THE NATURAL LOGARITHM OF THE GOLDEN SECTION

CHRISTOPHER BROWN

ABSTRACT. This paper looks at the ways in which the natural logarithm of the Golden Section may be expressed as summations and hyperbolic functions. It is a condensed version of the presentation kindly given on my behalf by Dr. Ron Knott at the recent Caen conference.

1. McLaurin's Series

From McLaurin's series, for $-1 \le x < 1$:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = -\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$$

and

$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{x^n}{n} .$$

If $x = \Phi = \frac{1}{2}(1 + \sqrt{5})$, the golden section, we have:

$$\ln\left(1+\frac{1}{\Phi}\right) = \ln\Phi = \frac{1}{\Phi} - \frac{1}{2\Phi^2} + \frac{1}{3\Phi^3} - \frac{1}{4\Phi^4} + \dots = -\sum_{n=1}^{\infty} \frac{(-1)^n}{n\Phi^n}$$
(1.1)

and

$$-\ln\left(1-\frac{1}{\Phi}\right) = \ln\Phi^2 = 2\ln\Phi = \frac{1}{\Phi} + \frac{1}{2\Phi^2} + \frac{1}{3\Phi^3} + \frac{1}{4\Phi^4} + \dots = \sum_{n=1}^{\infty} \frac{1}{n\Phi^n} \quad . \tag{1.2}$$

Adding (1.1) to (1.2) gives:

$$3\ln\Phi = 2\left(\frac{1}{\Phi} + \frac{1}{3\Phi^3} + \frac{1}{5\Phi^5} + \dots\right) = 2\sum_{n=1}^{\infty} \frac{1}{(2n-1)\Phi^{2n-1}} = 2\operatorname{arctanh}\frac{1}{\Phi} \quad . \tag{1.3}$$

Subtracting (1.1) from (1.2) gives:

$$\ln \Phi = \frac{1}{\Phi^2} + \frac{1}{2\Phi^4} + \frac{1}{3\Phi^6} + \dots = \sum_{n=1}^{\infty} \frac{1}{\Phi^{2n}} \quad . \tag{1.4}$$

2. Summations in Terms of Fibonacci Numbers, Lucas Numbers and Phi from [1], p.52:

$$F_n\sqrt{5} = \Phi^n - \left(\frac{-1}{\Phi}\right)^n \tag{2.1}$$

VOLUME 55, NUMBER 5

$$L_n = \Phi^n + \left(\frac{-1}{\Phi}\right)^n \tag{2.2}$$

$$\Phi^n = F_n \Phi + F_{n-1} \tag{2.3}$$

Combining (2.1) and (2.2) gives:

$$\frac{F_n\sqrt{5}-L_n}{2} = -\left(\frac{-1}{\Phi}\right)^n \quad . \tag{2.4}$$

Substituting (2.4) into (1.1), we have:

$$\ln \Phi = \sum_{n=1}^{\infty} \frac{F_n \sqrt{5} - L_n}{2n} \quad . \tag{2.5}$$

.

Substituting (2.2) into (1.2), we have:

$$\ln \Phi = \sum_{n=1}^{\infty} \frac{\Phi^n - L_n}{n}$$

Using (2.3) gives:

$$\ln \Phi = \sum_{n=1}^{\infty} \frac{F_n \Phi + F_{n-1} - L_n}{n}$$

From [1], p.24:

$$L_n = F_{n-1} + F_{n+1}$$

 So

$$\ln \Phi = \sum_{n=1}^{\infty} \frac{F_n \Phi + F_{n+1} - (F_{n-1} + F_{n+1})}{n}$$

or

$$\ln \Phi = \sum_{n=1}^{\infty} \frac{F_n \Phi - F_{n+1}}{n} \ . \tag{2.6}$$

3. Hyperbolic Functions

These are closely related to Fibonacci series and the natural log of phi.

(i) Let $g = \ln \Phi$

From (1.3):

$$\tanh\left(\frac{3g}{2}\right) = \frac{1}{\Phi} \tag{3.1}$$

giving:

$$\cosh\left(\frac{3g}{2}\right) = \sqrt{\Phi} \tag{3.2}$$

and:

$$\sinh\left(\frac{3g}{2}\right) = \frac{1}{\sqrt{\Phi}} \quad . \tag{3.3}$$

DECEMBER 2017

43

THE FIBONACCI QUARTERLY

(ii) Also, from [1], p.124:

$$\cosh g = \frac{\sqrt{5}}{2}$$
$$\sinh g = \frac{1}{2}$$

For any angle a, this produces:

$$\cosh(a+g) - \cosh(a-g) = \sinh(a) \tag{3.4}$$

$$\sinh(a+g) - \sinh(a-g) = \cosh(a) \tag{3.5}$$

(iii) From the identity

$$\operatorname{arctanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

we have

$$\operatorname{arctanh}\left(\frac{a}{b}\right) = \frac{1}{2}\ln\left(\frac{b+a}{b-a}\right)$$
.

Now b-a, a, b and a+b form a general Fibonacci series, where $G_0 = b - a$, $G_1 = a$, $G_2 = b$ and $G_3 = b + a$. So we have for $n \ge 2$:

$$G_n = G_{n-1} + G_{n-2}$$

and

$$\operatorname{arctanh}\left(\frac{G_{n+1}}{G_{n+2}}\right) = \frac{1}{2}\ln\left(\frac{G_{n+3}}{G_n}\right)$$
(3.6)

where $|G_{n+1}| < |G_{n+2}|$

References

 S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section, Dover Publications, Inc., New York, 2008.

24 FALBRO CRESCENT, HADLEIGH, ESSEX, SS7 2SF, ENGLAND *E-mail address:* cjjbrown@ymail.com