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Abstract. This paper looks at the ways in which the natural logarithm of the Golden Section
may be expressed as summations and hyperbolic functions. It is a condensed version of the
presentation kindly given on my behalf by Dr. Ron Knott at the recent Caen conference.

1. McLaurin’s Series

From McLaurin’s series, for −1 ≤ x < 1:
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If x =Φ =1
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5), the golden section, we have:
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Adding (1.1) to (1.2) gives:
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Subtracting (1.1) from (1.2) gives:
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2. Summations in Terms of Fibonacci Numbers, Lucas Numbers and Phi

from [1], p.52:
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Φn = FnΦ + Fn−1 (2.3)

Combining (2.1) and (2.2) gives:
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Substituting (2.4) into (1.1), we have:
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Substituting (2.2) into (1.2), we have:
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.

Using (2.3) gives:
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From [1], p.24:
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3. Hyperbolic Functions

These are closely related to Fibonacci series and the natural log of phi.

(i) Let g = ln Φ

From (1.3):
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(ii) Also, from [1], p.124:
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For any angle a, this produces:

cosh (a + g)− cosh (a− g) = sinh(a) (3.4)

sinh (a + g)− sinh (a− g) = cosh(a) (3.5)

(iii) From the identity
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Now b-a, a, b and a+b form a general Fibonacci series, where G0 = b − a, G1 = a, G2 = b
and G3 = b + a. So we have for n ≥ 2:
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where | Gn+1 |<| Gn+2 |
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