where

x = a + b
√
d. Then

`(x) ≤ `(x/
√
d) + 1 = `′(x/

√
d) + 1 = `′(x). (4.2)

If a = 0, then (4.2) is an equality because x − 1 6∈ Z≥0[
√
d ]. Assume a > 0. Since `(x) =

1+min{`(x/
√
d), `(x− 1)}, we have, from (4.2), `′(x) = `(x) if `(x/

√
d) ≤ `(x− 1), that is, if

`′(x)− 1 ≤ `′(x− 1). Now

a− 1 = (d− 1)

m−1∑
i=0

di + (c2m − 1)dm + · · · .

Suppose first d ≥ 3. Then, `′(x−1) = kx−1 +
(
s(x) +m(d−1)−1

)
. But kx−1 ≥ kx−2 with

equality iff kx = 2m, c2m = 1 and c−x = 0. Hence, `′(x−1) ≥ (kx+s(x))+m(d−1)−3 ≥ `′(x)−1
with equality in the latter inequality iff d = 3 and m = 1.

Suppose now d = 2. If kx−1 = kx, then `′(x−1) ≥ kx +
(
s(x) +m−1

)
−1 ≥ kx +s(x)−1 ≥

`′(x) − 1. Suppose kx−1 < kx. If m = 1, then, since x > 1 +
√

2 and c0 = 0, we find that
x =
√

2 + 2. Thus, `′(x − 1) = 3 ≥ 4 − 1 = `′(x) − 1. Hence, we may now assume m ≥ 2. If
kx−1 = kx−2, then c−x = 0 and `′(x−1) ≥ 2m−2+

(
s(x)+m−1

)
−1 ≥ 2m+s(x)−2 = `′(x)−1.

If kx−1 = kx − 1, then c−x = 1 and `′(x − 1) = 2m − 1 +
(
s(x) + m − 1

)
+ 0 ≥ 2m + s(x) =

`′(x) > `′(x)− 1. �

Definition. For i = 0, . . . , d − 1, write Si for the set of x in Z≥0[
√
d ] with c0 ≡ i (mod d),

and Si
n for g(n) ∩ Si.

Consider the following 2d− 1 conditional steps

x ∈ Sd−1 7→ x
√
d ∈ S0, and x ∈ Si

1 + x ∈ Si+1,
↗
↘

x
√
d ∈ S0,

(0 ≤ i ≤ d− 2). (4.3)
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Lemma 4.2. If d ≥ 3, then there is exactly one path from 0 to x that uses the steps in (4.3)

for all x in Z≥0 +Z≥0
√
d, and this path is minimal, i.e., it contains `(x) steps. If d = 2, then

for all x satisfying `(x) ≥ 3, there is a unique minimal path from one of the three nodes 3,
2
√

2 and 1 +
√

2 in g(3) to x using the steps (4.3).

Proof. The existence of a path is easily seen to be true as the steps in (4.3) allow moving from

any c1 + c2
√
d + · · · + ck

√
d
k−1

to c0 + c1
√
d + c2

√
d
2

+ · · · + ck
√
d
k

for any c0, 0 ≤ c0 < d.
The uniqueness can be seen by observing that all nonzero x ∈ Z≥0[

√
d ] have at most one

predecessor using any of the 2d− 1 functions described in (4.3), namely x/
√
d if x ∈ S0, and

x−1 otherwise. Suppose d ≥ 3. Each of the 2d−1 steps in (4.3) produces an increment of 1 in
the `′ function. Since `′(0) = 0, this path reaches x in `′(x) steps. By Lemma 4.1, `′(x) = `(x)
so that this path to x is minimal. If d = 2, then applying one the three steps in (4.3) to
some x with `(x) ≥ 3 also increases `′ by 1. (This is not true before the third generation as√

2 7→ 1 +
√

2 is a step in (4.3), but `′(1 +
√

2) = 3 and `′(
√

2) = 1.) �

Theorem 4.3. Let d ≥ 2 be a non-square integer. Consider the tree generated by the two
steps x 7→ 1 + x and x 7→ x

√
d starting with x = 0. Then, with Gk denoting the cardinality of

the generation g(k), we find that

Gn+d =

d−1∑
i=0

Gn+i,

for all n ≥ 3, if d = 2, and for all n ≥ 1, if d ≥ 3.

Proof. Suppose either d = 2 and n ≥ 5, or, d ≥ 3 and n ≥ d + 1, then, by (4.3) and Lemma
4.2, we see that

Gn = Sd−1
n−1 + 2

d−2∑
i=0

Si
n−1 = Gn−1 +

d−2∑
i=0

Si
n−1.

But S0
n−1 = Gn−2, S

1
n−1 = S0

n−2 = Gn−3, S
2
n−1 = S1

n−2 = S0
n−3 = Gn−4, · · · , Sd−2

n−1 = Sd−3
n−2 =

· · · = S0
n+1−d = Gn−d. Thus, Gn =

∑d
i=1Gn−i. �

Remark. When d = 2, we find that Gn = Ln−1 for all n ≥ 3, where Lk is the kth Lucas
number. When d ≥ 3 and not a square, then Gi = 2i−1 for 1 ≤ i ≤ d − 1 and Gd = 2d − 1.
For d = 3, (Gn) was seen as a companion to the tribonacci sequence and Gn proved to count
compositions of n into parts 1 or 2 (mod 3) in [3]. More generally, for all d ≥ 3, Gn was
proved to count compositions of n into parts 1, 2, · · · , d− 1 (mod d) in [1, Theorem 8].

Remark. If d = m2 for some integer m ≥ 2, then it was shown in [2, Theorem 2.1] that

Gn+m =
∑m−1

i=0 Gn+i, for all n ≥ 2, with Gi = 2i−1, 1 ≤ i ≤ m − 1, and Gm = 2m−1 − 1.
However, the method used for proving Theorem 4.3 also works for the case d = m2 provided
we use the m-ary representation of positive integers. We briefly illustrate this for m = 3. For
x a positive integer, write

x = c0 + c13 + c23
2 + · · ·+ ck3k,

where the ci’s are 0, 1 or 2, and ck 6= 0. Define `′(x) := k + s(x), where s(x) =
∑k

i=0 ci.
Then we can show inductively that `(x) = `′(x). Denote the positive integers congruent to i
(mod 3) by Si, and the intersection of Si with g(n) by Si

n. Then we may observe that with
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the five steps

x ∈ S2 7→ 3x ∈ S0, and x ∈ Si

1 + x ∈ Si+1,
↗
↘

3x ∈ S0,

(i = 0 or 1),

there is a unique minimal path from 0 to every positive integer x (each x ∈ Z≥1 has a
unique predecessor, namely x/3 if x ∈ S0 and x − 1 if x ∈ S1 ∪ S2). Then, for n ≥ 4,
Gn = S0

n + S1
n + S2

n = Gn−1 + S0
n−1 + S1

n−1 = Gn−1 + Gn−2 + S0
n−2 = Gn−1 + Gn−2 + Gn−3.

5. More examples

Recalling that q(x) in Example 4 is simply x2 − 2, it is natural to discover that for other
choices of q(x) = x2−q1x−q0, the resulting generations g(n) appear to have linearly recurrent
cardinality sequences (Gn). Some proofs of the computer-detected recurrences reported in
Table 5 and 6 might be challenging. Most of the entries in the column headed “linear
recurrence” are conjectured as “eventual”; i.e., the recurrence applies after some unspecified
number of initial terms. An alternative way to represent these recurrences, including initial
terms, is by Mathematica, as in Program 5 in Section 7. The number of initial terms before
linear recurrence applies is quite remarkable in some cases. For example, for q(x) = x2+x−1,
linear recurrence applies after 24 initial terms, as indicated by the following Mathematica code:

Join[{1, 1, 2, 4, 7, 11, 16, 23, 31, 43, 62, 90, 131, 191, 279, 408, 597, 873, 1279,

1874, 2746},LinearRecurrence[{1, 0, 1}, {4023, 5896, 8641}, 30]]

Table 5. Linear recurrences for (Gn)
q(x) Gn linear recurrence
x2 − 1 1, 1, 2, 4, 4, 5, 6, 7, 8, 9, 10, 2,−1
x2 − 2 1, 1, 2, 3, 4, 7, 11, 18, 29, 1, 1
x2 − 3 1, 1, 2, 3, 6, 11, 20, 37, 68, 1, 1, 1
x2 − 4 1, 1, 2, 4, 7, 14, 27, 52, 100, 1, 1, 1, 1

x2 − x + 1 1, 1, 2, 4, 7, 11, 16, 22, 28, 34, 40, 2,−1
x2 − 2x + 1 1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 3,−3, 1
x2 − 3x + 1 1, 1, 2, 4, 7, 13, 23, 42, 75, 136, 1, 2,−1
x2 − 4x + 1 1, 1, 2, 4, 8, 15, 29, 56, 107, 206, 1, 1, 2,−1
x2 − 5x + 1 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 1, 1, 1, 2,−1
x2 − x− 1 1, 1, 2, 3, 5, 8, 12, 18, 25, 1, 0, 1
x2 − 3x− 1 1, 1, 2, 4, 8, 15, 29, 55, 104, 1, 1, 1, 0, 1
x2 − 5x− 1 1, 1, 2, 4, 8, 16, 32, 63, 125, 247, 1, 1, 1, 1, 1, 0, 1
x2 − 2x− 1 1, 1, 2, 4, 7, 13, 23, 40, 70, 123, 2,−1, 1
x2 − 4x− 1 1, 1, 2, 4, 8, 16, 31, 61, 119, 232, 2,−1, 2,−1, 1
x2 − 6x− 1 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 2,−1, 2,−1, 2,−1,−1, 1

For each q(x) in Table 5, an unspecified but compelling number of terms satisfying the
conjectured recurrence were checked. For example, for q(x) = x2−x+1, the number of terms
checked for the recurrence was 142, beginning with G8 = 28. Also, regarding Table 5, note,
for example, that the tree T (x2− 4) contains isomorphic images of T (2) and T (−2) as proper
subtrees.
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Table 6. Linear recurrences for (Gn)
q(x) Gn (conjectured) linear recurrence

x2 − 3x + 2 1, 1, 2, 4, 8, 15, 27, 47, 80, 134, 222, 3,−2,−1, 1
x2 − 4x + 2 1, 1, 2, 4, 8, 15, 29, 55, 105, 200, 381, 1, 2, 0,−1
x2 − 5x + 2 1, 1, 2, 4, 8, 16, 31, 61, 120, 235, 461, 1, 1, 2, 0,−1
x2 − 6x + 2 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 1, 1, 1, 2, 0,−1
x2 − 4x + 3 1, 1, 2, 4, 8, 16, 31, 59, 111, 207, 384, 3,−2, 0,−1, 1
x2 − 5x + 3 1, 1, 2, 4, 8, 16, 31, 61, 119, 233, 455, 1, 2, 0, 0,−1
x2 − 6x + 3 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 491, 1, 1, 2, 0, 0,−1
x2 − 7x + 3 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1, 1, 1, 2, 0, 0,−1

For each q(x) in Table 6, a number of terms satisfying the conjectured recurrence were
checked. For example, for q(x) = x2− 3x+ 2, the number of terms checked for the recurrence
was 37, beginning with G4 = 8. Tables 5 and 6 suggest that patterns associated with each
form of equation depend on two cases: (1) two real zeros, or (2) two nonreal zeros, and the
examples in the two tables are arranged in groups that suggest the following conjectures:

1. If q(x) = x2 − kx + 1, where k > 2, then (Gn) satisfies the linear recurrence with
coefficients

(

k−2 terms︷ ︸︸ ︷
1, 1, . . . , 1, 2,−1), and initial terms (1, 1, 2, . . . , 2k−1, 2k − 1).

2. If q(x) = x2− (2k + 1)x− 1, where k > 0, then (Gn) satisfies the linear recurrence with
coefficients

(

2k+1 terms︷ ︸︸ ︷
1, 1, . . . , 1, 0, 1), and initial terms (1, 1, 2, . . . , 22k+1, 22k+2 − 1).

3. If q(x) = x2 − 2kx − 1, where k > 1, then (Gn) satisfies the linear recurrence with
coefficients

(

2k terms︷ ︸︸ ︷
2,−1, 2,−1, . . . , 2,−1, 1), and initial terms (1, 1, 2, . . . , 22k, 22k+1 − 1).

4. If q(x) = x2 − kx + 2, where k > 3, then (Gn) satisfies the linear recurrence with
coefficients

(

k−3 terms︷ ︸︸ ︷
1, 1, . . . , 1, 2, 0,−1), and initial terms (1, 1, 2, . . . , 2k−1, 2k − 1).

5. If q(x) = x2 − kx + 3, where k > 4, then (Gn) satisfies the linear recurrence with
coefficients

(

k−4 terms︷ ︸︸ ︷
1, 1, . . . , 1, 2, 0, 0,−1), and initial terms (1, 1, 2, . . . , 2k−1, 2k − 1).
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6. If q(x) = x2 − kx + (k − 1), where k > 2, then (Gn) satisfies the linear recurrence with
coefficients

(3,−2,

k−3 terms︷ ︸︸ ︷
0, 0, . . . , 0,−1, 1), and initial terms

(1, 1, 2, . . . , 2k, 2k+1 − 1, 2k+2 − 5, 2k+3 − 17).

6. The trees T (1/d) and T (−d)

Suppose that d ≥ 2. Recall that T (1/d) is obtained by substituting 1/d for x in the
polynomial tree T ∗ and using top-to-bottom deletion of duplicates. Equivalently, starting
with 0, we successively apply the following rules for growing a tree T ′: if x ∈ T ′, then
x + 1 ∈ T ′ and x/d ∈ T ′, with duplicates removed as they occur. The resulting tree T ′ is
T (1/d). It is inductively clear that T (1/d) consists of 0 and all rational numbers a/di such that
a and d are relatively prime positive integers. We note without proof another way to generate
successive generations g(n), without duplicates during the process, as follows: g(0) = {0}, and
for n ≥ 1,

g(n) = {x + 1 : x ∈ g(n− 1)} ∪ {x/d : x ∈ g(n− 1) and x < d}.

Theorem 6.1. Suppose that d ≥ 2. For the tree T (1/d), the cardinality sequence (Gn) satisfies
the linear recurrence equation

Gn = Gn−1 + Gn−2 + · · ·+ Gn−d, (6.1)

with initial values

(G0, G1, . . . , Gd) = (1, 1, 2, 22, . . . , 2d−1).

Proof. The initial values are inherited from T ∗. We have

Gd+1 = 2d − 1 = 2d−1 + 2d−2 + · · ·+ 20 = Gd + Gd−1 + · · ·+ G1,

which serves as a first inductive step. Suppose for arbitrary n ≥ d + 1 that (6.1) holds. It
is easy to see that if, for some w in g(n), one of the numbers w + 1 or w/d is not in g(n + 1)
because it is already in an earlier g(m), then that number is x/d + 1 for some x in g(n − d).
Specifically, the number arises from x as follows:

x→ x + 1→ x + 2→ · · · → x + d→ (x + d)/d,

which is already in g(n− d + 2), as indicated by

x→ x/d→ x/d + 1.

Therefore,

Gn+1 = 2Gn −#{w ∈ g(n) : w ≥ d}
= 2Gn −#{w ∈ g(n) : w = x + d for some x in g(n− d)}
= 2Gn −Gn−d

= Gn + (Gn−1 + Gn−2 + · · ·+ Gn−d)−Gn−d

= Gn + Gn−1 + · · ·+ Gn+1−d,

so that (6.1) holds for all n ≥ d + 1. �
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Note that Gn in Theorem 6.1 can be counted by the number of fractions having denominators
1, d, d2, . . . , dn−1. For example, for d = 3, the fractions in g(7) are counted as 1 + 2 + 6 +
14 + 14 + 6 + 1; i.e., 1 fraction with denominator 1, and 2 with denominator 3, and 6 with
denominator 32, etc. The seven summands are identical to row 7 of a tribonacci triangle
(A224598 in [5]).

As a corollary to Theorem 6.1, the generation sizes for the tree T (1/2) comprise the classical
Fibonacci sequence: Gn = Fn+1 for n ≥ 0.

Theorem 6.2. Suppose that d ≥ 2. For the tree T (−d), the sequence (Gn) satisfies the linear
recurrence (6.1) beginning at G2d+2.

A proof of Theorem 6.2 is omitted. Note, in particular, that the tree T (−2) has (Gn) =
(1, 1, 2, 4, 5, 8, 13, ...), obtained by substituting 4 for 3 in the Fibonacci sequence. Initial values
of (Gn), for selected values of d, are shown in Table 7.

Table 7. Initial values of (Gn)
d (G0, G1, . . . , G2d+1)
2 (1, 1, 2, 4, 5, 8)
3 (1, 1, 2, 4, 8, 14, 25, 46)
4 (1, 1, 2, 4, 8, 16, 30, 58, 111, 214)
5 (1, 1, 2, 4, 8, 16, 32, 62, 122, 240, 471, 926)
6 (1, 1, 2, 4, 8, 16, 32, 64, 126, 250, 496, 984, 1951, 3870)
7 (1, 1, 2, 4, 8, 16, 32, 64, 128, 254, 506, 1008, 2008, 4000, 7967, 15870)

7. MATHEMATICA PROGRAMS

This section shows Mathematica (version ≥ 7) code used to generate trees and sequences
found elsewhere in the article. These may prove useful for further research.

Program 1 generates the polynomial tree T*

Expand[NestList[DeleteDuplicates[Flatten[Map[{#+1,x*#}&,#],1]]&,{1},7]]

Program 2 draws Figure 1

f:={#+1,x #}&;

graph=Most[Flatten[Map[Thread[{#,#}->f[#]]&,Flatten[Nest[f,0,4]]]]]

t=TreePlot[Expand[graph],Left,0,VertexLabeling->True,ImageSize->400]

Program 3 generates the tree T (r)

r=Sqrt[2];z=10;

t=Expand[NestList[DeleteDuplicates[Flatten[Map[{#+1,r*#}&,#],1]]&,{0},z]];

s[0]=t[[1]];

s[n_]:=s[n]=Union[t[[n+1]],s[n-1]]

g[n_]:=Complement[s[n],s[n-1]];

Column[Table[g[n],{n,z}]]

Table[Length[g[n]],{n,z}]

Program 4 generates the tree T (1/d) as in Theorem 6.1

d=3;g[0]={0};g[1]={1};

g[n_]:=g[n]=Union[1+g[n-1],(1/d) Select[g[n-1],#<d&]]

u=Table[g[n],{n,0,7}]

Map[Length,u]
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Program 5 generates the sequence (g(n)) for q(x) = x2 − 3x + 2, as in Table 6

LinearRecurrence[{3,-2,-1,1},{1,1,2,4},30]
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