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TAMÁS LENGYEL

Abstract. Let m ≥ 1 be an integer and p be an odd prime. We study alternating sums and
lacunary sums of mth powers of binomial coefficients from the point of view of arithmetic
properties. We develop new congruences and prove the p-adic convergence of some subse-
quences and that in every step we gain at least three more p-adic digits of the limit. These
gains are exact under some explicitly given condition. The main tools are congruential and
divisibility properties of the binomial coefficients.

1. Introduction

In this paper N and Z+ denote the nonnegative and positive numbers and p denotes an
odd prime. We study certain sums of binomial coefficients. For m,n ∈ Z+, we introduced the
Franel-like numbers

F (n,m) =

n∑
k=0

(
n

k

)m
in [8]. In this papers we discuss its alternating version

G(n,m) =

n∑
k=0

(
n

k

)m
(−1)k. (1.1)

The numbers F (n, 3), n ∈ Z+, are called Franel numbers and are considered to be the gener-

alization of the numbers F (n, 1) = 2n and F (n, 2) =
(
2n
n

)
. It is known that there is no closed

form for F (n, 3), cf. [10, Theorem 8.8.1, p160] while G(n, 3) does have one.
Let r ∈ Z+ and split the summation in (1.1) into lacunary sums or subsums by

l∗(n, r,m, i) =
n∑

j≡i (mod r)

(
n

j

)m
(−1)j (1.2)

with integers 0 ≤ i ≤ r − 1, in a similar fashion to the definition of

l(n, r,m, i) =

n∑
j≡i (mod r)

(
n

j

)m
in [8]. Therefore, we have

G(n,m) =

n∑
k=0

(
n

k

)m
(−1)k =

r−1∑
i=0

∑
j≡i (mod r)

(
n

j

)m
(−1)j =

r−1∑
i=0

l∗(n, r,m, i).

Our main focus is on particular subsequences of {G(n,m)}n≥1. We consider

G(apn,m) =

apn∑
k=0

(
apn

k

)m
(−1)k =

p−1∑
i=0

l∗(apn, p,m, i) (1.3)
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with a ∈ Z+.
For an integer n, the p-adic order νp(n) of n is the highest power of prime p which divides

n. We set νp(0) =∞ and νp(m/n) = νp(m)− νp(n) if both m and n are integers.
We develop congruences for G(apn,m) via congruences for the lacunary alternating mth

power sums of binary coefficients in Theorems 2.6 and 2.12, in order to establish the conver-
gence of G(apn,m) and its rate, νp

(
G(apn,m)−G(apn−1,m)

)
, as n→∞.

In Section 2 we present the main results. Section 3 is devoted to preparation for the proofs
that are included in Section 4. Our main results are Theorems 2.6 and 2.12. Further results
are presented in Theorems 2.2 and 2.8.

2. Main results

In [6] and [11] we studied the non-alternating lacunary sums of binomial coefficients and
derived

Theorem 2.1 (Theorem 2, [6]). For any odd prime p and q ∈ Z+, and i, 0 ≤ i ≤ pq − 1, we
have that νp(l(n, p

q, 1, i)) = νp
((
n
i

))
.

In its proof, we also derived a congruence for l(apn + s, p, 1, i), for any odd prime p, 1 ≤ i ≤
p− 1, integer s, 0 ≤ s ≤ i− 1, and a ∈ Z+:

l(apn + s, p, 1, i) ≡ −a2a−1s!(i!(p+ s− i)!)p−2pn (mod pn+1). (2.1)

The proof uses Theorem 3.5 by Anton, Stickelberger, and Hensel (see identity (2) in [5]) to

determine 1
pq

(
N
M

)
(mod p) with pq being the exact power of p dividing

(
N
M

)
. For a general

odd exponent m, after taking the mth powers, a slight modification of the argument in the
proof of Theorem 2.1, which heavily relies on Theorem 3.5, results in

l(apn, p,m, i) ≡ amF (a− 1,m)

(
1

p

(
p

i

))m
pmn (mod pmn+1)

for 1 ≤ i ≤ p − 1. (Note that we discuss Franel-like numbers with even exponents in [9] and
obtain higher p-adic orders.)

In the case of the alternative Franel-like sequences G(apn,m) we drop the assumption on
the parity of m and note that a similar derivation does not result in a congruence that reveals
the p-adic order but only a lower bound as given in the next

Theorem 2.2. For any odd prime p, exponent m ≥ 1, and a, n ∈ Z+ such that (a, p) = 1, we
have that

νp

apn∑
k=0
p-k

(
apn

k

)m
(−1)k

 = νp

G(apn,m)−
apn∑
k=0
p|k

(
apn

k

)m
(−1)k

 ≥ mn.
Remark 2.3. The above lower bound will suffice in the proof of Theorem 2.12; although,
the p-adic orders seem larger. For instance, in the calculations as compared to those in the
derivation of (2.1), we have an extra factor (−1)j = (−1)i

∏
r(−1)tr where j = i + pt with

t = (. . . , t2, t1, t0)p in base p. The second power of −1 can be redistributed among the factors
in the proof. Note that, e.g., t0, 0 ≤ t0 ≤ p− 1, changes its parity in every step as j increases.
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We get
∑p−1

t0=0

(
p−1
t0

)m
(−1)t0 ≡

∑p−1
t0=0((−1)t0)m(−1)t0 =

∑p−1
t0=0 1 ≡ 0 (mod p) if m is odd

since
(
p−1
t0

)
≡ (−1)t0 (mod p) for 0 ≤ t0 ≤ p− 1. It follows that

l∗(apn, p,m, i) =

apn∑
j≡i (mod p)

(
apn

j

)m
(−1)j ≡ 0 (mod pmn+1);

and thus, the p-adic order is at least mn+ 1.

We introduce the following assumption under which the exact p-adic order can be deter-
mined.

Assumption 2.4. For the odd prime p, m ≥ 3 and a ≥ 2 with (a, p) = 1, we assume that

νp

a−1∑
j=1

aj(a− j)
(
a

j

)m
(−1)j

 < m− 2.

Remark 2.5. We write

A =

a−1∑
j=1

aj(a− j)
(
a

j

)m
(−1)j (2.2)

and observe that A can be rewritten as

a2(a− 1)
a−1∑
j=1

(
a− 2

j − 1

)(
a

j

)m−1
(−1)j .

It follows that if a ≡ 1 (mod pM ) with M ≥ m− 2 then Assumption 2.4 cannot hold.

One of our main results is presented in the following theorem, which guarantees that the
p-adic limit limn→∞G(apn,m) exists.

Theorem 2.6. For any odd prime p, a ∈ N, m ∈ Z+, and n ≥ 2, we have

G(apn,m) ≡ G(apn−1,m) (mod pn).

Now we turn to the rate of p-adic convergence in Theorem 2.6, which is determined in
Theorem 2.12. Let Bn, n ≥ 0, be the nth Bernoulli number. We set

Cp =

{
45, if p = 3,

−p3Bp−3/3, if p ≥ 5,

which plays an important role in the Jacobstahl–Kazandzidis congruence, cf. Theorem 3.5.

Remark 2.7. It is well known that νp(Bn) ≥ −1 by the von Staudt–Clausen theorem. If
νp(Bp−3) ≥ 1 then the prime p is called a Wolstenholme prime, e.g., p = 16843 and 2124679.
Note that ν3(C3) = 2. For a prime p ≥ 5, we have νp(Cp) ≥ 2 while νp(Cp) ≥ 3 if νp(Bp−3) ≥ 0,
and νp(Cp) ≤ 3 exactly if p is not a Wolstenholme prime.

We define

en(a, p,m) = νp

apn−1∑
k=0

((
apn

kp

)m
(−1)kp −

(
apn−1

k

)m
(−1)k

)
and obtain

98 VOLUME 55, NUMBER 5



P -ADIC CONVERGENCE OF SUMS OF POWERS OF BINOMIAL COEFFICIENTS

Theorem 2.8. For any odd prime p which is not a Wolstenholme prime, a even with (a, p) = 1,
integers m ≥ 4 and n ≥ 2, and under Assumption 2.4, we have that

apn−1∑
k=0

((
apn

kp

)m
(−1)kp −

(
apn−1

k

)m
(−1)k

)

≡ p3n−3amCp
a−1∑
j=1

j(a− j)
(
a

j

)m
(−1)j (mod p1+en(a,p,m)),

which already guarantees that en(a, p,m) ≥ 3n− 1.

Remark 2.9. Note that for m ≥ 0 and odd integer a ≥ 1 the left hand side sum is simply 0
by

Lemma 2.10 (Remark 2.2, [9]). For any odd prime p, integer n ≥ 1, exponent m ≥ 0, and
odd integer a ≥ 1, we have

apn∑
k=0

(
apn

k

)m
(−1)k =

apn∑
k=0
p|k

(
apn

k

)m
(−1)k = 0.

For m = 2 and 3 we need

Lemma 2.11. For n ≥ 0 even and m = 2 or 3 we have

n∑
k=0

(
n

k

)m
(−1)k = (−1)n/2

( mn
2

n
2 . . .

n
2

)
where the last factor is a multinomial coefficient.

Finally, we state our main theorem on the rate of p-adic convergence.

Theorem 2.12. Assume that p is an odd prime, a,m ∈ Z+ with (a, p) = 1, and n ≥ 2. We
rewrite the difference

G(apn,m)−G(apn−1,m) (2.3)

=

apn∑
k=0
p-k

(
apn

k

)m
(−1)k +

apn−1∑
k=0

((
apn

kp

)m
(−1)kp −

(
apn−1

k

)m
(−1)k

)
.

If a is odd or m = 1 then G(apn,m) = 0. For a ≥ 2 even we have the following cases.
If m = 2 then we obtain that

G(apn, 2)−G(apn−1, 2) ≡ (−1)a/2
a3

4
Cp

(
a
a
2

)
p3n−3 (mod p

3n−2+νp(Cp)+νp(( a
a/2))),

and νp(G(apn, 2) − G(apn−1, 2)) = 3n − 3 + νp(Cp) + νp(
(
a
a/2

)
) if p is not a Wolstenholme

prime.
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If m = 3 then we obtain that

G(apn, 3)−G(apn−1, 3)

≡ (−1)a/2a3Cp

(
a
a
2

)(3a
2
a
2

)
p3n−3 (mod p

3n−2+νp(Cp)+νp(( a
a/2)(

3a/2
a/2 ))),

and νp(G(apn, 3)−G(apn−1, 3)) = 3n−3+νp(Cp)+νp(
(
a
a/2

)(3a/2
a/2

)
) if p is not a Wolstenholme

prime.

If a ≥ 2, m ≥ 4, and Assumption 2.4 is satisfied then the first sum’s p-adic order is at least
mn and it is bigger than that of the second sum, which is at most 3n− 3 + νp(mCp) +m− 3 ≤
3n+ νp(m) +m− 3 if p is not a Wolstenholme prime. We have that

G(apn,m)−G(apn−1,m) ≡ p3n−3amCp
a−1∑
j=1

j(a− j)
(
a

j

)m
(−1)j (mod p1+en(a,p,m)).

Remark 2.13. If m = 1 then for any 1 ≤ i ≤ p− 1, according to an application of Theorem
3 in [4], we obtain

D = Di =

apn∑
k=0

k≡i (mod p)

(
apn

k

)
(−1)k ≡ (−1)

apn

p−1
−1
p

apn

p−1
−1

(mod p
apn

p−1 )

if p − 1|a (and thus, a is even), and νp(D) ≥ b ap
n

p−1c, otherwise. In these cases D has a

surprisingly high p-adic order.
Since G(apn, 1) = 0 for n ≥ 0, then after summation for i = 1, 2, . . . , p− 1, and by (2.3) we

get that

apn∑
k=0
p-k

(
apn

k

)
(−1)k = −

apn−1∑
k=0

((
apn

kp

)
(−1)k −

(
apn−1

k

)
(−1)k

)

≡ (−1)
apn

p−1 p
apn

p−1
−1

(mod p
apn

p−1 )

if p− 1|a.

3. Preparation

The following four theorems comprise the basic facts regarding divisibility and congruence
properties of the binomial coefficients. We assume that 0 ≤ k ≤ n.

Theorem 3.1 (Kummer, 1852). The power of a prime p that divides the binomial coefficient(
n
k

)
is given by the number of carries when we add k and n− k in base p.

From now on M and N will denote integers such that 0 ≤M ≤ N .

Theorem 3.2 (Lucas, 1877). Let N = (nd, . . . , n1, n0)p = n0 + n1p + · · · + ndp
d and M =

m0 +m1p+ · · ·+mdp
d with 0 ≤ ni,mi ≤ p− 1 for each i, be the base p representations of N

and M , respectively. Then(
N

M

)
≡
(
n0
m0

)(
n1
m1

)
· · ·
(
nd
md

)
(mod p).
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Lucas’ theorem is further extended in

Theorem 3.3 (Anton, 1869, Stickelberger, 1890, Hensel, 1902). Let N = (nd, . . . , n1, n0)p =

n0 + n1p+ · · ·+ ndp
d,M = m0 +m1p+ · · ·+mdp

d and R = N −M = r0 + r1p+ · · ·+ rdp
d

with 0 ≤ ni,mi, ri ≤ p− 1 for each i, be the base p representations of N,M, and R = N −M ,
respectively. Then with q = νp

((
N
M

))
,

(−1)q
1

pq

(
N

M

)
≡
(

n0!

m0!r0!

)(
n1!

m1!r1!

)
· · ·
(

nd!

md!rd!

)
(mod p).

Davis and Webb (1990) and Granville (1995) have independently generalized Lucas’ theorem
and its extension Theorem 3.3 to prime power moduli. Their theorem implies the following
congruence in

Corollary 3.4. [1, Corollary 2.35](
apr

bps

)
≡
(
apr−1

bps−1

)
(mod pε0+q) (3.1)

with a, b, q, r, s ∈ Z+, (a, p) = (b, p) = 1, r ≥ q, s ≥ q, ε0 ≤ νp
((
apr

bps

))
and r, s ≥ 1.

It follows that for 0 ≤ k ≤ apn−1, we have that
(
apn

kp

)
≡
(
apn−1

k

)
(mod p). Note that it can

be further improved by an application of Theorem 3.5 although (3.1) suffices in the proof of
Theorem 2.6.

We also use

Theorem 3.5 (Jacobstahl–Kazandzidis congruence, cf. Corollary 11.6.22, [2]). Let M and N
such that 0 ≤M ≤ N and p prime. We have

(
pN

pM

)
≡


(

1− Bp−3

3 p3NM(N −M)

)(
N
M

)
(mod p4NM(N −M)

(
N
M

)
), if p ≥ 5,

(1 + 45NM(N −M))
(
N
M

)
(mod p4NM(N −M)

(
N
M

)
), if p = 3,

(−1)M(N−M)P (N,M)
(
N
M

)
(mod p4NM(N −M)

(
N
M

)
), if p = 2,

where P (N,M) = 1 + 6NM(N −M)− 4NM(N −M)(N2 −NM +M2) + 2(NM(N −M))2

and Bn stands for the nth Bernoulli number.

4. Proofs

Proof of Theorem 2.6. By congruence (3.1) and n ≥ 2, we obtain that for all a, s ∈ Z+, n ≥ s,
and (j, p) = 1 (

apn

jps

)
(−1)jp

s ≡
(
apn−1

jps−1

)
(−1)jp

s−1
(mod pn)
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since we can set ε0 = νp(
(
apn

jps

)
) ≥ n−s and q = s. Summing up for s = 1, 2, . . . , n and applying

Theorem 2.2, it follows that

G(apn,m) ≡
apn−1∑
j=0

(
apn

jp

)m
(−1)jp =

n∑
s=1

apn−s∑
j=0
p-j

(
apn

jps

)m
(−1)jp

s


≡

n∑
s=1

apn−s∑
j=0
p-j

(
apn−1

jps−1

)m
(−1)jp

s−1


=

apn−2∑
j=0

(
apn−1

jp

)m
(−1)jp

≡ G(apn−1,m) (mod pn).

�

Proof of Theorem 2.8. We can leave out terms with k = 0 and apn−1. We apply Theorem 3.5
with N = apn−1 and M = k, and deduce from(

pN

pM

)
≡
(
N

M

)
+ CpNM(N −M)

(
N

M

)
(mod p4NM(N −M)

(
N

M

)
)

that (
pN

pM

)m
≡
(
N

M

)m
+mCpNM(N −M)

(
N

M

)m
(mod mp4NM(N −M)

(
N

M

)m
)

and thus, (
pN

pM

)m
(−1)pM −

(
N

M

)m
(−1)M (4.1)

≡ mCpNM(N −M)

(
N

M

)m
(−1)M (mod mp4NM(N −M)

(
N

M

)m
)

by binomial expansion. This yields that

B = νp

((
apn

kp

)m
(−1)kp −

(
apn−1

k

)m
(−1)k

)
= νp(mCp) + n− 1 + νp(k) (4.2)

+ νp(ap
n−1 − k) +mνp

((
apn−1

k

))
for 1 ≤ k ≤ apn−1 − 1 if νp(Cp) ≤ 3 (otherwise, after replacing νp(Cp) with 2, we have only
a lower bound on the p-adic order of the difference on the left hand side since νp(Cp) ≥ 2 by
Remark 2.7).

If a ≥ 2, (a, p) = 1, and m ≥ 4 then we have three cases according to νp(k). In each case
we find a lower bound on the expression in (4.2).

First we assume that νp(k) = n−1. We have that k = jpn−1 with some j so that 1 ≤ j ≤ a−1
and (j, p) = 1. The combined contribution of these terms to the right hand side of (4.1) is

p3n−3mCp

a−1∑
j=1

(j,p)=1

aj(a− j)
(
a

j

)m
(−1)j (mod p1+en(a,p,m)).
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If νp(k) ≥ n, i.e., k = jpn−1 with (j, p) > 1, then B ≥ νp(mCp) + n − 1 + n + n − 1 =
νp(mCp) + 3(n− 1) + 1, so we can include these terms even if it is unnecessary.

In the remaining case we have νp(k) < n−1 and therefore, B ≥ νp(mCp)+(m+1)(n−1)−
(m− 2)νp(k) > νp(mCp) + 3(n− 1). These terms can still contribute to the congruence if the
terms with νp(k) ≥ n − 1 result in a sum which is divisible with p, however, Assumption 2.4
helps in eliminating the terms with νp(k) < n − 1. In fact, let us assume that in fact,
νp(k) = n − 1 − t with t ∈ Z+. Then B ≥ νp(mCp) + (m + 1)(n − 1) − (m − 2)(n − 1 −
t) = νp(mCp) + 3(n − 1) + (m − 2)t. If Assumption 2.4 is satisfied then by (2.2) we have
B > νp(mCp) + 3(n − 1) + νp(A) since t ≥ 1 and m − 2 > νp(A); thus, these terms can be
ignored. �

Proof of Lemma 2.11. If m = 2 then we consider (1 − x)n(1 + x)n and find the coefficient of
the middle term with xn. The identity with m = 3 is called Dixon’s identity (and it can be
proven, for example, by the Zeilberger–Wilf algorithm). �

Proof of Theorem 2.12. If a is odd then clearly,(
apn

k

)m
(−1)k = −

(
apn

apn − k

)m
(−1)ap

n−k,

therefore, the terms of the sum in G(apn,m) cancel each other in pairs. If m = 1 then∑apn

k=0

(
apn

k

)
(−1)k = (1− 1)ap

n
= 0 by binomial expansion.

From now on we deal only with even integers a ≥ 2. If m = 2 then

G(apn, 2) = (−1)a/2
(
apn

apn

2

)
by Lemma 2.11. In general, the p-adic analysis of the difference of central binomial coefficients
given by Theorem 2.1 in [7] provides the result. To handle both cases with m = 2 and 3 in
a similar fashion, we use Lemma 2.11 and then repeatedly apply the Jacobstahl–Kazandzidis
congruences, cf. Theorem 3.5, first with d = a/2, N = 2dpn−1 and M = dpn−1. In fact, if
m = 2 then we obtain that

G(apn, 2)−G(apn−1, 2) ≡ (−1)a/2
a3

4
Cp

(
a
a
2

)
p3n−3 (mod p

3n−2+νp(Cp)+νp(( a
a/2))).

The second application concerns the setting N = 3dpn−1 and the above M . If m = 3 then we
obtain that

G(apn, 3)−G(apn−1, 3)

≡ (−1)a/2a3Cp

(
a
a
2

)(3a
2
a
2

)
p3n−3 (mod p

3n−2+νp(Cp)+νp(( a
a/2)(

3a/2
a/2 ))).

If m ≥ 4 then we evaluate the two sums in (2.3). The p-adic order of the first sum on the
right hand side is at least mn by Theorem 2.2.

The second sum in (2.3) needs a more refined approach. From the second sum we can leave
out the terms with k = 0 and apn−1 again, and then it can be evaluated via the Jacobstahl–
Kazandzidis congruence, and we complete the proof by invoking Theorem 2.8.

Note that if a ≥ 2, (a, p) = 1, m ≥ 4, n ≥ 2, and p is not a Wolstenholme prime, then
under Assumption 2.4 we have that mn > 3n+ νp(m) +m− 3 ≥ 3n− 3 + νp(mCp) +m− 3 ≥
3n − 3 + νp(mCp) + νp(A) by (2.2). Indeed, the first inequality follows from the fact that
(m− 3)(n− 1) > νp(m) since n ≥ 2 > νp(m)/(m− 3) + 1. �
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Remark 4.1. We note that Dixon [3] determined the p-adic order of multinomial coefficients
in terms of carry counting which might come handy in the cases with m = 2 and 3. Clearly,
the p-adic order of Bn =

(
bpn

c1pn...ckpn

)
with c1 + c2 + · · · + ck = b, c1, . . . , ck, b ∈ Z+ does not

depend on n. To find the p-adic order of the differences Bn − Bn−1 we need a more detailed
analysis via the Jacobstahl–Kazandzidis congruence.
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