
K-ORDER LINEAR RECURSIVE SEQUENCES AND THE GOLDEN

RATIO
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Abstract. In this paper, we investigate sequences {Gn+1/Gn}∞n=1 which are approaching
the Golden Ratio, where {Gn}∞n=0 is a k-order linear recursive sequence of real numbers. We
show those cases, where the sequence {Gn+1/Gn}∞n=1 converges quicker to the Golden Ratio
than {Fn+1/Fn}∞n=1 (Fn denotes the n-th Fibonacci number).

1. Introduction

Let A0, A1, . . . , Ak−1 be given real numbers with Ak−1 6= 0, where k ≥ 2 is a fixed integer.
A linear recursive sequence {Gn}∞n=0 of order k is defined by the recursion

Gn = A0Gn−1 +A1Gn−2 + · · ·+Ak−1Gn−k (n ≥ k), (1.1)

where the initial terms G0, G1, . . . , Gk−1 are fixed real numbers with |G0|+|G1|+· · ·+|Gk−1| 6=
0. The polynomial

p(x) = xk −A0x
k−1 −A1x

k−2 − · · · −Ak−2x−Ak−1 (1.2)

is said to be the characteristic polynomial of the sequence {Gn}∞n=0. The roots of the equation
p(x) = 0 are denoted by αi’s (1 ≤ i ≤ k). In the sequel, we suppose that the root α1 is of
the largest absolute value, that is, |α1| > |α2| ≥ · · · ≥ |αk| > 0 and the multiplicity of α1 is
1. According to the literature ( see, e.g.,[4], p. 45 and [3], p. 27), α1 is called the dominant

root, and if we denote by mi the multiplicity of the distinct αi’s (1 ≤ i ≤ l,
l∑

i=1
mi = k) then

the Binet formula for the term Gn is as follows

Gn = aαn1 + p2(n)αn2 + p3(n)αn3 + · · ·+ pl(n)αnl , (1.3)

where the degree of the polynomial pi (2 ≤ i ≤ l) is less than mi. The constant a and the
polynomials pi belong to the ring Q(α1, α2, . . . , αl)[x], and we suppose that the initial terms
are chosen such that a 6= 0 in (1.3). It is known that

lim
n→∞

Gn+1

Gn
= α1.

Let n ≥ 2, F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2,

which is the well known Fibonacci sequence. The Binet formula for n ≥ 0 is

Fn =
ϕn − ψn√

5
,

where ϕ and ψ are the roots of the characteristic polynomial of {Fn}∞n=0, that is, p(x) =

x2 − x− 1, p(ϕ) = p(ψ) = 0, ϕ = 1+
√
5

2 , and ψ = 1−
√
5

2 , ϕ is also known as the Golden Ratio
and

lim
n→∞

Fn+1

Fn
= ϕ. (1.4)
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It can be read in [1], p. 346, that if H0 = a− b, H1 = b, and for n ≥ 2

Hn = Hn−1 +Hn−2 (1.5)

then

Hn = aFn−1 + bFn−2,

where a, b ∈ R, b 6= 0, and

lim
n→∞

Hn+1

Hn
= ϕ. (1.6)

It can be seen that the sequence {Hn}∞n=0 differs from the sequence {Fn}∞n=0 only in the
initial terms and the characteristic polynomial is the same. Note that in [2] similar results are
obtained for irrational limits other than the Golden Ratio.

The question then arises, does the limit give a quicker convergence to ϕ, where the definition
of the quicker convergence can be found, e.g., [4], p. 46 and [3], p. 29: Let {xn}∞n=0 and {yn}∞n=0

be convergent sequences of real numbers with lim
n→∞

xn = lim
n→∞

yn = z, we say that {yn}∞n=0

converges quicker than {xn}∞n=0 if

lim
n→∞

yn − z
xn − z

= 0. (1.7)

In this paper, we investigate linear recursive sequences {Gn}∞n=0 of real numbers, where the

sequences
{
Gn+1

Gn

}∞
n=1

converge quicker to the Golden Ratio than
{
Fn+1

Fn

}∞
n=1

. (Naturally, we

suppose that division by zero never occurs.)

In the following two parts we deal with binary and ternary sequences, while in the last part
we investigate the problem for arbitrary k-order sequences.

2. Binary linear recursive sequences and the Golden Ratio

At first, we deal with the special sequence {Hn}∞n=0 from (1.5). The Binet formula for
{Hn}∞n=0 is

Hn =
cϕn − dψn√

5
,

where c = b− ψ(a− b) 6= 0 and d = b− ϕ(a− b). Using (1.4) and (1.6), one can easily verify
that

lim
n→∞

Hn+1

Hn
− ϕ

Fn+1

Fn
− ϕ

=
d

c
.

This implies that the following theorem is true:

Theorem 2.1. The sequence
{
Hn+1

Hn

}∞
n=1

does not converge quicker to ϕ than the sequence{
Fn+1

Fn

}∞
n=1

if d 6= 0. But if d = 0 then {Hn}∞n=0 is a simple geometric sequence, where

Hn+1

Hn
= ϕ.

Let us consider now the general second order linear recursive sequence {Gn}∞n=0 of real
numbers,

Gn = A0Gn−1 +A1Gn−2, (n ≥ 2)

with its characteristic polynomial

p(x) = x2 −A0x−A1 = (x− α1)(x− α2),
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where α1 = ϕ is the dominant root, that is, |α2| < ϕ and α2, G0, G1 ∈ R. Obviously A0 =
α1 + α2, A1 = −α1α2. By the Binet formula this sequence has an explicit form for n ≥ 0,

Gn = aϕn + bαn2 ,

where a and b are computable constants depending only on the initial terms and the roots,
and we suppose that ab 6= 0. In this case one can easily verify that

lim
n→∞

Gn+1

Gn
= ϕ and lim

n→∞

Gn+1

Gn
− ϕ

Fn+1

Fn
− ϕ

= lim
n→∞

b(α2 − ϕ)

a(ϕ− ψ)
·
(
α2

ψ

)n
.

This implies that the following theorem is true:

Theorem 2.2. The sequence
{
Gn+1

Gn

}∞
n=1

converges quicker to ϕ than
{
Fn+1

Fn

}∞
n=1

if and only

if |α2| < |ψ|.

3. Ternary linear recursive sequences and the Golden Ratio

In [1], p. 346, F. Gatta and A. D’Amico investigated the following ternary sequence

Hn+1 = 2Hn −Hn−2, (n ≥ 3) (3.1)

with the real initial terms H1, H2, H3, (H3ϕ
2−H1ϕ−H2 6= 0) and using a very special method,

they proved that

lim
n→∞

Hn+1

Hn
= ϕ,

that is, they proved that there exist infinitely many third order linear recursive sequences,
where the ratio of the consecutive terms tends to the Golden Ratio. But they did not investi-
gate whether this convergence was quicker or not. Applying (1.3), (3.1) has an explicit form
for n ≥ 1,

Hn = aϕn + bψn + c, (3.2)

where a = H3ϕ
2 − H1ϕ − H2 6= 0, b, c are computable real constants depending only on the

initial terms and the roots of its characteristic polynomial

p(x) = x3 − 2x2 + 1 = (x2 − x− 1)(x− 1) = (x− ϕ)(x− ψ)(x− 1).

Investigating the following limit we can obtain:

lim
n→∞

Hn+1

Hn
− ϕ

Fn+1

Fn
− ϕ

= lim
n→∞

(
−b+

c(1− ϕ)√
5 · ψn

)
· 1

a
, (3.3)

which implies for the sequence (3.2) that the following result is true.

Theorem 3.1. Using the notation (3.2):

• If c 6= 0 then the sequence
{
Hn+1

Hn

}∞
n=1

does not converge quicker to ϕ than the se-

quence
{
Fn+1

Fn

}∞
n=1

. More precisely the sequence
{
Fn+1

Fn

}∞
n=1

converges quicker than

the sequence
{
Hn+1

Hn

}∞
n=1

.

• If c = 0 and b 6= 0 then the sequence
{
Hn+1

Hn

}∞
n=1

does not converge quicker to ϕ than

the sequence
{
Fn+1

Fn

}∞
n=1

.

• If c = 0 and b = 0 then Hn = aϕn, which is a simple geometric sequence.
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Remark 3.2. The previous theorem dealt with the sequence (3.1) investigated by F. Gatta and
A. D’Amico in [1], but – omitting the details – similar results can be obtained in the following
case, too:

Hn+1 = 2Hn−1 +Hn−2,

where n ≥ 3 and H1, H2, H3 are initial terms. In this case the characteristic polynomial is

p(x) = x3 − 2x− 1 = (x2 − x− 1)(x+ 1) = (x− ϕ)(x− ψ)(x+ 1)

.

Let us consider now the general third order linear recursive sequences {Gn}∞n=0 of real
numbers,

Gn = A0Gn−1 +A1Gn−2 +A2Gn−3

with its characteristic polynomial

p(x) = x3 −A0x
2 −A1x−A2 = (x− ϕ)(x− α2)(x− α3),

where A0, A1, A2 ∈ R, (A2 6= 0), α2, α3 are non zero complex numbers, and |α2| < ϕ, |α3| < ϕ,
that is, ϕ is the dominant root.

Theorem 3.3. The sequence
{
Gn+1

Gn

}∞
n=1

converges quicker to ϕ than
{
Fn+1

Fn

}∞
n=1

if and only

if |α2| < |ψ| and |α3| < |ψ|.

Proof. We have to investigate the limit (1.7) which will be examined in three different cases.

(i) α2, α3 are distinct real numbers. By the Binet formula

Gn = aϕn + bαn2 + cαn3 .

lim
n→∞

Gn+1

Gn
− ϕ

Fn+1

Fn
− ϕ

= lim
n→∞

Gn+1−ϕGn

Gn

Fn+1−ϕFn

Fn

= lim
n→∞

Gn+1 − ϕGn
Fn+1 − ϕFn

· Fn
Gn

=

lim
n→∞

aϕn+1 + bαn+1
2 + cαn+1

3 − ϕ(aϕn + bαn2 + cαn3 )

ϕn+1 − ψn+1 − ϕ(ϕn − ψn)
·

ϕn − ψn

aϕn + bαn2 + cαn3
=

lim
n→∞

bαn2 (α2 − ϕ) + cαn3 (α3 − ϕ)

ψn(ϕ− ψ)
· ϕn − ψn

aϕn + bαn2 + cαn3
=

lim
n→∞

b
(
α2
ψ

)n
(α2 − ϕ) + c

(
α3
ψ

)n
(α3 − ϕ)

a
√

5
.

(ii) α2, α3 are real numbers and α2 = α3. By the Binet formula in (1.3)

Gn = aϕn + (bn+ c)αn2 .
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lim
n→∞

Gn+1

Gn
− ϕ

Fn+1

Fn
− ϕ

= lim
n→∞

Gn+1−ϕGn

Gn

Fn+1−ϕFn

Fn

= lim
n→∞

Gn+1 − ϕGn
Fn+1 − ϕFn

· Fn
Gn

=

lim
n→∞

aϕn+1 + (b(n+ 1) + c)αn+1
2 − ϕ(aϕn + (bn+ c)αn2 )

ϕn+1 − ψn+1 − ϕ(ϕn − ψn)
·

ϕn − ψn

aϕn + (bn+ c)αn2
=

lim
n→∞

(bn+ c)αn2 (α2 − ϕ) + bαn+1
2

ψn(ϕ− ψ)
· ϕn − ψn

aϕn + (bn+ c)αn2
=

lim
n→∞

(bn+ c)
(
α2
ψ

)n
(α2 − ϕ) + bα2

(
α2
ψ

)n
a
√

5
.

(iii) α2 = z, α3 = z are non real complex numbers, and by the Binet formula in (1.3)

Gn = aϕn + bzn + czn.

lim
n→∞

Gn+1

Gn
− ϕ

Fn+1

Fn
− ϕ

= lim
n→∞

Gn+1−ϕGn

Gn

Fn+1−ϕFn

Fn

= lim
n→∞

Gn+1 − ϕGn
Fn+1 − ϕFn

· Fn
Gn

=

lim
n→∞

aϕn+1 + bzn+1 + czn+1 − ϕ(aϕn + bzn + czn)

ϕn+1 − ψn+1 − ϕ(ϕn − ψn)
·

ϕn − ψn

aϕn + bzn + czn
=

lim
n→∞

bzn(z − ϕ) + czn(z − ϕ)

ψn(ϕ− ψ)
· ϕn − ψn

aϕn + bzn + czn
=

lim
n→∞

b
(
z
ψ

)n
(z − ϕ) + c

(
z
ψ

)n
(z − ϕ)

a
√

5
.

These limits imply that in all the above cases the limits are equal to zero if and only if
in (i) and in (ii) |α2| < |ψ|, |α3| < |ψ|, while in (iii) |z| < |ψ|. Thus our theorem has been
proved. �

4. k-order linear recursive sequences and the Golden Ratio

Let us consider now the k-order linear recursive sequence {Gn}∞n=0 of real numbers,

Gn = A0Gn−1 +A1Gn−2 + · · ·+Ak−1Gn−k

with its characteristic polynomial

p(x) = xk −A0x
k−1 −A1x

k−2 − · · · −Ak−2x−Ak−1.

By (1.3) the Binet formula for term Gn is the following:

Gn = aαn1 + p2(n)αn2 + p3(n)αn3 + · · ·+ pl(n)αnl ,

where let α1 = ϕ be the dominant root.
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Theorem 4.1. The sequence
{
Gn+1

Gn

}∞
n=1

converges quicker to the Golden Ratio than{
Fn+1

Fn

}∞
n=1

, if |αi| < |ψ|, i = 2, 3, . . . , l.

Proof.

lim
n→∞

Gn+1

Gn
− ϕ

Fn+1

Fn
− ϕ

= lim
n→∞

Gn+1−ϕGn

Gn

Fn+1−ϕFn

Fn

= lim
n→∞

Gn+1 − ϕGn
Fn+1 − ϕFn

· Fn
Gn

=

lim
n→∞

aϕn+1 + p2(n+ 1)αn+1
2 + · · ·+ pl(n+ 1)αn+1

l − ϕ(aϕn + p2(n)αn2 + · · ·+ pl(n)αnl )

ϕn+1 − ψn+1 − ϕ(ϕn − ψn)
·

ϕn − ψn

aϕn + · · ·+ pl(n)αnl
=

lim
n→∞

p2(n+ 1)αn+1
2 + · · ·+ pl(n+ 1)αn+1

l − ϕp2(n)αn2 − · · · − ϕpl(n)αnl
ψn
√

5
·

ϕn − ψn

aϕn + · · ·+ pl(n)αnl
=

lim
n→∞

αn2

r2(n)︷ ︸︸ ︷
(p2(n+ 1)α2 − p2(n)ϕ) + · · ·+ αnl

rl(n)︷ ︸︸ ︷
(pl(n+ 1)αl − pl(n)ϕ)

ψna
√

5
=

lim
n→∞

(
α2
ψ

)n
r2(n) +

(
α3
ψ

)n
r3(n) + · · ·+

(
αl
ψ

)n
rl(n)

a
√

5
.

Investigating different cases of the limit above, one can see that the limit is equal to zero if(
αi
ψ

)n
tends to zero for all i = 2, 3, . . . , l. �
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and supervision.

References

[1] F. Gatta and A. D’Amico, Sequences {Hn} for which Hn+1/Hn approaches the golden ratio, Fibonacci
Quart. 46/47 (2008/2009), no. 4, 346–349.

[2] T. Komatsu, Sequences {Hn} for which Hn+1/Hn approaches an irrational number, Fibonacci Quart. 48
(2010), no. 3, 265–275.
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