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Abstract. Sequence A000975 in the Online Encyclopedia of Integer Sequences (OEIS) starts
out 1, 2, 5, 10, 21, 42, 85, . . . . As of July 1, 2016, the description in the OEIS lists several
characterizations of this sequence and numerous examples of instances where this sequence
occurs. It also presents a “not yet proved” result, a conjecture, and an unanswered question
concerning this sequence. In this paper we show that all of these proposed results are in fact
true.

1. Characterizations of Sequence A000975

Sequence A000975 in the Online Encyclopedia of Integer Sequences (OEIS) [5] starts out 1,
2, 5, 10, 21, 42, 85, . . . . Throughout this paper we denote this sequence as sequence A and
the nth term of this sequence as A(n), written in function notation. The OEIS defines this
sequence recursively as follows.

Characterization 1:

1. A(1) = 1,
2. A(2n) = 2A(2n−1), and
3. A(2n+1) = 2A(2n) + 1.

Thus to get the next term we either double the preceding value or double it and add 1. But
doubling is the same as appending a 0 in base 2, while doubling and adding 1 is the same as
appending a 1 in base 2. This provides a second characterization.

Characterization 2: For n > 0, A(n) is the number whose binary representation has length
n and consists of alternating ones and zeros.

We illustrate this characterization in Table 1.

A(1) = 1 = 1(2)
A(2) = 2 = 10(2)
A(3) = 5 = 101(2)
A(4) = 10 = 1010(2)
A(5) = 21 = 10101(2)
A(6) = 42 = 101010(2)
A(7) = 85 = 1010101(2)
A(8) = 170 = 10101010(2)
A(9) = 341 = 101010101(2)
A(10) = 682 = 1010101010(2)

Table 1. The sequence A written in binary.

If we add A(n) to A(n− 1), the binary representation of the sum is a string of n ones, with
value 2n−1. This gives us our third characterization.
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Characterization 3:

1. A(1) = 1, and
2. A(n) = (2n−1)−A(n−1) for n > 1.

Alternatively, if we subtract A(n−2) from A(n), most of the ones in the binary representa-
tions cancel, leaving 2n−1. This gives us yet another characterization.

Characterization 4:

1. A(1) = 1,
2. A(2) = 2, and
3. A(n) = A(n−2) + 2n−1 for n > 2.

There are several standard methods for obtaining a closed form expression for A(n). We
present a rather unusual derivation. Recall that the binary representation of the fraction 2

3 is

2

3
= 0.10101010 . . . (2).

Multiplying this value by 2n moves the binary point n places to the right. Rounding down
then truncates this expression, yielding A(n), according to Characterization 2, and giving us
our next characterization.

Characterization 5: A(n) =

⌊
2

3
(2n)

⌋
for all n ≥ 1.

Other expressions are

A(n) =


2n+1 − 1

3
if n odd

2n+1 − 2
3

if n even

=
2n+2 − 3− (−1)n

6
.

It is an easy exercise to prove that all these characterizations of A(n) are equivalent. We
observe that A(n) is even or odd exactly when n is even or odd, respectively.

2. Occurrences of Sequence A000975

Why do we care about a particular sequence? Often it is because the sequence occurs as the
answer to some counting problem. The OEIS lists several places where the values in sequence
A000975 occur. Here are some of the more interesting.

Occurrence 1: A(n) is the number of moves needed to solve the n-ring Chinese Rings puzzle
(baguenaudier) if the rings are moved one at a time. See, for example, [2, Chapter 1].

Figure 1 shows the state graph for the 4-ring puzzle. The 16 vertices represent the possible
states of the puzzle, and two vertices are joined by an edge if the two corresponding states are
one move apart. The labels on the vertices denote the positions of the 4 rings in that state,
with 0 representing a ring that is off the sliding bar and 1 a ring that is on.

It is easy to confirm that the state graph for the n-ring puzzle is a path of length 2n − 1
from the state labeled 0n to the state labeled 10n−1. The sub-path from state 0n to state 1n

constitutes an optimal solution of the n-ring puzzle, while the sub-path from state 1n to state
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Figure 1. The state graph for the 4-ring Chinese Rings puzzle.

10n−1 represents an optimal solution of the (n−1)-ring puzzle. The number of moves in an
optimal solution to this puzzle thus satisfies Characterization 3 of sequence A.

Figure 1 also illustrates a related occurrence of our sequence.

Occurrence 2: A(n) is the distance between a string of n zeros and a string of n ones in the
standard n-bit binary Gray code. Again, see, for example, [2, Chapter 1].

A special case of a problem posed by Donald Knuth [3] and solved by O. P. Lossers [4]
provides our next occurrence

Occurrence 3: A(n) is the number of ways to partition a set of n+2 people sitting around a
circular table into three affinity groups with no two members of a group seated next to each
other.

We illustrate this occurrence in Figure 2, showing the A(4) = 10 partitions of six people
into three affinity groups. For concreteness we assign the names A and B to the affinity groups
of the people at the bottom left and bottom right, respectively.

Figure 2. The ten partitions of 6 people into three affinity groups.

Following [4], we note that there are 2n−1 strings of length n+2 that start with AB, contain
all the letters A, B, and C, and have no two adjacent letters the same. If such a string ends
in either B or C, it can be wrapped into a circle to represent an affinity partition of n+2
people. If such a string ends in A, the A can be deleted and the shortened string will represent
an affinity partition of n+1 people. The number of affinity partitions of n+2 people is thus
another problem that satisfies Characterization 3 of sequence A.

Equivalently, A(n) is the number of different 3-colorings for the vertices of all triangulated
(n+2)-gons if the colors of the two base vertices are fixed.
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3. A “not yet proved” property proposed by Antti Karttunen

Antti Karttunen has suggested that our sequence A000975 serves as a link between sequences
A0000217 (the triangular numbers) and A048702 (the even length binary palindromes divided
by 3) in the OEIS. The triangular numbers, which we represent by T (n), are well-known:
T (n) = n(n+1)/2. The even length binary palindromes, denoted P (n), (sequence A048701 in
the OEIS), are less well known. We illustrate the sequence P (n)/3 in Table 2.

P (1)/3 = 11(2)/3 = 3/3 = 1
P (2)/3 = 1001(2)/3 = 9/3 = 3
P (3)/3 = 1111(2)/3 = 15/3 = 5
P (4)/3 = 100001(2)/3 = 33/3 = 11
P (5)/3 = 101101(2)/3 = 45/3 = 15
P (6)/3 = 110011(2)/3 = 51/3 = 17
P (7)/3 = 111111(2)/3 = 63/3 = 21
P (8)/3 = 10000001(2)/3 = 129/3 = 43
P (9)/3 = 10011001(2)/3 = 153/3 = 51
P (10)/3 = 10100101(2)/3 = 165/3 = 55

Table 2. The sequence of even length binary palindromes divided by 3.

The proposal of Karttunen is that the values A(k) serve as the indices n where T (n) and
P (n)/3 agree, as illustrated in Table 3.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T (n) 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120

P (n)/3 1 3 5 11 15 17 21 43 51 55 63 65 73 77 85

Table 3. Common values of T (n) and P (n)/3.

Lemma 3.1. For any positive integer n let k = blog2(n)c+ 1. Then the binary representation
of n is k bits long, and P (n) satisfies

P (n) = n2k + R(n),

where R(n) is the binary reversal of n (sequence A030101 in the OEIS).

For example, when n = 12 = 1100(2) we have k = 4 and R(12) = 0011(2) = 3, so P (12) =

11000011(2) = 12
(
24
)

+3 = 195. This Lemma follows immediately from the definition of P (n).

Theorem 3.2. For all n > 0, we have T (n) = P (n)/3 if and only if n = A(k) for some
positive integer k.

Proof. First suppose n = A(k) where k is odd. Then we know that

n =
2k+1−1

3
,
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n is k bits long, and R(n) = n. We have

P (n)/3 =
(
n2k+ n

)
/3

= n
(

2k+ 1
)
/3

=
(n

2

)(
2k+1+ 2

)
/3

=
n(n+1)

2
= T (n).

Now suppose n = A(k) where k is even. Then we know that

n =
(

2k+1−2
)
/3,

n is k bits long, and R(n) = n/2. We have

P (n)/3 =
(
n2k+ n/2

)
/3

=
(n

2

)(
2k+1+ 1

)
/3

=
n(n+1)

2
= T (n).

Next suppose 2k−1 ≤ n ≤ A(k)− 1. Then n is k bits long, and

P (n)/3 =
(
n2k + R(n)

)
/3

>
(
n2k
)
/3

=
(n

2

)(2k+1

3

)
>
(n

2

)
A(k)

≥ n(n + 1)

2
= T (n).

Finally, suppose A(k) + 1 ≤ n ≤ 2k − 1. Then n is k bits long, and

P (n)/3 =
(
n2k + R(n)

)
/3

<
(
n2k + 2k

)
/3

=

(
n + 1

2

)(
2k+1

3

)
<

(
n + 1

2

)(
A(k) + 1

)
≤ (n + 1)n

2
= T (n).

�
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4. The conjectures of Reinhard Zumkeller

Reinhard Zumkeller has conjectured that our sequence A is related to sequence A265158 in
the OEIS. We denote this sequence as B and its nth term as B(n). The sequence is defined
by

1. B(1) = 1,
2. B(2n) = 2B(n) for n ≥ 1, and
3. B(2n + 1) = bB(n)/2)c for n ≥ 1.

The first few values of this sequence are displayed in Table 4.

n B(n) n B(n) n B(n) n B(n)

1 1 9 2 17 4 25 0
2 2 10 2 18 4 26 0
3 0 11 0 19 1 27 0
4 4 12 0 20 4 28 0
5 1 13 0 21 1 29 0
6 0 14 0 22 0 30 0
7 0 15 0 23 0 31 0
8 8 16 16 24 0 32 32

Table 4. The sequence B.

A notable property of this sequence is that it contains long runs of zeros. Zumkeller conjec-
tures that the lengths of the record runs of zeros in sequence B are exactly the values found
in sequence A. The run lengths themselves form sequence A264784, with values 1, 2, 5, 10,
1, 21, 2, 42, 1, 1, 5, 1, 85, 2, 2, 10, 2, 170, 1, 1, 1, 5, 1, 1, 5, 1, 21, 1, 1, 5, 1, 341, 2, 2, 2, 10,
2, 2, 10, 2, 42, 2, 2, 10, 2, 682, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 5, 1, 21, 1, 1, 1, 5, 1, 1, 5, 1, 21, 1,
1, 5, 1, 85, 1, 1, 1, 5, 1, 1, 5, 1, 21, 1, 1, 5, 1, 1365, . . . . We will refer to this sequence of run
lengths as sequence L, with entries L(n).

Lemma 4.1.

B(A(k)) =

{
1 if k is odd

2 if k is even

Proof. The proof is by induction on k. For k = 1 we have B(A(1)) = B(1) = 1. Now let k be
an integer greater than 1, and suppose that the claim is true for smaller values. For k even
we have

B(A(k)) = B (2A(k−1))

= 2B
(
A(k−1)

)
= 2(1) = 2.

For k ≥ 3 odd we have

B(A(k)) = B (2A(k−1) + 1)

=
⌊
B
(
A(k−1)

)
/2
⌋

= b2/2c = 1.

�
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Lemma 4.2. B(2k) = 2k for all k ≥ 0.

Proof. The proof is by induction on k. For k = 0 we have B(20) = B(1) = 1 = 20. Now
assuming the lemma is true for all values smaller than some k > 0, we have

B(2k) = 2B(2k−1) = 2(2k−1) = 2k.

�

Lemma 4.3. For every k ≥ 2 we have B(n) = 0 for all n satisfying A(k) + 1 ≤ n ≤ 2k − 1.

Proof. We again us induction on k. For k = 2 we must consider n satisfying A(2) + 1 ≤ n ≤
22 − 1, or 3 ≤ n ≤ 3. We know B(3) = 0 so the claim is true here.

We now consider the claim for some k ≥ 3, assuming that it is true for smaller values of k.
For n even, the lower bound n ≥ A(k) + 1 implies

n

2
≥
⌈
A(k) + 1

2

⌉
≥
⌈

2A(k−1) + 1

2

⌉
= A(k−1) + 1,

while the upper bound n ≤ 2k − 1 implies

n

2
≤
⌊

2k − 1

2

⌋
= 2k−1 − 1.

The induction hypothesis then yields

B(n) = 2B(n/2) = 2× 0 = 0.

For n odd, we consider first the case n = A(k) + 1. Here we have

B(n) = B
(
A(k) + 1

)
= B

(
2A(k−1) + 1

)
=
⌊
B
(
A(k−1)

)
/2
⌋

= b1/2c = 0.

Finally, we consider the case where n is odd and A(k) + 2 ≤ n ≤ 2k − 1. The lower bound
n ≥ A(k) + 2 implies

n− 1

2
≥
⌈
A(k) + 1

2

⌉
≥
⌈

2A(k−1) + 1

2

⌉
= A(k−1) + 1,

while the upper bound n ≤ 2k − 1 implies

n− 1

2
≤
⌊

2k − 2

2

⌋
= 2k−1 − 1.

The induction hypothesis then yields

B(n) =

⌊
B((n−1)/2)

2

⌋
=

⌊
0

2

⌋
= 0.

�

We can now prove the first form of Zumkeller’s conjecture.

Theorem 4.4. For every k ≥ 2 there is a run of zeros in B(n) for n in the interval A(k)+1 ≤
n ≤ 2k−1. This run has length A(k−1), and together these runs are the runs of record length.
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Proof. The previous three lemmas tell us that each of these intervals forms a run of zeros in
sequence B. The length of the kth interval is

(
2k−1

)
− A(k) = A(k−1). That these are

precisely the runs of record length follows from the fact that B(2k) > 0 for all k ≥ 0 and that
each of these runs covers two-thirds of the entries between consecutive powers of 2. �

We can say more about the number and lengths of runs of zeros in B if we write the index
n in binary notation, which we do for the remainder of this section. Using ω to denote an
arbitrary word over the alphabet A = {0, 1}, we can restate the definition of sequence B as
follows:

1. B(1) = 1,
2. B (1ω0) = 2B (1ω), and
3. B (1ω1) = bB (1ω) /2)c.

Lemma 4.5. Suppose that ω is a word consisting of r zeros and s ones in any order. Then
B(1ω) is either 0 or 2r−s.

Proof. We use induction on the length of ω. If ω is the empty word we have r = s = 0 and
B(1) = 1 = 20 as desired. Now consider a non-empty word ω and suppose that the claim is
true for all shorter words. If ω = ω̂0 then ω̂ has r−1 zeros and s ones, and by hypothesis B(1ω̂)
is either 0 or 2r−1−s. Then B(1ω) = B(1ω̂0) = 2B(1ω̂) which is either 0 or 2 · 2r−1−s = 2r−s

as claimed. If ω = ω̂1 then ω̂ has r zeros and s−1 ones, and by hypothesis B(1ω̂) is either
0 or 2r−s+1. Then B(1ω) = B(1ω̂1) = bB(1ω̂)/2c. If B(1ω̂) is either 0 or 1 then B(1ω) = 0.
Otherwise B(1ω) = 2r−s+1/2 = 2r−s as claimed. �

Lemma 4.6. B(1ω) = 0 if and only if ω can be written as ω = ω1ω2 where ω1 consists of
more ones than zeros.

Proof. Suppose that B(1ω) = 0. Let ω1 be the shortest initial subword of ω such that B(1ω1) =
0, and let ω2 be the rest of the word ω. Now ω1 cannot be the empty word, as B(1) = 1 6= 0.
Likewise ω1 cannot be of the form ω̂10, or we would have 0 = B(1ω) = B(1ω̂10) = 2B(1ω̂1) and
ω̂1 would be a shorter initial subword. So ω1 = ω̂11 and 0 = B(1ω1) = B(1ω̂11) = bB(1ω̂1)/2c.
This implies B(1ω̂1) = 1, and by Lemma 4.5 we have that ω̂1 consists of an equal number of
zeros and ones. Then ω1 contains more ones than zeros, as claimed.

Conversely, suppose that ω can be written as ω1ω2 where ω1 contains more ones than zeros.
We can assume that ω1 is the shortest such initial subword, so that ω1 = ω̂11 and ω̂1 consists
of an equal number of zeros and ones. By Lemma 4.5 we know that B(ω̂1) is either 0 or 1.
Then B(1ω1) = B(1ω̂11) = bB(1ω̂1)/2c = 0, which implies B(1ω) = 0. �

We will call a word ω of even length a Catalan word if
1. ω consists of an equal number of zeros and ones; and
2. no initial subword of ω contains more ones than zeros.

The first few Catalan words are the empty word, 01, 0011, 0101, 000111, 001011, 001101,
010011, and 010101. It is well known that the number of Catalan words of length 2n is the

nth Catalan number

(
2n

n

)
/(n + 1) for all n ≥ 0. These Catalan numbers, which we denote

C(n), form sequence A000108 in the OEIS.

Lemma 4.7. A binary word ω is a Catalan word if and only if B(1ω) = 1.

Proof. This follows immediately from Lemmas 4.5 and 4.6. �
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The first few of these indices where the B sequence takes the value 1 are 1, 5, 19, 21, 71,
75, 77, 83, and 85. This sequence is not currently in the OEIS.

Lemma 4.8. There is a run of zeros in sequence B beginning at index n if any only if the
binary representation of n has the form 1ω1(2) (when n is odd), or 1ω10(2) (when n is even),
where ω is a Catalan word.

According to this lemma, the first few indices where runs of zeros begin are 11(2) = 3,
110(2) = 6, 1011(2) = 11, 10110(2) = 22, 100111(2) = 39, and 1001110(2) = 78. This
sequence is also not currently in the OEIS.

Proof. Suppose n = 1ω1(2), with ω a Catalan word. Then n−1 = 1ω0(2). Lemma 4.7 implies
that B(1ω1) = bB(1ω)c/2 = b1/2c = 0 and B(1ω0) = 2B(1ω) = 2. Likewise, if n = 1ω10(2)
then n−1 = 1ω01(2), and we have B(1ω10) = 2bB(1ω)/2c = 0 and B(1ω01) = b(2B(1ω)/2c =
1. In both cases, then, a run of zeros starts at index n.

Now suppose n is an index where B(n) = 0 but B(n−1) 6= 0. If n ≥ 3 is odd, then
n = 1ω1(1) for some arbitrary word ω, and n−1 = 1ω0(2). Now B(1ω0) = 2B(1ω) 6= 0 and
B(1ω1) = bB(1ω)/2c = 0 together imply that B(1ω) = 1. By Lemma 4.6, ω is a Catalan
word, and n is of the claimed form. If n ≥ 6 is even, then n = 1ω10k(2) for some integer k ≥ 1

and some arbitrary word ω, and n−1 = 1ω01k(2). Then 0 = B(1ω10k) = 2kbB(1ω)/2c implies

B(1ω) is either 0 or 1. Also 0 6= B(1ω01k) = B(1ω)21−k, so B(1ω) = 1, ω is a Catalan word,
and k = 1. We conclude that n = 1ω10(2) as claimed in this case. �

We conclude that for 22k−1 ≤ n < 22k, where the binary representation of n contains 2k
bits, there are exactly C(k − 1) runs of zeros in sequence B, corresponding to the C(k − 1)
Catalan sequences of length 2k − 2. The longest run of zeros in this range is the last one, of
length A(k). There are an additional C(k− 1) runs when 22k ≤ n < 22k+1 and n is 2k+ 1 bits
long. The longest run here is also the last one, of length A(k + 1).

The record-length runs of zeros in B are thus runs number C(0) = 1, 2C(0) = 2, 2C(0) +
C(1) = 3, 2C(0) + 2C(1) = 4, 2C(0) + 2C(1) + C(2) = 6, 2C(0) + 2C(1) + 2C(2) = 8,
2C(0) + 2C(1) + 2C(2) + C(3) = 13, 2C(0) + 2C(1) + 2C(3) + 2C(4) = 18, and so on. These
numbers form sequence A155051 in the OEIS, with the index off by 1.

This confirms the second form of Zumkeller’s conjecture.

Theorem 4.9. The nth record-length run of zeros in sequence B has length A(n) and is run
number A155051(n−1). More concisely, A(n) = L(A155051(n−1)).

5. The Question of N. J. A. Sloane

Continuing in the OEIS listing for sequence A (sequence A0000975), there is a link to
an electronic paper Enveloping Operads and Bicoloured Noncrossing Configuration [1] by F.
Chapoton and S. Giraudo. In Table 2 of that paper the sequence 1, 2, 5, 10, 21, 42, 85 is listed
twice. In the OEIS Sloane asks “Is the sequence in Table 2 this sequence [i.e., sequence A]?”.
In this section we demonstrate that the answer to this question is “yes.”

In the somewhat peculiar language of [1], these numbers are the first few coefficients of the
colored Hilbert series giving the number of bubbles of increasing arity, first based and then
nonbased, of the 2-colored suboperad 〈〈∆,∆〉〉 of the 2-colored operad Bubble generated by
these two generators of arity 2.

In more simple language, a bubble is a polygon consisting of a base edge and two or more
nonbase edges, with each edge either colored blue or left uncolored. The bubble is based if and
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only if the base edge is blue. The border of a bubble is its set of nonbase edges. The arity of
a bubble is the number of edges in its border.

The based bubbles in the 2-colored suboperad of interest start with a triangle of blue
edges. New bubbles are generated by either replacing a blue border edge with two consecutive
uncolored edges, or by replacing an uncolored border edge with two consecutive blue edges.
Unbased bubbles in this suboperad are the same, but with blue and uncolored interchanged.
See Figure 3 for the based bubbles of arity 2, 3, and 4 in this suboperad.

Figure 3. Based bubbles of arity 2, 3, and 4.

These based bubbles of arity n are characterized in [1] as those with the following properties.

(1) the number of blue edges in the border is congruent to 2n+1 (mod 3) (and the number
of uncolored edges in the border is thus congruent to 2n−1 (mod 3)); and

(2) there exist 2 consecutive edges in the border that are either both blue or both uncol-
ored.

In addition, the paper [1] gives 2-variable generating functions (or colored Hilbert series) for
based and unbased bubbles in this suboperad. Unfortunately these generating functions are
flawed: the numerator of the second term in the first generating function should be z1, not z2,
and the numerator of the second term in the second generating function should be z2, not z1.
We now produce our own count of these bubbles.

Lemma 5.1. Let S(n) denote the number of strings of length n over the alphabet {b, u}
such that the number of occurrences of the character b is congruent to 2n+1 (mod 3). Then
S(n) + S(n+1) = 2n. Exactly one of these strings consists of alternating b characters and u
characters.
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Proof. Clearly the number of strings of length n with k occurrences of the character b is

(
n

k

)
.

So we have

S(n) + S(n+1) =
∑
i

(
n

3i + 2n + 1

)
+
∑
i

(
n + 1

3i + 2(n + 1) + 1

)
=
∑
i

(
n

3i + 2n + 1

)
+
∑
i

((
n

3i + 2n + 2

)
+

(
n

3i + 2n + 3

))
=
∑
i

(
n

i

)
= 2n.

The restrictions on the number of b characters and u characters in a string imply that these
counts cannot be equal, so an alternating string must be of odd length. If n = 2k+1 the
number of b characters must be congruent to 2(2k+1) + 1 ≡ k (mod 3) and the number of u
characters must be congruent to 2(2k+1)−1 ≡ k+1 (mod 3), so there is a unique alternating
string of length n, consisting of k occurrences of the character b and k+1 occurrences of the
character u. �

Theorem 5.2. The number of based (or, equivalently, unbased) bubbles of arity n in the
indicated suboperad of bubbles is A(n−1).

Proof. Every based bubble in our suboperad can be constructed from a blue base and a border
colored according to a string described in Lemma 4. There is one based bubble of arity 2,
and the number of based bubbles of arity n plus the number of based bubbles of arity n+1 is
2n − 1. Thus the number of based bubbles satisfies Characterization 3 from Section 1.

The result for unbased bubbles follows by interchanging blue and uncolored in all the proofs.
�

We conclude by illustrating an alternative approach to this counting problem: a one-to-one
correspondence between the number of partitions into affinity groups described in Section 2
and the based bubbles described here. To construct a bubble from an affinity group partition,
we traverse the diagram of the affinity group partition counter-clockwise. If an A is followed
by a B, a B by a C, or a C by an A, we color the corresponding edge of the bubble blue. If an
A is followed by a C, or a B by an A, or a C by a B, we leave the corresponding edge of the
bubble uncolored. The correspondence between the 10 affinity group partitions for 6 people
and the 10 bubbles of arity 5 is illustrated in Figure 4.

The confirmation that this is indeed always a one-to-one correspondence is left to the reader.
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