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ABSTRACT. Fibonacci partitions refer to the partitions of {1,2,...,n} into blocks of noncon-
secutive elements. The name was coined by Prodinger because there are as many noncon-
secutive subsets of {1,2,...,n} as the Fibonacci number F), 2 [Fibonacci Quart. 19 (1981),
463-465]. In this note we discuss an application of the bijection between Fibonacci partitions
and standard partitions to a new formula for the number of partitions with no circular suc-
cessions, that is, pairs of elements a < b in a block satisfying b —a = 1 (mod n). Then we
demonstrate an application of an extended form of the bijection.

1. INTRODUCTION
The number of sets A C {1,2,...,n} satisfying
a,be A = |b—al>2 (1.1)
is known to be the Fibonacci number F,, 15 (see for example [1]):
Fy=F=1, Fhyo=F,+ Fu41, n> 0.

Based on this fact Prodinger [6] called any set of natural numbers A with property (1.1) a
Fibonacci set. For example, Fy = 8 enumerates the following Fibonacci subsets of {1,2,3,4}:

0.{1}, {2}, {3}, {4}, {1, 3}, {1,4},{2,4}.

A partition of [n] = {1,2,...,n} is a decomposition of [n] into nonempty subsets called
blocks. A partition into k-blocks is also called a k-partition and denoted by Hi/Hs/ ... /Hy,
where the blocks are arranged in standard order, that is, min(H;) < min(Hz) < --- < min(Hy)
with the elements in H; in increasing order for all i.

A partition consisting of Fibonacci subsets is called a Fibonacci partition (a. k. a. noncon-
secutive partition or 2-regular partition). For example, there are six 3-partitions of [4]:

12/3/4,13/2/4, 1/23/4, 14/2/3, 1/24/3, 1/2/34,
of which three are Fibonacci partitions:
13/2/4,14/2/3, 1/24/3.

The number of k-partitions of [n] is the Stirling number of the second kind S(n, k) which
satisfies the recurrence relation:

S(n,k)=Sn—-1,k—=1)+kS(n—1,k), S(0,0)=1, S(n,0)=S5(0,n)=1forn>0. (1.2)

The number of Fibonacci k-partitions of [n] will be denoted by fa(n, k).
The bijection to be discussed in this paper is the one which Prodinger [6] used to prove the
following identity.
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Theorem 1.1. The number of Fibonacci k-partitions of [n] is equal to the number of (k—1)-
partitions of [n — 1]:
fo(n, k) =S(n—1,k—1). (1.3)

Other bijections have since appeared in [2] and [3]. Even though the bijection of Prodinger
has the apparent weakness of not being applicable to d-regular partitions for d > 2, it possesses
the unique feature of relying on the parity of strings of consecutive elements. (In a d-regular
partition, every pair of elements a, b in a block satisfies |a — b| > d).

In Section 2 we describe the bijection asserting the equality of the sets enumerated by the
left- and right-hand sides of (1.3). The sets will be denoted by Fy(n,k) and II(n — 1,k — 1)
respectively. Then in Section 3 we use the reverse construction of the bijection to obtain a
formula for partitions without circular successions (defined below). Lastly, in Section 4 we
highlight a possible extension of the bijection.

2. THE BUECTION: Fy(n,k) — II(n — 1,k — 1)

We begin with two key definitions.

Succession: a pair of elements (a, b) in one block of a partition of [n] satisfying |a — b| = 1.
Succession string: any contiguous sequence of one or more consecutive integers in one block
of a partition.

Thus the set Fy(n, k) of Fibonacci partitions is precisely the set of k-partitions of [n] which
contain no successions.

The bijection runs as follows. If a partition p € II(n—1,k—1) does not contain a succession,
then insert the block {n} to obtain a partition in F5(n, k). If p contains successions, then form
a new block H(n) to contain n and every ith term of each succession string of length ¢ such
that i = ¢+ 1 (mod 2). In other words, if ¢ is odd, move elements in even positions to H(n)
and if ¢ is even, move elements in odd positions.

Conversely if the block H(n) containing n in a partition ¢ € Fy(n, k) satisfies |H(n)| = 1,
then delete H(n); otherwise before deleting H(n), put every < n into the block containing
x + 1. The resulting partition belongs to II(n — 1,k — 1).

For example, 135/24 + 135/24/6 and 123/45 — 13/246/5. (]
The bijective map Fy(n, k) — II(n — 1,k — 1) will be denoted by 65:
0 :FQ(TL, k) —>H(n—1,k—1). (2.1)

3. NEW FORMULA FOR PARTITIONS WITHOUT CIRCULAR SUCCESSIONS

A circular succession is an ordered pair of elements (a,b) in one block of a partition of [n]
which satisfy b —a = 1 (mod n). In other words a circular succession is a succession or an
occurrence of the pair (n,1) in a block. For example the partition 1259/367/48 contains three
circular successions namely (1,2),(9,1) and (6,7).

The number of k-partitions of [n] containing no circular successions is denoted by ¢(n, k). Thus
a partition enumerated by ¢(n, k) is a Fibonacci partition which avoids the circular succession
(n,1).

In [4] the authors found the following formula using a direct construction of partitions

enumerated by fa(n, k).
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with ¢(n,1) = d1p,.
In this section we obtain a different formula by considering the images of partitions enu-
merated by fa(n, k) under 6.

Proposition 3.1. The number m(n, k) of partitions B1/Ba/ --- /By of [n] in which [t] C B;
and t + 1 ¢ By is given by

m(n, k) =8Sn—t+1,k) —S(n—1t,k).

Proof.  First Proof: Partition {t + 1,...,n} into k blocks and then put the elements of [t]
into any block except the block containing t 4+ 1. This gives (k — 1)S(n — t, k) partitions. The
other partitions in which By = [t] are S(n — ¢,k — 1) in number. Hence we obtain

m(n,k)=Sn—t,k—1)+(k—1)S(n—t, k) =S(n—t+1,k) — S(n —t, k),
where the second equality follows from the recurrence (1.2).
Second Proof: The number of k-partitions of [n] containing the string [z], z > 1, is S(n —
(x — 1), k), that is, obtain a k-partition of {z,...,n} and put the elements of {1,...,2 — 1}

into the block containing z. Thus for a fixed = ¢t the number of k-partitions of [n] containing
the string [t] is S(n — (t — 1),k) — S(n — t, k). O
Let modqa(n, k) and meven(n, k) be the number of partitions in II(n, k) in which 1 belongs to

a succession string of odd and even length respectively. Then moqq(n, k) = > ;5 m2i-1(n, k)
and Teven(n, k) = Y.~ m2i(n, k). Proposition 3.1 then implies the next result.

Corollary 3.2. We have

Toaa(n, k) =Y (S(n—2i+2,k) — S(n— 2i + 1, k)).
i>1

Teven(n, k) =Y (S(n — 20+ 1,k) — S(n — 2, k)).

i>1

Note that the sum 7moqq(n, k) + Teven(n, k) telescopes to S(n, k).

Our new formula is stated below.

Theorem 3.3. We have

|2=5+2]

(k)= Y (S(n—2i+1,k—1)—S(n—2ik-1)).
i=1

Proof. Let C(n,k) denote the set of partitions enumerated by ¢(n, k). It will suffice to show
that ¢(n, k) = |C(n, k)| = moqa(n — 1,k — 1) so that the theorem follows from Corollary 3.2.
A partition ¢ € C(n,k) C Fa(n,k) avoids the circular succession (n,1). This means that 1
was not moved during the transition 65 (p) — ¢, where p € II(n — 1,k — 1) (see (2.1)).
Since 1 occupies an odd position, only integers occupying even positions were moved from
the string containing 1 during execution of the map 6, : TI(n — 1,k — 1) — Fy(n, k). This
implies that p is a partition in which 1 belongs to a succession string of odd length. Thus
the image of the restriction of 65 ! to the set of such partitions p is precisely C(n, k), i.e.,
|C(n, k)| = mogq(n — 1,k — 1). Hence the result. (See Table 1 for an illustration). O

This result leads to a corresponding single-sum formula for ¢.(n, k), the number of k-
partitions of [n] containing r circular successions. Since ¢,(n, k) = (?)c(n — r, k) [4, Theorem
3.2], we have:
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p=Bi/Byell(4,2) | t, [t] S B | q=05"(p) € F3(5,3) | ¢ € C(5,3)?
1/234 1 1/24/35 ves
12/34 2 135/2/4 no
13/24 1 13/24/5 yes
14/23 | 14/25/3 yes
123/4 3 13/25/4 yes
124/3 2 15/24/3 no
134/2 1 14/2/35 yes

TABLE 1. Illustration of the proof of Theorem 3.3

Corollary 3.4.

Ln—r;k+2j
cr(n, k) = <Z> Z (Sn—r—2i+1,k—1)—Snh—r—2i,k—1)).
i=1

3.1. Bonus result - a combinatorial identity. The proof of the following identity was
requested in [4].

n72
2

S(n Eé("_ _j)G)SM—Q—j—Lk—l)

j=0 t=0

+ z]:<”_1_9>(i)S(nq—j—t,k—l). (3:2)

=0 t=0

.

.

Subsequently intricate combinatorial proofs were provided by Shattuck [7] and Munagi [5].

However, by comparing with (3.1), we see that the right-hand side of (3.2) is equal to
cnk+1)+cn+1,k+1)
which, from the relation ¢(n, k) = moqq(n — 1,k — 1), is equal to
Todd(n — 1, k) + moqa(n, k).
Thus using Corollary 3.2, the three quantities in (3.2) are, correspondingly,
S(n, k) = Teven(n, k) + moqa(n, k).
So the identity (3.2) is just a splitting of S(n, k) into the numbers of k-partitions of [n] in
which 1 belongs to a succession string of even and odd length.

4. A BIJECTION FOR PARTITIONS WITH CIRCULAR SUCCESSIONS

Here we introduce a circular succession version of the bijection 6s.
Consider the sum ¢(n) = Y ¢(n, k), the number of partitions of [n] containing no circular
k

successions, and B(n) = Y S(n, k), the n'* Bell number.
k

Proposition 4.1. The number of partitions of [n + 1] containing no circular succession is
equal to the number of partitions of [n] containing at least one circular succession:

c(n+1) = B(n) —c(n). (4.1)
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Proof. Denote the enumerated sets by C'(n + 1) and BC(n).
We propose an extension of #, to partitions with circular successions given by

w2 : C(n+1) — BC(n).

First define a bijective transformation o on C(n + 1) as follows: if p € C(n + 1) such that
{n+1} € pand n ¢ H(1), then a(p) is the partition obtained by replacing the blocks H (1)
and {n + 1} with the block H(1) U {n + 1}, otherwise a(p) = p.

Now define

p2 = tha: pr—rq.

Examples using some cases of C(5) — BC(4):
(i) p2(14/2/3/5) = 2c(14/2/3/5) = 05(14/2/3/5) = 14/2/3.

02(14/2/35) = 020.(14/2/35) = 02(14/2/35) = 134/2.
(ii) 2(13/24/5) = 0a(13/24/5) = 05(135/24) = 1234.

©2(13/2/4/5) = 02c(13/2/4/5) = 02(135/2/4) = 12/34.

Conversely, we have

Pyl =aTly s g p,
where the effect of o~ is to replace H(1) with the blocks H(1)\ {n+1} and {n+1} whenever
n+1e H(1).

Examples:
(i) 9059(14/2/3) =a7'0,1(14/2/3) = a~1(14/2/3/5) = 14/2/3/5.
0y 1 (134/2) = a~ 10,1 (134/2) = a1 (14/2/35) = 14/2/35.
(ii) @5 1(1234) = o105 1(1234) = a~1(135/24) = 13/24/5.
05 1(12/34) = a~10,1(12/34) = o~ 1(135/2/4) = 13/2/4/5. 0
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