ON THE 2-CLASS GROUP OF $\mathbb{Q}\left(\sqrt{5 p F_{p}}\right)$ WHERE F_{p} IS A PRIME FIBONACCI NUMBER

MOHAMMED TAOUS

Abstract

Let F_{p} be a prime Fibonacci number where $p>5$. Put $\mathbf{k}=\mathbb{Q}\left(\sqrt{5 p F_{p}}\right)$ and let $\mathbf{k}_{1}^{(2)}$ be its Hilbert 2-class field. Denote by $\mathbf{k}_{2}^{(2)}$ the Hilbert 2-class field of $\mathbf{k}_{1}^{(2)}$ and by $G=\operatorname{Gal}\left(\mathbf{k}_{2}^{(2)} / \mathbf{k}\right)$ the Galois group of $\mathbf{k}_{2}^{(2)} / \mathbf{k}$. In this paper, we characterize the structure of the 2 -class group of \mathbf{k} and we study the metacyclicity of G.

1. Introduction

Let d be a square-free integer and $\mathbf{k}=\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d}: a, b \in \mathbb{Q}\}$ be a quadratic number field. Then we define the ring of integers of \mathbf{k} by

$$
\mathcal{O}_{\mathbf{k}}=\{\alpha \in \mathbf{k}: P(\alpha)=0 \text { for some monic polynomial } P \in \mathbb{Z}[X]\} .
$$

$$
\text { It is known that } \mathcal{O}_{\mathbf{k}}= \begin{cases}\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right], & \text { if } d \equiv 1(\bmod 4) ; \\ \mathbb{Z}[\sqrt{d}], & \text { if not. }\end{cases}
$$

Two ideals I and J of $\mathcal{O}_{\mathbf{k}}$ are said to be equivalent if $I=\lambda J$ for some $\lambda \in \mathbf{k}$, this definition of equivalent is an equivalence relation. The ideal classes of $\mathcal{O}_{\mathbf{k}}$ form a finite group called the class group of \mathbf{k}, and will be denoted by $\mathbf{C l}(\mathbf{k})$.

We define the p-rank and the p^{2}-rank of $\mathbf{C l}(\mathbf{k})$ respectively as follows:

$$
r_{p}=\operatorname{dim}_{\mathbb{F}_{p}}\left(\mathbf{C} l(\mathbf{k}) / \mathbf{C} l(\mathbf{k})^{p}\right) \text { and } r_{p^{2}}=\operatorname{dim}_{\mathbb{F}_{p}}\left(\mathbf{C} l(\mathbf{k})^{p} / \mathbf{C l}(\mathbf{k})^{p^{2}}\right)
$$

where \mathbb{F}_{p} is the finite field with p elements.
Several works are interested in determining the structure of the p-class group $\mathbf{C} l_{p}(\mathbf{k})$, that is the Sylow p-subgroup of $\mathbf{C l}(\mathbf{k})$. For example, for $p=2, r_{2}=2$ and $r_{4}=0$ or 1 , we can see the works of P. Kaplan [13], and Benjamin et all [4]. As the only perfect squares in the Fibonacci sequence are $F_{0}=0, F_{1}=F_{2}=1$ and $F_{12}=144$ (see, e.g., [8]), then the quadratic field $\mathbf{k}=\mathbb{Q}\left(\sqrt{ \pm F_{n}}\right)$ is well defined for $n \notin\{0,1,2,12\}$. On the other hand, by genus theory, the 2-class group, $\mathbf{C} l_{2}(\mathbf{k})$, of $\mathbf{k}=\mathbb{Q}\left(\sqrt{F_{n}}\right)$ is trivial if and only if $F_{n}=m^{2} p$ where p is a prime number.
Y. Kishi [14] gave an infinite family of imaginary quadratic fields $\mathbb{Q}\left(\sqrt{-F_{n}}\right)$ with $n \equiv 25$ $(\bmod 50)$ such that $r_{5} \geq 1$. The latter author and M. Aoki gave in [1] another infinite family of pairs of imaginary quadratic fields with $r_{5} \geq 1$. Motivated by these works, we thought, in a first time, studying the 2 -class group of the real quadratic fields $\mathbf{k}=\mathbb{Q}\left(\sqrt{F_{n}}\right)$. But we noticed that we cannot do it, in general, since to calculate the rank of $\mathbf{C} l_{2}(\mathbf{k})$, we must first calculate the prime numbers that divide square-free part of F_{n}. To overcome this difficulty, we changed F_{n} by $5 p F_{p}$ where F_{p} is a prime Fibonacci number with $p>5$, and we decided to characterize the structure of the 2-class group of \mathbf{k} and to study the metacyclicity of $G=\operatorname{Gal}\left(\mathbf{k}_{2}^{(2)} / \mathbf{k}\right)$ where $\mathbf{k}_{2}^{(2)}$ is the second Hilbert 2-class field of \mathbf{k}.

THE 2-CLASS GROUP OF $\mathbb{Q}\left(\sqrt{5 P F_{P}}\right)$ WHERE F_{P} IS A PRIME FIBONACCI NUMBER

2. Some consequences of the Binet's formula

The Fibonacci numbers F_{n} may be defined by the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ with $F_{0}=0$ and $F_{1}=1$. In 1843, the French mathematician Jacques Philippe Marie Binet (1786-1856) discovered that

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \tag{2.1}
\end{equation*}
$$

This expression of F_{n} is called Binet's formula. Using this formula, we can show the well-known identities [12]:

$$
\begin{gather*}
2^{2 n-1} F_{2 n}=\sum_{k=0}^{n-1} 5^{k} C_{2 n}^{2 k+1} \text { and } 4^{n} F_{2 n+1}=\sum_{k=0}^{n} 5^{k} C_{2 n+1}^{2 k+1} . \tag{2.2}\\
F_{2 n+1}=F_{n+1}^{2}+F_{n}^{2} . \tag{2.3}
\end{gather*}
$$

From which we deduce that all the odd divisors of $F_{2 n+1}$ are of the form $4 t+1$.
Recall also that the Lucas numbers are the sequence of integers $\left(L_{n}\right)_{n \in \mathbb{N}}$ defined by the linear recurrence equation $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$ with $L_{1}=1$ and $L_{2}=3$.
Theorem 2.1 (Legendre, Lagrange). Let p be an odd prime integer. Then the Fibonacci number F_{p} and the Lucas number L_{p} have the following properties:

$$
F_{p \pm 1} \equiv \frac{1 \pm\left(\frac{p}{5}\right)}{2} \quad(\bmod p), F_{p} \equiv\left(\frac{p}{5}\right) \quad(\bmod p) \text { and } L_{p} \equiv 1 \quad(\bmod p) .
$$

Those extraordinary sequences have so many other properties (see, e.g., [20, 12]). We can, for example, cite the following identities:

$$
\begin{gather*}
F_{2 n}=F_{n} L_{n} \tag{2.4}\\
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} . \tag{2.5}\\
5 F_{2 n}=2 L_{2 n+1}-L_{n}^{2}+2(-1)^{n} . \tag{2.6}
\end{gather*}
$$

Corollary 2.2. Let p be a prime >5, and denote by $(\dot{\bar{p}})$ the Legendre symbol. Then the Fibonacci number F_{p} has the following properties:
(1) If $p \equiv 1(\bmod 4)$, then $\left(\frac{F_{p}}{p}\right)=1$ and $\left(\frac{p}{5}\right)=\left(\frac{F_{p}}{5}\right)$.
(2) If $p \equiv 3(\bmod 4)$, then $\left(\frac{F_{p}}{p}\right)=\left(\frac{p}{5}\right)=\left(\frac{F_{p}}{5}\right)$.

Proposition 2.3 ([15]). Let $p=a^{2}+b^{2}$ be an odd prime, and suppose a odd. Then

$$
\left(\frac{a}{p}\right)=1,\left(\frac{b}{p}\right)=\left(\frac{2}{p}\right) \text { and }\left(\frac{a+b}{p}\right)=\left(\frac{2}{a+b}\right)
$$

3. Preliminary

In what follows, we adopt the following notations: if $\left(\frac{a}{p}\right)=1$ and $p \equiv 1(\bmod 4)$, then $\left(\frac{a}{p}\right)_{4}$ will denote the rational biquadratic symbol which is equal to 1 or -1 , according as $a^{\frac{p-1}{4}} \equiv 1$ or $-1(\bmod p)$, in particular $\left(\frac{2}{p}\right)_{4}=(-1)^{\frac{p-1}{4}}$.

THE FIBONACCI QUARTERLY

Lemma $3.1([17])$. If $p>5$ is a prime such that $p \equiv 1(\bmod 4)$, then $F_{\frac{p-\left(\frac{p}{5}\right)}{2}} \equiv 0(\bmod p)$ and $\left(\frac{F_{\frac{p+(\underset{y}{p})}{2}}^{2}}{p}\right)=\left(\frac{p}{5}\right)^{\frac{p-1}{4}}$.

Proof. From the first equality of Theorem 2.1, we conclude that

$$
\begin{equation*}
F_{p-\left(\frac{p}{5}\right)} \equiv 0 \quad(\bmod p) \text { and } F_{p+\left(\frac{p}{5}\right)} \equiv 1 \quad(\bmod p) \tag{3.1}
\end{equation*}
$$

According to Formula (2.4), we have

$$
F_{p-\left(\frac{p}{5}\right)} \equiv F_{\frac{p-\left(\frac{p}{5}\right)}{2}} L_{\frac{p-\left(\frac{p}{5}\right)}{2}} \equiv 0 \quad(\bmod p) .
$$

We now show that p never divides $L_{\frac{p-\left(\frac{p}{5}\right)}{2}}$.
If $\left(\frac{p}{5}\right)=-1$, then Formula (2.5) implies that $L_{\frac{p+1}{2}}^{2}-5 F_{\frac{p+1}{2}}^{2} \equiv 4(-1)^{\frac{p+1}{2}}(\bmod p)$. If p divides $L_{\underline{p-\left(\frac{p}{5}\right)}}$, then, since $p \equiv 1(\bmod 4),\left(\frac{p}{5}\right)=\left(\frac{5}{p}\right)=\left(\frac{4}{p}\right)=1$. This is absurd.
If $\overline{\left(\frac{p}{5}\right)}=1$, then by replacing, in (2.6), $2 n$ by $p-1$, we get $5 F_{p-1}=2 L_{p}-L_{\frac{p-1}{2}}^{2}+2$. According to the third equality of Theorem 2.1 and to the first equality of (3.1), we have $L_{\frac{p-1}{2}}^{2} \equiv 4$ $(\bmod p)$, i.e., p never divides $L_{\frac{p-\left(\frac{p}{5}\right)}{2}}$. Then $F_{\frac{p-\left(\frac{p}{5}\right)}{2}} \equiv 0(\bmod p)$.
Finally, from the second equality of Theorem 2.1 and (2.3), we can see that

$$
\begin{aligned}
F_{p} & =F_{\frac{p+\left(\frac{5}{p}\right)}{2}}^{2}+F_{\frac{p-\left(\frac{5}{p}\right)}{2}}^{2} \equiv F_{\frac{p+\left(\frac{5}{p}\right)}{2}}^{2} \quad(\bmod p) \\
& \equiv\left(\frac{5}{p}\right) \equiv\left(5^{\frac{p-1}{4}}\right)^{2} \quad(\bmod p) .
\end{aligned}
$$

As p is prime, so $F_{\frac{p+\left(\frac{5}{p}\right)}{2}} \equiv \pm\left(5^{\frac{p-1}{4}}\right)(\bmod p)$. This gives that $\left(\frac{F_{\frac{p+\left(\frac{p}{2}\right)}{2}}^{p}}{}\right)=\left(\frac{p}{5}\right)^{\frac{p-1}{4}}$.
Theorem 3.2 (Burde, [7]). Let $m, n \in \mathbb{N}$ be odd such that $m=a^{2}+b^{2}$ and $n=c^{2}+d^{2}$, where $a, b, c, d \in \mathbb{N}, 2 \nmid a c$, and $(a, b)=(c, d)=(m, n)=1$. Suppose that $\left(\frac{m}{n}\right)=\left(\frac{n}{m}\right)=1$. Then

$$
\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{a c+b d}{n}\right)=\left(\frac{a c+b d}{m}\right) .
$$

Proposition 3.3. Let F_{p} be a Fibonacci number with prime index $p \equiv 1(\bmod 4)$. Then we have

$$
\left(\frac{F_{p}}{p}\right)_{4}\left(\frac{p}{F_{p}}\right)_{4}= \begin{cases}1, & \text { if } p \equiv 1 \quad(\bmod 3) ; \\ \left(\frac{2}{p}\right), & \text { if not. }\end{cases}
$$

Proof. Let $p=a^{2}+b^{2}$ be an odd prime, and suppose that a is odd and put $\left(\frac{p}{3}\right)=(-1)^{i}$. It is easy to see that $p \equiv\left(\frac{p}{3}\right)(\bmod 6)$, this implies that $\frac{p+\left(\frac{p}{3}\right)}{2}$ is not divisible by 3 , so $F_{\frac{p+\left(\frac{p}{3}\right)}{2}}$ is

THE 2-CLASS GROUP OF $\mathbb{Q}\left(\sqrt{5 P F_{P}}\right)$ WHERE F_{P} IS A PRIME FIBONACCI NUMBER odd. Since $F_{p}=F_{\frac{p+\left(\frac{p}{3}\right)}{2}}^{2}+F_{\frac{p-\left(\frac{p}{3}\right)}{2}}^{2}$, then the previous theorem gives that

$$
\begin{align*}
\left(\frac{F_{p}}{p}\right)_{4}\left(\frac{p}{F_{p}}\right)_{4} & =\left(\begin{array}{ll}
\left.\frac{a F_{\frac{p+\left(\frac{p}{3}\right)}{2}}+b F_{\frac{p-\left(\frac{p}{3}\right)}{2}}}{p}\right) \\
& = \begin{cases}\left(\frac{a}{p}\right)\left(\frac{F_{p+\left(\frac{p}{3}\right)}^{2}}{p}\right), & \text { if }\left(\frac{p}{3}\right)=\left(\frac{p}{5}\right) ; \\
\left(\frac{b}{p}\right)\left(\frac{\left.F_{\frac{p-\left(\frac{p}{2}\right)}{2}}^{p}\right),}{},\right. & \text { if }\left(\frac{p}{3}\right)=-\left(\frac{p}{5}\right) .\end{cases} \\
& = \begin{cases}\left((-1)^{i}\right)^{\frac{p-1}{4},} & \text { if }\left(\frac{p}{3}\right)=\left(\frac{p}{5}\right) ; \\
\left(\frac{2}{p}\right)\left(-(-1)^{i}\right)^{\frac{p-1}{4}}, & \text { if }\left(\frac{p}{3}\right)=-\left(\frac{p}{5}\right) .\end{cases} \\
& =\left(\frac{2}{p}\right)^{i} .
\end{array}\right. \text { (Proposition 2.3) }
\end{align*}
$$

To show the following results, it suffices to use Formula (2.2) modulo 5.

Lemma 3.4. Let F_{p} be a Fibonacci number with prime index $p \equiv 1(\bmod 4)$. Then
(1) $F_{p} \equiv p(\bmod 5)$.
(2) $F_{\frac{p-1}{2}} \equiv\left(\frac{2}{p}\right)(p-1)(\bmod 5)$.
(3) $F_{\frac{p+1}{2}} \equiv 3\left(\frac{2}{p}\right)(p+1)(\bmod 5)$.
(4) If $\left(\frac{p}{5}\right)=1$, then $\left(\frac{F_{p}}{5}\right)_{4}=\left(\frac{p}{5}\right)_{4}$

Corollary 3.5. Let F_{p} be a Fibonacci number with prime index $p \equiv 1(\bmod 4)$. If $\left(\frac{p}{5}\right)=1$, then $\left(\frac{F_{p}}{5}\right)_{4}\left(\frac{5}{F_{p}}\right)_{4}=\left(\frac{p}{3}\right)$.

THE FIBONACCI QUARTERLY

Proof. Since $5=1^{2}+2^{2}, F_{\frac{p+\left(\frac{p}{3}\right)}{2}}$ is odd and $F_{p}=F_{\frac{p+\left(\frac{p}{3}\right)}{2}}^{2}+F_{\frac{p-\left(\frac{p}{3}\right)}{2}}^{2}$, then Theorem 3.2 implies that

$$
\begin{aligned}
\left(\frac{F_{p}}{5}\right)_{4}\left(\frac{5}{F_{p}}\right)_{4} & =\binom{\left.\frac{F_{p+\left(\frac{p}{3}\right)}^{2}}{}+2 F_{\frac{p-\left(\frac{p}{3}\right)}{2}}\right)}{5} \\
& = \begin{cases}\left(\frac{3\left(\frac{2}{p}\right)(p+1)+2\left(\frac{2}{p}\right)(p-1)}{5}\right), & \text { if }\left(\frac{p}{3}\right)=1 ; \\
\left(\frac{\left(\frac{2}{p}\right)(p-1)+6\left(\frac{2}{p}\right)(p+1)}{5}\right), & \text { if }\left(\frac{p}{3}\right)=-1 .\end{cases} \\
& = \begin{cases}\left(\frac{1}{5}\right)=1, & \text { if }\left(\frac{p}{3}\right)=1 ; \\
\left(\frac{2}{5}\right)=-1, & \text { if }\left(\frac{p}{3}\right)=-1 .\end{cases} \\
& =\left(\frac{p}{3}\right) .
\end{aligned}
$$

4. Main results

Let \mathbf{k} be an algebraic number field and let $\mathbf{C} l_{2}(\mathbf{k})$ denote its 2-class group. Denote by $\mathbf{k}_{2}^{(1)}$ the Hilbert 2-class field of \mathbf{k} and by $\mathbf{k}_{2}^{(2)}$ its second Hilbert 2-class field. Put $G=\operatorname{Gal}\left(\mathbf{k}_{2}^{(2)} / \mathbf{k}\right)$ and denote by G^{\prime} its derived group; then it is well known, by class field theory, that $G / G^{\prime} \simeq \mathbf{C} l_{2}(\mathbf{k})$.

For any prime l, \mathfrak{l}_{k} will denote a prime ideal of \mathbf{k} lies above l. We also denote by $\left(\frac{x, y}{\mathfrak{l}_{\mathbf{k}}}\right)$ (resp. $\left(\frac{x}{\mathfrak{l}_{\mathrm{k}}}\right)$) the Hilbert symbol (resp. the quadratic residue symbol) for the prime \mathfrak{l}_{k} applied to (x, y) (resp. x). Recall that a 2-group H is said to be of type $\left(2^{n_{1}}, 2^{n_{1}}, \ldots, 2^{n_{s}}\right)$ if it is isomorphic to $\mathbb{Z} / 2^{n_{1}} \mathbb{Z} \times \mathbb{Z} / 2^{n_{2}} \mathbb{Z} \times \ldots \mathbb{Z} / 2^{n_{s}} \mathbb{Z}$, where $n_{i} \in \mathbb{N}^{*}$.

If $\mathbf{k}=\mathbb{Q}\left(\sqrt{5 p F_{p}}\right)$ such that F_{p} is a prime Fibonacci number where $p>5$, then, by genus theory, $\operatorname{rank}\left(\mathbf{C} l_{2}(\mathbf{k})\right)=2$. Thus $\mathbf{C} l_{2}(\mathbf{k})$ is of type $\left(2^{n}, 2^{m}\right)$ with $n, m \in \mathbb{N}^{*}$. Hence group theory implies that $\mathbf{C} l_{2}(\mathbf{k})$ admits three normal subgroups of index 2 , denote them by H_{i}, $i \in\{1,2,3\}$. The following diagram illustrates the situation :

On the other hand, by class field theory, each subgroup H_{i} of $\mathbf{C} l_{2}(\mathbf{k})$ is associated to a unique unramified extension F_{i} within $\mathbf{k}_{2}^{(1)}$ such that $H_{i} / H_{i}^{\prime} \simeq \mathbf{C} l_{2}\left(F_{i}\right)$. The situation is represented

THE 2-CLASS GROUP OF $\mathbb{Q}\left(\sqrt{5 P F_{P}}\right)$ WHERE F_{P} IS A PRIME FIBONACCI NUMBER

 by the following figure:

According to [18, Theorem 2], the three fields F_{i} are given as follows:

$$
F_{1}=\mathbb{Q}\left(\sqrt{5}, \sqrt{p F_{p}}\right), F_{2}=\mathbb{Q}\left(\sqrt{p}, \sqrt{5 F_{p}}\right) \text { and } F_{3}=\mathbb{Q}\left(\sqrt{F_{p}}, \sqrt{5 p}\right) .
$$

Recall also that a group G is said to be metacyclic if it has a normal cyclic subgroup H such that the quotient group G / H is cyclic. For example, if $\mathbf{C} l_{2}(\mathbf{k})$ is of type $(2,2)$, then G is metacyclic. More precisely and by [19], G is isomorphic to one of the following groups:
(1) Abelian 2-group of type (2,2).
(2) The dihedral group.
(3) The quaternion group.
(4) The semidihedral group.

Theorem 4.1 (Main result: case $\left(\frac{p}{5}\right)=-1$). Let F_{p} be a prime Fibonacci number such that $p>5$ and $\left(\frac{p}{5}\right)=-1$. Put $\mathbf{k}=\mathbb{Q}\left(\sqrt{5 p F_{p}}\right)$ and let $\mathbf{k}_{1}^{(2)}$ be its Hilbert 2 -class field. Denote by $\mathbf{k}_{2}^{(2)}$ the Hilbert 2-class field of $\mathbf{k}_{1}^{(2)}$ and by $G=\operatorname{Gal}\left(\mathbf{k}_{2}^{(2)} / \mathbf{k}\right)$ the Galois group of $\mathbf{k}_{2}^{(2)} / \mathbf{k}$. Then
(1) $\mathbf{C} l_{2}(\mathbf{k})$ is of type $(2,2)$.
(2) G is abelian (is of type $(2,2))$ if and only if $p \equiv 5(\bmod 24)$ or $p \equiv 3(\bmod 4)$ and $F_{p} \equiv 1(\bmod 8)$.
(3) If G is nonabelian, then it is quaternion, dihedral or semi-dihedral.

Proof. If $p \equiv 1(\bmod 4)$, then Corollary 2.2 implies that $\left(\frac{p}{5}\right)=\left(\frac{F_{p}}{5}\right)=-1$, so we use Kaplan's results on the 2-class group of the field $\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)$ where $p_{i} \equiv 1(\bmod 4)$ ([13]) to show that $\mathbf{C} l_{2}(k)$ is of type $(2,2)$. In the case where $p \equiv 3(\bmod 4)$, we use a result of E. Benjamin and C. Snyder (namely [4, case 7, page 163]) to deduce that $\mathbf{C} l_{2}(k)$ is also of type (2,2). According to [5], G is abelian if and only if $p \equiv 1(\bmod 4)$ and $\left(\frac{F_{p}}{p}\right)_{4}\left(\frac{p}{F_{p}}\right)_{4}=-1$ or $p \equiv 3(\bmod 4)$ and $F_{p} \equiv 1(\bmod 8)$. This is equivalent, by Proposition 3.3 and the Chinese remainder theorem, to $p \equiv 5(\bmod 24)$ or $p \equiv 3(\bmod 4)$ and $F_{p} \equiv 1(\bmod 8)$.

Lemma 4.2. Let F_{p} be a Fibonacci number with prime index $p \equiv 1(\bmod 4)$. Denote by r_{i} the rank of the 2 -class group of the field F_{i}, where $i \in\{1,2,3\}$. Assume $\left(\frac{p}{5}\right)=1$.
(1) If $p \equiv 2(\bmod 3)$, then $r_{1}=r_{3}=2$ and $r_{2}= \begin{cases}2 & \text { if } p \equiv 5(\bmod 8) \text { or }\left(\frac{p}{5}\right)_{4}\left(\frac{5}{p}\right)_{4}=-1 \text {; } \\ 3, & \text { if not. }\end{cases}$
(2) If $p \equiv 1(\bmod 3)$, then $r_{3}=3$ and $r_{1}=r_{2}= \begin{cases}2 & \text { if }\left(\frac{p}{5}\right)_{4}\left(\frac{5}{p}\right)_{4}=-1 \text {; } \\ 3, & \text { if not. }\end{cases}$

Proof. This is an immediate consequence of Proposition 3.3, Corollary 3.5 and Theorem 2 of [3].

THE FIBONACCI QUARTERLY

Lemma 4.3. Let F_{p} be a Fibonacci number with prime index $p \equiv 3(\bmod 4)$. Denote by r_{i} the rank of the 2 -class group of the field F_{i}, where $i \in\{1,2,3\}$. If $\left(\frac{p}{5}\right)=1$, then $r_{1}=r_{2}=2$ and $r_{3}= \begin{cases}2, & \text { if } F_{p} \equiv 5(\bmod 8) ; \\ 3, & \text { if } F_{p} \equiv 1(\bmod 8) .\end{cases}$

Proof. As the class number of $F=\mathbb{Q}(\sqrt{p})$ is odd, then the ambiguous class number formula (see [9]) implies that $r_{2}=t-e-1$, where $t=4$ is the number of primes of F that ramify in F_{2} / F and e is defined by $2^{e}=\left[E_{F}: E_{F} \cap N_{F_{2} / F}\left(\left(\mathbf{k}^{*}\right)^{\times}\right)\right]$. The Hasse norm theorem (see, e.g., [11, theorem 6.2, p. 179]) implies that a unit ε of F is a norm of an element of $F\left(\sqrt{5 F_{p}}\right)=F_{2}$ if and only if $\left(\frac{5 F_{p}, \varepsilon}{\mathfrak{l}_{F}}\right)=1$, for all $\mathfrak{l}_{F} \neq 2_{F}$ prime ideal of F. Denote by ε_{p} the fundamental unit of $F=\mathbb{Q}(\sqrt{p})$, so E_{F}, the unit group of F, is equal to $\left\langle-1, \varepsilon_{p}\right\rangle$. According to [2], $2 \varepsilon_{p}$ is a square in F, then

$$
\begin{aligned}
& \left(\frac{5 F_{p}, \varepsilon_{p}}{5 \mathbb{Q}(\sqrt{p})}\right)=\left(\frac{\varepsilon_{p}}{5_{\mathbb{Q}(\sqrt{P})}}\right)=\left(\frac{\varepsilon_{p}}{5}\right)=\left(\frac{2}{5}\right)=-1, \\
& \left(\frac{5 F_{p},-1}{\mathfrak{l}_{F}}\right)= \begin{cases}\left(\frac{-1}{l}\right)=1, & \text { if } l=5 \text { or } l=F_{p}, \\
1, & \text { if not. }\end{cases}
\end{aligned}
$$

Thus we conclude that $e=1$ and $r_{2}=2$. To prove $r_{1}=2$ and $r_{3}= \begin{cases}2, & \text { if } F_{p} \equiv 5(\bmod 8), \\ 3, & \text { if } F_{p} \equiv 1(\bmod 8),\end{cases}$ we can apply Theorem 1 of [3].

Theorem 4.4 (Main result: case $\left(\frac{p}{5}\right)=1$). Let F_{p} be a prime Fibonacci number such that $p>5$ and $\left(\frac{p}{5}\right)=1$. Put $\mathbf{k}=\mathbb{Q}\left(\sqrt{5 p F_{p}}\right)$ and let $\mathbf{k}_{1}^{(2)}$ be its Hilbert 2-class field. Denote by $\mathbf{k}_{2}^{(2)}$ the Hilbert 2 -class field of $\mathbf{k}_{1}^{(2)}$ and by $G=\operatorname{Gal}\left(\mathbf{k}_{2}^{(2)} / \mathbf{k}\right)$ the Galois group of $\mathbf{k}_{2}^{(2)} / \mathbf{k}$. Then
(1) If $p \equiv 3(\bmod 4)$, then $\mathbf{C l} l_{2}(\mathbf{k})$ is of type $\left(2,2^{n}\right)$, such that $n \geq 2$ and G is metacyclic if and only if $F_{p} \equiv 5(\bmod 8)$.
(2) If $p \equiv 1(\bmod 4)$, then G is metacyclic if and only if $p \equiv 5(\bmod 24)$ or $[p \equiv 2 \bmod 3$ and $\left.\left(\frac{p}{5}\right)_{4}\left(\frac{5}{p}\right)_{4}=-1\right]$.
Proof. (1) If $p \equiv 3(\bmod 4)$, then the last lemma and Theorem 5.1 of [6] yield that G is metacyclic if and only if $F_{p} \equiv 5(\bmod 8)$. To show that $\mathbf{C} l_{2}(\mathbf{k})$ is of type $\left(2,2^{n}\right)$, it suffices to prove that r_{4}, the 4 -rank of $\mathbf{C} l_{2}(\mathbf{k})$, is 1 . In this case, the discriminant of \mathbf{k} is $\Delta=20 p F_{p}$, and the only possible $C 4$-decomposition of Δ is $\Delta_{1} \Delta_{2}$ with

$$
\left\{\begin{array}{lll}
\Delta_{1}=F_{p} & \text { and } \Delta_{2}=20 p, & \text { if } F_{p} \equiv 1 \quad(\bmod 8) ; \\
\Delta_{1}=-20 & \text { and } \Delta_{2}=-p F_{p}, & \text { if not. }
\end{array}\right.
$$

According to [16], r_{4} equals the number of independent $C 4$-decompositions of Δ, so $r_{4}=1$.
(2) If $p \equiv 1(\bmod 4)$, then we just apply Lemma 4.2 and Theorem 5.1 of [6].

5. Numerical examples with all known F_{p}

To date, F_{p} is known to be prime for $p=3,4,5,7,11,13,17,23,29,43,47,83,131,137$, $359,431,433,449,509,569,571,2971,4723,5387,9311,9677,14431,25561,30757,35999$, 37511, 50833, 81839. In addition to these proven Fibonacci primes, there have been found probable primes for $p=104911,130021,148091,201107,397379,433781,590041,593689$, 604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721, 2904353 (See.[21]). Using the Pari software, [10], we find that there are up to now 5 primes Fibonacci numbers such that

THE 2-CLASS GROUP OF $\mathbb{Q}\left(\sqrt{5 P F_{P}}\right)$ WHERE F_{P} IS A PRIME FIBONACCI NUMBER

G is nonmetacyclic. We use the following abbreviations: M means metacyclic, NM means nonmetacyclic.

p	$(\bmod 4)$	$\left(\frac{p}{5}\right)$	$\mathbf{C} l_{2}(\mathbf{k})$	G	p	$(\bmod 4)$	$\left(\frac{p}{5}\right)$	$\mathbf{C} l_{2}(\mathbf{k})$	G
7	3	-1	$(2,2)$	M	14431	3	1	$(2, ?)$	M
11	3	1	$(2,4)$	NM	25561	1	1	$(2, ?)$	NM
13	1	-1	$(2,2)$	M	30757	1	-1	$(2,2)$	M
17	1	-1	$(2,2)$	M	35999	3	1	$(2, ?)$	NM
23	3	-1	$(2,2)$	M	37511	3	1	$(2, ?)$	NM
29	1	1	$(2,4)$	M	50833	1	-1	$(2,2)$	M
43	3	-1	$(2,2)$	M	81839	3	1	$(2, ?)$	NM
47	3	-1	$(2,2)$	M	104911	3	1	$(2, ?)$	M
83	3	-1	$(2,2)$	M	130021	1	1	$(2, ?)$	NM
131	3	1	$(2,4)$	NM	148091	3	1	$(2, ?)$	NM
137	1	-1	$(2,2)$	M	201107	3	-1	$(2,2)$	M
359	3	1	$(2, ?)$	NM	397379	3	1	$(2, ?)$	NM
431	3	1	$(2, ?)$	NM	433781	1	1	$(2, ?)$	M
433	1	-1	$(2,2)$	M	590041	1	1	$(2, ?)$	NM
449	1	1	$(2, ?)$	M	593689	1	1	$(?, ?)$	NM
509	1	1	$(2, ?)$	M	604711	3	1	$(2, ?)$	M
569	1	1	$(2, ?)$	M	931517	1	-1	$(2,2)$	$(2,2)$
571	3	1	$(2, ?)$	M	1049897	1	-1	$(2,2)$	M
2971	3	1	$(2, ?)$	M	1285607	3	-1	$(2,2)$	M
4723	3	-1	$(2,2)$	M	1636007	3	-1	$(2,2)$	M
5387	3	-1	$(2,2)$	M	1803059	3	1	$(2, ?)$	NM
9311	3	1	$(2, ?)$	NM	1968721	1	1	$(?, ?)$	NM
9677	1	-1	$(2,2)$	$(2,2)$	2904353	1	-1	$(2,2)$	M

Figure 1. Numerical examples

References

[1] M. Aoki and Y. Kishi, An infinite family of pairs of imaginary quadratic fields with both class numbers divisible by five, submitted
[2] A. Azizi, Sur la capitulation des 2 -classes d'idéaux de $k=\mathbb{Q}(\sqrt{2 p q}, i)$, où $p \equiv-q \equiv 1 \bmod 4$, Acta. Arith. 94 (2000), 383-399.
[3] A. Azizi and A. Mouhib, Sur le rang du 2-groupe de $\mathbb{Q}(\sqrt{m}, \sqrt{d})$ où $m=2$ ou bien un premier $p \equiv 1$ $(\bmod 4)$, Trans. Amer. Math. Soc. 353 (2001), 2741-2752.
[4] E. Benjamin and C. Snyder, Real quadratic number fields with 2-class group of type (2, 2), Math. Scand. 76 (1995), 161-178.
[5] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower, J. Number Theory. 73 (1998), 182-194.
[6] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3) 11 (1961),1-22
[7] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184.
[8] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
[9] C. Chevalley, Sur la théorie du corps de classes dans les corps finis and les corps locaux, J. Fac. Sc. Tokyo, Sect. 1, t.2, (1933), 365-476.
[10] The PARI Group, PARI/GP, Bordeaux, Version 2.7.5, Oct 26 2015, (http://pari.math.u-bordeaux.fr).
[11] G. Gras, Class field theory, from theory to practice, Springer Verlag 2003.

THE FIBONACCI QUARTERLY

[12] R. P. Grimaldi, Fibonacci and Catalan numbers. An introduction, John Wiley \& Sons, Inc., Hoboken, NJ, 2012.
[13] P. Kaplan, Sur le 2-groupe de classes d'idéaux des corps quadratiques, J. Reine angew. Math. 283/284 (1976), 313-363.
[14] Y. Kishi, A new family of imaginary quadratic fields whose class number is divisible by five, J. Number Theory 128 (2008), 24502458.
[15] F. Lemmermeyer, Reciprocity Laws, Springer Monographs in Mathematics, Springer-Verlag. Berlin 2000.
[16] L. Rédei, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49 (1932), 338-363.
[17] Z. H. Sun and Z. W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), 371-388.
[18] B. K. Spearman, K. S. Williams, Unramified Quadratic Extensions of a Quadratic Field, Rocky Mountain J. Math. 25 (1995), no. 2, 783-788.
[19] O. Taussky, A Remark on the class field tower, J. London Math. Soc 12 (1937), 82-85.
[20] N. N. Vorobiev, Fibonacci numbers, Russian Academy of Sciences, 1992 (6th edition) Nauka, Moscow.
[21] Wikipedia, Fibonacci prime, https://en.wikipedia.org/wiki/Fibonacci_prime\#cite_note-prptop-2
Department of Mathematics, Faculty of Sciences and Technology, Moulay Ismaïl University, Errachidia, Morocco

E-mail address: taousm@hotmail.com

