ON THE 2-CLASS GROUP OF $\mathbb{Q}(\sqrt{5pF_p})$ WHERE F_p IS A PRIME FIBONACCI NUMBER

MOHAMMED TAOUS

ABSTRACT. Let F_p be a prime Fibonacci number where p > 5. Put $\mathbf{k} = \mathbb{Q}(\sqrt{5pF_p})$ and let $\mathbf{k}_1^{(2)}$ be its Hilbert 2-class field. Denote by $\mathbf{k}_2^{(2)}$ the Hilbert 2-class field of $\mathbf{k}_1^{(2)}$ and by $G = \text{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. In this paper, we characterize the structure of the 2-class group of \mathbf{k} and we study the metacyclicity of G.

1. INTRODUCTION

Let d be a square-free integer and $\mathbf{k} = \mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$ be a quadratic number field. Then we define the ring of integers of \mathbf{k} by

 $\mathcal{O}_{\mathbf{k}} = \{ \alpha \in \mathbf{k} : P(\alpha) = 0 \text{ for some monic polynomial } P \in \mathbb{Z}[X] \}.$

It is known that
$$\mathcal{O}_{\mathbf{k}} = \begin{cases} \mathbb{Z}[\frac{1+\sqrt{d}}{2}], & \text{if } d \equiv 1 \pmod{4};\\ \mathbb{Z}[\sqrt{d}], & \text{if not.} \end{cases}$$

Two ideals I and J of $\mathcal{O}_{\mathbf{k}}$ are said to be equivalent if $I = \lambda J$ for some $\lambda \in \mathbf{k}$, this definition of equivalent is an equivalence relation. The ideal classes of $\mathcal{O}_{\mathbf{k}}$ form a finite group called the class group of \mathbf{k} , and will be denoted by $\mathbf{C}l(\mathbf{k})$.

We define the *p*-rank and the p^2 -rank of $\mathbf{C}l(\mathbf{k})$ respectively as follows:

$$r_p = \dim_{\mathbb{F}_p}(\mathbf{C}l(\mathbf{k})/\mathbf{C}l(\mathbf{k})^p)$$
 and $r_{p^2} = \dim_{\mathbb{F}_p}(\mathbf{C}l(\mathbf{k})^p/\mathbf{C}l(\mathbf{k})^{p^2})$

where \mathbb{F}_p is the finite field with p elements.

Several works are interested in determining the structure of the *p*-class group $\mathbf{C}l_p(\mathbf{k})$, that is the Sylow *p*-subgroup of $\mathbf{C}l(\mathbf{k})$. For example, for p = 2, $r_2 = 2$ and $r_4 = 0$ or 1, we can see the works of P. Kaplan [13], and Benjamin et all [4]. As the only perfect squares in the Fibonacci sequence are $F_0 = 0$, $F_1 = F_2 = 1$ and $F_{12} = 144$ (see, e.g., [8]), then the quadratic field $\mathbf{k} = \mathbb{Q}(\sqrt{\pm F_n})$ is well defined for $n \notin \{0, 1, 2, 12\}$. On the other hand, by genus theory, the 2-class group, $\mathbf{C}l_2(\mathbf{k})$, of $\mathbf{k} = \mathbb{Q}(\sqrt{F_n})$ is trivial if and only if $F_n = m^2 p$ where *p* is a prime number.

Y. Kishi [14] gave an infinite family of imaginary quadratic fields $\mathbb{Q}(\sqrt{-F_n})$ with $n \equiv 25$ (mod 50) such that $r_5 \geq 1$. The latter author and M. Aoki gave in [1] another infinite family of pairs of imaginary quadratic fields with $r_5 \geq 1$. Motivated by these works, we thought, in a first time, studying the 2-class group of the real quadratic fields $\mathbf{k} = \mathbb{Q}(\sqrt{F_n})$. But we noticed that we cannot do it, in general, since to calculate the rank of $\mathbf{C}l_2(\mathbf{k})$, we must first calculate the prime numbers that divide square-free part of F_n . To overcome this difficulty, we changed F_n by $5pF_p$ where F_p is a prime Fibonacci number with p > 5, and we decided to characterize the structure of the 2-class group of \mathbf{k} and to study the metacyclicity of $G = \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ where $\mathbf{k}_2^{(2)}$ is the second Hilbert 2-class field of \mathbf{k} .

2. Some consequences of the Binet's formula

The Fibonacci numbers F_n may be defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ with $F_0 = 0$ and $F_1 = 1$. In 1843, the French mathematician Jacques Philippe Marie Binet (1786-1856) discovered that

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$
 (2.1)

This expression of F_n is called *Binet's formula*. Using this formula, we can show the well-known identities [12]:

$$2^{2n-1}F_{2n} = \sum_{k=0}^{n-1} 5^k C_{2n}^{2k+1} \text{ and } 4^n F_{2n+1} = \sum_{k=0}^n 5^k C_{2n+1}^{2k+1}.$$
 (2.2)

$$F_{2n+1} = F_{n+1}^2 + F_n^2. (2.3)$$

From which we deduce that all the odd divisors of F_{2n+1} are of the form 4t + 1.

Recall also that the Lucas numbers are the sequence of integers $(L_n)_{n \in \mathbb{N}}$ defined by the linear recurrence equation $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$ with $L_1 = 1$ and $L_2 = 3$.

Theorem 2.1 (Legendre, Lagrange). Let p be an odd prime integer. Then the Fibonacci number F_p and the Lucas number L_p have the following properties:

$$F_{p\pm 1} \equiv \frac{1 \pm \left(\frac{p}{5}\right)}{2} \pmod{p}, F_p \equiv \left(\frac{p}{5}\right) \pmod{p} \text{ and } L_p \equiv 1 \pmod{p}.$$

Those extraordinary sequences have so many other properties (see, e.g., [20, 12]). We can, for example, cite the following identities:

$$F_{2n} = F_n L_n. ag{2.4}$$

$$L_n^2 - 5F_n^2 = 4(-1)^n. (2.5)$$

$$5F_{2n} = 2L_{2n+1} - L_n^2 + 2(-1)^n.$$
(2.6)

Corollary 2.2. Let p be a prime > 5, and denote by $\left(\frac{1}{p}\right)$ the Legendre symbol. Then the Fibonacci number F_p has the following properties:

(1) If
$$p \equiv 1 \pmod{4}$$
, then $\left(\frac{F_p}{p}\right) = 1$ and $\left(\frac{p}{5}\right) = \left(\frac{F_p}{5}\right)$
(2) If $p \equiv 3 \pmod{4}$, then $\left(\frac{F_p}{p}\right) = \left(\frac{p}{5}\right) = \left(\frac{F_p}{5}\right)$.

Proposition 2.3 ([15]). Let $p = a^2 + b^2$ be an odd prime, and suppose a odd. Then

$$\left(\frac{a}{p}\right) = 1, \left(\frac{b}{p}\right) = \left(\frac{2}{p}\right) \text{ and } \left(\frac{a+b}{p}\right) = \left(\frac{2}{a+b}\right).$$

3. Preliminary

In what follows, we adopt the following notations: if $\left(\frac{a}{p}\right) = 1$ and $p \equiv 1 \pmod{4}$, then $\left(\frac{a}{p}\right)_4$ will denote the rational biquadratic symbol which is equal to 1 or -1, according as $a^{\frac{p-1}{4}} \equiv 1$ or $-1 \pmod{p}$, in particular $\left(\frac{2}{p}\right)_4 = (-1)^{\frac{p-1}{4}}$.

DECEMBER 2017

Lemma 3.1 ([17]). If p > 5 is a prime such that $p \equiv 1 \pmod{4}$, then $F_{\frac{p-(\frac{p}{5})}{2}} \equiv 0 \pmod{p}$ and $\left(\frac{F_{\frac{p+(\frac{p}{5})}{2}}}{p}\right) = \left(\frac{p}{5}\right)^{\frac{p-1}{4}}$.

Proof. From the first equality of Theorem 2.1, we conclude that

$$F_{p-\left(\frac{p}{5}\right)} \equiv 0 \pmod{p} \text{ and } F_{p+\left(\frac{p}{5}\right)} \equiv 1 \pmod{p}.$$
 (3.1)

According to Formula (2.4), we have

$$F_{p-\left(\frac{p}{5}\right)} \equiv F_{\frac{p-\left(\frac{p}{5}\right)}{2}}L_{\frac{p-\left(\frac{p}{5}\right)}{2}} \equiv 0 \pmod{p}.$$

We now show that p never divides $L_{\frac{p-(\frac{p}{2})}{2}}$.

If $\left(\frac{p}{5}\right) = -1$, then Formula (2.5) implies that $L_{\frac{p+1}{2}}^2 - 5F_{\frac{p+1}{2}}^2 \equiv 4(-1)^{\frac{p+1}{2}} \pmod{p}$. If p divides $L_{\frac{p-(\frac{p}{5})}{2}}$, then, since $p \equiv 1 \pmod{4}$, $\left(\frac{p}{5}\right) = \left(\frac{5}{p}\right) = \left(\frac{4}{p}\right) = 1$. This is absurd. If $\left(\frac{p}{5}\right) = 1$, then by replacing, in (2.6), 2n by p-1, we get $5F_{p-1} = 2L_p - L_{\frac{p-1}{2}}^2 + 2$. According to the third equality of Theorem 2.1 and to the first equality of (3.1), we have $L_{\frac{p-1}{2}}^2 \equiv 4 \pmod{p}$, i.e., p never divides $L_{\frac{p-(\frac{p}{5})}{2}}$. Then $F_{\frac{p-(\frac{p}{5})}{2}} \equiv 0 \pmod{p}$.

Finally, from the second equality of Theorem 2.1 and (2.3), we can see that

$$F_p = F_{\frac{p+\left(\frac{5}{p}\right)}{2}}^2 + F_{\frac{p-\left(\frac{5}{p}\right)}{2}}^2 \equiv F_{\frac{p+\left(\frac{5}{p}\right)}{2}}^2 \pmod{p}$$
$$\equiv \left(\frac{5}{p}\right) \equiv \left(5^{\frac{p-1}{4}}\right)^2 \pmod{p}.$$

As p is prime, so $F_{\frac{p+\left(\frac{5}{p}\right)}{2}} \equiv \pm \left(5^{\frac{p-1}{4}}\right) \pmod{p}$. This gives that $\left(\frac{F_{\frac{p+\left(\frac{p}{5}\right)}{2}}}{p}\right) = \left(\frac{p}{5}\right)^{\frac{p-1}{4}}$. \Box

Theorem 3.2 (Burde, [7]). Let $m, n \in \mathbb{N}$ be odd such that $m = a^2 + b^2$ and $n = c^2 + d^2$, where $a, b, c, d \in \mathbb{N}, 2 \nmid ac$, and (a, b) = (c, d) = (m, n) = 1. Suppose that $\left(\frac{m}{n}\right) = \left(\frac{n}{m}\right) = 1$. Then

$$\left(\frac{m}{n}\right)_4 \left(\frac{n}{m}\right)_4 = \left(\frac{ac+bd}{n}\right) = \left(\frac{ac+bd}{m}\right)$$

Proposition 3.3. Let F_p be a Fibonacci number with prime index $p \equiv 1 \pmod{4}$. Then we have

$$\left(\frac{F_p}{p}\right)_4 \left(\frac{p}{F_p}\right)_4 = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{3};\\ \left(\frac{2}{p}\right), & \text{if not.} \end{cases}$$

Proof. Let $p = a^2 + b^2$ be an odd prime, and suppose that a is odd and put $\left(\frac{p}{3}\right) = (-1)^i$. It is easy to see that $p \equiv \left(\frac{p}{3}\right) \pmod{6}$, this implies that $\frac{p + \left(\frac{p}{3}\right)}{2}$ is not divisible by 3, so $F_{\frac{p + \left(\frac{p}{3}\right)}{2}}$ is

VOLUME 55, NUMBER 5

THE 2-CLASS GROUP OF $\mathbb{Q}(\sqrt{5PF_P})$ WHERE F_P IS A PRIME FIBONACCI NUMBER odd. Since $F_p = F_{\frac{p+(\frac{p}{3})}{2}}^2 + F_{\frac{p-(\frac{p}{3})}{2}}^2$, then the previous theorem gives that

$$\begin{pmatrix} \frac{F_p}{p} \\ \frac{p}{p} \end{pmatrix}_4 \begin{pmatrix} \frac{p}{F_p} \\ \frac{p}{p} \end{pmatrix}_4 = \begin{pmatrix} \frac{aF_{\frac{p+(\frac{p}{3})}{2}} + bF_{\frac{p-(\frac{p}{3})}{2}} \\ \frac{p}{p} \end{pmatrix}_{2}, \text{ if } (\frac{p}{3}) = (\frac{p}{5}); \\ \begin{pmatrix} \frac{b}{p} \\ \frac{p}{p} \end{pmatrix}_{2} \begin{pmatrix} \frac{F_{\frac{p-(\frac{p}{3})}{2}} \\ \frac{p}{p} \end{pmatrix}_{2}, \text{ if } (\frac{p}{3}) = -(\frac{p}{5}). \\ = \begin{cases} \left((-1)^i \right) \frac{p-1}{4}, & \text{ if } (\frac{p}{3}) = (\frac{p}{5}); \\ \left(\frac{2}{p} \right) \left(-(-1)^i \right) \frac{p-1}{4}, & \text{ if } (\frac{p}{3}) = -(\frac{p}{5}). \\ = \left(\frac{2}{p} \right)^i. \end{cases}$$
(Proposition 2.3)

To show the following results, it suffices to use Formula (2.2) modulo 5.

Lemma 3.4. Let F_p be a Fibonacci number with prime index $p \equiv 1 \pmod{4}$. Then

(1)
$$F_p \equiv p \pmod{5}$$
.
(2) $F_{\frac{p-1}{2}} \equiv \left(\frac{2}{p}\right)(p-1) \pmod{5}$.
(3) $F_{\frac{p+1}{2}} \equiv 3\left(\frac{2}{p}\right)(p+1) \pmod{5}$.
(4) $If\left(\frac{p}{5}\right) = 1$, then $\left(\frac{F_p}{5}\right)_4 = \left(\frac{p}{5}\right)_4$

Corollary 3.5. Let F_p be a Fibonacci number with prime index $p \equiv 1 \pmod{4}$. If $\left(\frac{p}{5}\right) = 1$, then $\left(\frac{F_p}{5}\right)_4 \left(\frac{5}{F_p}\right)_4 = \left(\frac{p}{3}\right)$.

DECEMBER 2017

Proof. Since $5 = 1^2 + 2^2$, $F_{\frac{p+(\frac{p}{3})}{2}}$ is odd and $F_p = F_{\frac{p+(\frac{p}{3})}{2}}^2 + F_{\frac{p-(\frac{p}{3})}{2}}^2$, then Theorem 3.2 implies that

$$\begin{pmatrix} \frac{F_p}{5} \\ \frac{5}{5} \end{pmatrix}_4 \left(\frac{5}{F_p} \right)_4 = \begin{pmatrix} \frac{F_{\frac{p+\left(\frac{p}{3}\right)}{2}} + 2F_{\frac{p-\left(\frac{p}{3}\right)}{2}} \\ \frac{5}{5} \end{pmatrix}_2 \\ = \begin{cases} \begin{pmatrix} \frac{3\left(\frac{2}{p}\right)(p+1) + 2\left(\frac{2}{p}\right)(p-1)}{5} \\ \frac{\left(\frac{2}{p}\right)(p+1) + 6\left(\frac{2}{p}\right)(p+1)}{5} \end{pmatrix}, & \text{if } \left(\frac{p}{3}\right) = 1; \\ \begin{pmatrix} \frac{2}{5} \end{pmatrix} = 1, & \text{if } \left(\frac{p}{3}\right) = 1; \\ \begin{pmatrix} \frac{2}{5} \end{pmatrix} = -1, & \text{if } \left(\frac{p}{3}\right) = 1; \\ \begin{pmatrix} \frac{2}{5} \end{pmatrix} = -1, & \text{if } \left(\frac{p}{3}\right) = -1. \\ = \begin{pmatrix} \frac{p}{3} \end{pmatrix}. \end{cases}$$

4. Main results

Let **k** be an algebraic number field and let $\mathbf{C}l_2(\mathbf{k})$ denote its 2-class group. Denote by $\mathbf{k}_2^{(1)}$ the Hilbert 2-class field of **k** and by $\mathbf{k}_2^{(2)}$ its second Hilbert 2-class field. Put $G = \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ and denote by G' its derived group; then it is well known, by class field theory, that $G/G' \simeq \mathbf{C}l_2(\mathbf{k})$.

For any prime l, \mathfrak{l}_k will denote a prime ideal of \mathbf{k} lies above l. We also denote by $\left(\frac{x, y}{\mathfrak{l}_k}\right)$ (resp. $\left(\frac{x}{\mathfrak{l}_k}\right)$) the Hilbert symbol (resp. the quadratic residue symbol) for the prime \mathfrak{l}_k applied

to (x, y) (resp. x). Recall that a 2-group H is said to be of type $(2^{n_1}, 2^{n_1}, ..., 2^{n_s})$ if it is isomorphic to $\mathbb{Z}/2^{n_1}\mathbb{Z} \times \mathbb{Z}/2^{n_2}\mathbb{Z} \times ...\mathbb{Z}/2^{n_s}\mathbb{Z}$, where $n_i \in \mathbb{N}^*$.

If $\mathbf{k} = \mathbb{Q}(\sqrt{5pF_p})$ such that F_p is a prime Fibonacci number where p > 5, then, by genus theory, rank $(\mathbf{C}l_2(\mathbf{k})) = 2$. Thus $\mathbf{C}l_2(\mathbf{k})$ is of type $(2^n, 2^m)$ with $n, m \in \mathbb{N}^*$. Hence group theory implies that $\mathbf{C}l_2(\mathbf{k})$ admits three normal subgroups of index 2, denote them by H_i , $i \in \{1, 2, 3\}$. The following diagram illustrates the situation :

On the other hand, by class field theory, each subgroup H_i of $\mathbf{C}l_2(\mathbf{k})$ is associated to a unique unramified extension F_i within $\mathbf{k}_2^{(1)}$ such that $H_i/H'_i \simeq \mathbf{C}l_2(F_i)$. The situation is represented

VOLUME 55, NUMBER 5

by the following figure:

According to [18, Theorem 2], the three fields F_i are given as follows:

$$F_1 = \mathbb{Q}(\sqrt{5}, \sqrt{pF_p}), F_2 = \mathbb{Q}(\sqrt{p}, \sqrt{5F_p}) \text{ and } F_3 = \mathbb{Q}(\sqrt{F_p}, \sqrt{5p}).$$

Recall also that a group G is said to be *metacyclic* if it has a normal cyclic subgroup H such that the quotient group G/H is cyclic. For example, if $\mathbf{C}l_2(\mathbf{k})$ is of type (2, 2), then G is metacyclic. More precisely and by [19], G is isomorphic to one of the following groups:

- (1) Abelian 2-group of type (2,2).
- (2) The dihedral group.
- (3) The quaternion group.
- (4) The semidihedral group.

Theorem 4.1 (Main result: case $\left(\frac{p}{5}\right) = -1$). Let F_p be a prime Fibonacci number such that p > 5 and $\left(\frac{p}{5}\right) = -1$. Put $\mathbf{k} = \mathbb{Q}(\sqrt{5pF_p})$ and let $\mathbf{k}_1^{(2)}$ be its Hilbert 2-class field. Denote by $\mathbf{k}_2^{(2)}$ the Hilbert 2-class field of $\mathbf{k}_1^{(2)}$ and by $G = \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. Then

- (1) $Cl_2(\mathbf{k})$ is of type (2,2).
- (2) G is abelian (is of type (2,2)) if and only if $p \equiv 5 \pmod{24}$ or $p \equiv 3 \pmod{4}$ and $F_p \equiv 1 \pmod{8}$.
- (3) If G is nonabelian, then it is quaternion, dihedral or semi-dihedral.

Proof. If $p \equiv 1 \pmod{4}$, then Corollary 2.2 implies that $\binom{p}{5} = \binom{F_p}{5} = -1$, so we use Kaplan's results on the 2-class group of the field $\mathbb{Q}(\sqrt{p_1p_2p_3})$ where $p_i \equiv 1 \pmod{4}$ ([13]) to show that $\mathbf{C}l_2(k)$ is of type (2, 2). In the case where $p \equiv 3 \pmod{4}$, we use a result of E. Benjamin and C. Snyder (namely [4, case 7, page 163]) to deduce that $\mathbf{C}l_2(k)$ is also of type (2, 2). According to [5], G is abelian if and only if $p \equiv 1 \pmod{4}$ and $\left(\frac{F_p}{p}\right)_4 \left(\frac{p}{F_p}\right)_4 = -1$ or $p \equiv 3 \pmod{4}$ and $F_p \equiv 1 \pmod{8}$. This is equivalent, by Proposition 3.3 and the Chinese remainder theorem, to $p \equiv 5 \pmod{24}$ or $p \equiv 3 \pmod{4}$ and $F_p \equiv 1 \pmod{8}$.

Lemma 4.2. Let F_p be a Fibonacci number with prime index $p \equiv 1 \pmod{4}$. Denote by r_i the rank of the 2-class group of the field F_i , where $i \in \{1, 2, 3\}$. Assume $\left(\frac{p}{5}\right) = 1$.

(1) If
$$p \equiv 2 \pmod{3}$$
, then $r_1 = r_3 = 2$ and $r_2 = \begin{cases} 2 & \text{if } p \equiv 5 \pmod{8} \text{ or } \left(\frac{p}{5}\right)_4 \left(\frac{5}{p}\right)_4 = -1; \\ 3, & \text{if not.} \end{cases}$
(2) If $p \equiv 1 \pmod{3}$, then $r_3 = 3$ and $r_1 = r_2 = \begin{cases} 2 & \text{if } p \equiv 5 \pmod{8} \text{ or } \left(\frac{p}{5}\right)_4 \left(\frac{5}{p}\right)_4 = -1; \\ 3, & \text{if not.} \end{cases}$

Proof. This is an immediate consequence of Proposition 3.3, Corollary 3.5 and Theorem 2 of [3].

DECEMBER 2017

Lemma 4.3. Let F_p be a Fibonacci number with prime index $p \equiv 3 \pmod{4}$. Denote by r_i the rank of the 2-class group of the field F_i , where $i \in \{1, 2, 3\}$. If $\left(\frac{p}{5}\right) = 1$, then $r_1 = r_2 = 2$ and $r_3 = \begin{cases} 2, & \text{if } F_p \equiv 5 \pmod{8}; \\ 3, & \text{if } F_p \equiv 1 \pmod{8}. \end{cases}$

Proof. As the class number of $F = \mathbb{Q}(\sqrt{p})$ is odd, then the ambiguous class number formula (see [9]) implies that $r_2 = t - e - 1$, where t = 4 is the number of primes of F that ramify in F_2/F and e is defined by $2^e = [E_F : E_F \cap N_{F_2/F}((\mathbf{k}^*)^{\times})]$. The Hasse norm theorem (see, e.g., [11, theorem 6.2, p. 179]) implies that a unit ε of F is a norm of an element of $F(\sqrt{5F_p}) = F_2$ if and only if $\left(\frac{5F_p,\varepsilon}{\mathfrak{l}_F}\right) = 1$, for all $\mathfrak{l}_F \neq 2_F$ prime ideal of F. Denote by ε_p the fundamental unit of $F = \mathbb{Q}(\sqrt{p})$, so E_F , the unit group of F, is equal to $\langle -1, \varepsilon_p \rangle$. According to [2], $2\varepsilon_p$ is a square in F, then

$$\begin{pmatrix} \frac{5F_p, \varepsilon_p}{5\mathbb{Q}(\sqrt{p})} \end{pmatrix} = \begin{pmatrix} \frac{\varepsilon_p}{5\mathbb{Q}(\sqrt{P})} \end{pmatrix} = \begin{pmatrix} \frac{\varepsilon_p}{5} \end{pmatrix} = \begin{pmatrix} \frac{2}{5} \end{pmatrix} = -1,$$
$$\begin{pmatrix} \frac{5F_p, -1}{\mathfrak{l}_F} \end{pmatrix} = \begin{cases} \begin{pmatrix} \frac{-1}{l} \end{pmatrix} = 1, & \text{if } l = 5 \text{ or } l = F_p, \\ 1, & \text{if not.} \end{cases}$$

Thus we conclude that e = 1 and $r_2 = 2$. To prove $r_1 = 2$ and $r_3 = \begin{cases} 2, & \text{if } F_p \equiv 5 \pmod{8}, \\ 3, & \text{if } F_p \equiv 1 \pmod{8}, \end{cases}$ we can apply Theorem 1 of [3].

Theorem 4.4 (Main result: case $\left(\frac{p}{5}\right) = 1$). Let F_p be a prime Fibonacci number such that p > 5 and $\left(\frac{p}{5}\right) = 1$. Put $\mathbf{k} = \mathbb{Q}(\sqrt{5pF_p})$ and let $\mathbf{k}_1^{(2)}$ be its Hilbert 2-class field. Denote by $\mathbf{k}_2^{(2)}$ the Hilbert 2-class field of $\mathbf{k}_1^{(2)}$ and by $G = \operatorname{Gal}(\mathbf{k}_2^{(2)}/\mathbf{k})$ the Galois group of $\mathbf{k}_2^{(2)}/\mathbf{k}$. Then

- (1) If $p \equiv 3 \pmod{4}$, then $\mathbf{Cl}_2(\mathbf{k})$ is of type $(2, 2^n)$, such that $n \geq 2$ and G is metacyclic if and only if $F_p \equiv 5 \pmod{8}$.
- (2) If $p \equiv 1 \pmod{4}$, then G is metacyclic if and only if $p \equiv 5 \pmod{24}$ or $[p \equiv 2 \mod 3]$ and $\left(\frac{p}{5}\right)_4 \left(\frac{5}{p}\right)_4 = -1]$.

Proof. (1) If $p \equiv 3 \pmod{4}$, then the last lemma and Theorem 5.1 of [6] yield that G is metacyclic if and only if $F_p \equiv 5 \pmod{8}$. To show that $\mathbf{C}l_2(\mathbf{k})$ is of type $(2, 2^n)$, it suffices to prove that r_4 , the 4-rank of $\mathbf{C}l_2(\mathbf{k})$, is 1. In this case, the discriminant of \mathbf{k} is $\Delta = 20pF_p$, and the only possible C4-decomposition of Δ is $\Delta_1 \Delta_2$ with

$$\begin{cases} \Delta_1 = F_p & \text{and } \Delta_2 = 20p, & \text{if } F_p \equiv 1 \pmod{8}; \\ \Delta_1 = -20 & \text{and } \Delta_2 = -pF_p, & \text{if not.} \end{cases}$$

According to [16], r_4 equals the number of independent C4-decompositions of Δ , so $r_4 = 1$.

(2) If $p \equiv 1 \pmod{4}$, then we just apply Lemma 4.2 and Theorem 5.1 of [6].

5. Numerical examples with all known F_p

To date, F_p is known to be prime for p = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677, 14431, 25561, 30757, 35999, 37511, 50833, 81839. In addition to these proven Fibonacci primes, there have been found probable primes for <math>p = 104911, 130021, 148091, 201107, 397379, 433781, 590041, 593689, 604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721, 2904353 (See.[21]). Using the Pari software, [10], we find that there are up to now 5 primes Fibonacci numbers such that

p	$\pmod{4}$	$\left(\frac{p}{5}\right)$	$\mathbf{C}l_2(\mathbf{k})$	G	p	$\pmod{4}$	$\left(\frac{p}{5}\right)$	$\mathbf{C}l_2(\mathbf{k})$	G
7	3	-1	(2, 2)	М	14431	3	1	(2, ?)	М
11	3	1	(2, 4)	NM	25561	1	1	(2, ?)	NM
13	1	-1	(2, 2)	М	30757	1	-1	(2, 2)	Μ
17	1	-1	(2, 2)	М	35999	3	1	(2, ?)	NM
23	3	-1	(2, 2)	М	37511	3	1	(2, ?)	NM
29	1	1	(2, 4)	М	50833	1	-1	(2, 2)	M
43	3	-1	(2, 2)	М	81839	3	1	(2, ?)	NM
47	3	-1	(2, 2)	М	104911	3	1	(2, ?)	M
83	3	-1	(2, 2)	М	130021	1	1	(2, ?)	NM
131	3	1	(2, 4)	NM	148091	3	1	(2, ?)	NM
137	1	-1	(2, 2)	М	201107	3	-1	(2, 2)	Μ
359	3	1	(2, ?)	NM	397379	3	1	(2, ?)	NM
431	3	1	(2, ?)	NM	433781	1	1	(2, ?)	M
433	1	-1	(2, 2)	М	590041	1	1	(2, ?)	NM
449	1	1	(2, ?)	М	593689	1	1	(?, ?)	NM
509	1	1	(2, ?)	Μ	604711	3	1	(2, ?)	Μ
569	1	1	(2, ?)	М	931517	1	-1	(2, 2)	(2, 2)
571	3	1	(2, ?)	Μ	1049897	1	-1	(2, 2)	Μ
2971	3	1	(2, ?)	М	1285607	3	-1	(2, 2)	M
4723	3	-1	(2, 2)	Μ	1636007	3	-1	(2, 2)	Μ
5387	3	-1	(2, 2)	Μ	1803059	3	1	(2, ?)	NM
9311	3	1	(2, ?)	NM	1968721	1	1	(?, ?)	NM
9677	1	-1	(2, 2)	(2, 2)	2904353	1	-1	(2, 2)	M

G is nonmetacyclic. We use the following abbreviations: M means metacyclic, NM means nonmetacyclic.

FIGURE 1. Numerical examples

References

- [1] M. Aoki and Y. Kishi, An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five, submitted
- [2] A. Azizi, Sur la capitulation des 2-classes d'idéaux de $k = \mathbb{Q}(\sqrt{2pq}, i)$, où $p \equiv -q \equiv 1 \mod 4$, Acta. Arith. 94 (2000), 383-399.
- [3] A. Azizi and A. Mouhib, Sur le rang du 2-groupe de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ où m = 2 ou bien un premier $p \equiv 1 \pmod{4}$, Trans. Amer. Math. Soc. **353** (2001), 2741-2752.
- [4] E. Benjamin and C. Snyder, Real quadratic number fields with 2-class group of type (2, 2), Math. Scand. 76 (1995), 161-178.
- [5] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory. 73 (1998), 182-194.
- [6] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961),1-22
- [7] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184.
- [8] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
- C. Chevalley, Sur la théorie du corps de classes dans les corps finis and les corps locaux, J. Fac. Sc. Tokyo, Sect. 1, t.2, (1933), 365-476.
- [10] The PARI Group, PARI/GP, Bordeaux, Version 2.7.5, Oct 26 2015, (http://pari.math.u-bordeaux.fr).
- [11] G. Gras, Class field theory, from theory to practice, Springer Verlag 2003.

DECEMBER 2017

- [12] R. P. Grimaldi, Fibonacci and Catalan numbers. An introduction, John Wiley & Sons, Inc., Hoboken, NJ, 2012.
- [13] P. Kaplan, Sur le 2-groupe de classes d'idéaux des corps quadratiques, J. Reine angew. Math. 283/284 (1976), 313-363.
- [14] Y. Kishi, A new family of imaginary quadratic fields whose class number is divisible by five, J. Number Theory 128 (2008), 24502458.
- [15] F. Lemmermeyer, *Reciprocity Laws*, Springer Monographs in Mathematics, Springer-Verlag. Berlin 2000.
- [16] L. Rédei, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49 (1932), 338-363.
- [17] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), 371-388.
- [18] B. K. Spearman, K. S. Williams, Unramified Quadratic Extensions of a Quadratic Field, Rocky Mountain J. Math. 25 (1995), no. 2, 783-788.
- [19] O. Taussky, A Remark on the class field tower, J. London Math. Soc 12 (1937), 82-85.
- [20] N. N. Vorobiev, Fibonacci numbers, Russian Academy of Sciences, 1992 (6th edition) Nauka, Moscow.
- [21] Wikipedia, Fibonacci prime, https://en.wikipedia.org/wiki/Fibonacci_prime#cite_note-prptop-2

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES AND TECHNOLOGY, MOULAY ISMAÏL UNIVERSITY, ERRACHIDIA, MOROCCO

E-mail address: taousm@hotmail.com