ON THE 2-CLASS GROUP OF Q(./5pF,) WHERE F, IS A PRIME
FIBONACCI NUMBER

MOHAMMED TAOUS

ABSTRACT. Let F), be a prime Fibonacci number where p > 5. Put k = Q(,/5pF},) and
let k§2) be its Hilbert 2-class field. Denote by kéQ) the Hilbert 2-class field of k§2) and by

G = Gal(kgz)/k) the Galois group of kg2>/k. In this paper, we characterize the structure of
the 2-class group of k and we study the metacyclicity of G.

1. INTRODUCTION

Let d be a square-free integer and k = Q(vd) = {a +bVd : a,b € Q} be a quadratic
number field. Then we define the ring of integers of k by

Ox ={a € k: P(a) =0 for some monic polynomial P € Z[X]|}.

ZMYd) it d =1 (mod 4);

Z[Vd],  if not.

Two ideals I and J of Oy are said to be equivalent if I = A\J for some A\ € k, this definition
of equivalent is an equivalence relation. The ideal classes of Oy form a finite group called the
class group of k, and will be denoted by Cl(k).

We define the p-rank and the p?-rank of CI(k) respectively as follows:

rp = dimp, (Cl(k)/Cl(k)?) and r,2 = dimFP(Cl(k)p/Cl(k)pQ)

where I, is the finite field with p elements.

Several works are interested in determining the structure of the p-class group Cl,(k), that
is the Sylow p-subgroup of Ci(k). For example, for p = 2, 79 = 2 and 74 = 0 or 1, we can
see the works of P. Kaplan [13], and Benjamin et all [4]. As the only perfect squares in the
Fibonacci sequence are Fy = 0, F} = F5 = 1 and Fj = 144 (see, e.g., [8]), then the quadratic
field k = Q(v/%F,) is well defined for n ¢ {0,1,2,12}. On the other hand, by genus theory,
the 2-class group, Cly(k), of k = Q(v/F},) is trivial if and only if F},, = m?p where p is a prime
number.

Y. Kishi [14] gave an infinite family of imaginary quadratic fields Q(v/—F},) with n = 25
(mod 50) such that r5 > 1. The latter author and M. Aoki gave in [1] another infinite family
of pairs of imaginary quadratic fields with r5 > 1. Motivated by these works, we thought, in a
first time, studying the 2-class group of the real quadratic fields k = Q(v/F,,). But we noticed
that we cannot do it, in general, since to calculate the rank of Cla(k), we must first calculate
the prime numbers that divide square-free part of F;,. To overcome this difficulty, we changed
F,, by 5pF), where F}, is a prime Fibonacci number with p > 5, and we decided to characterize

the structure of the 2-class group of k and to study the metacyclicity of G = Gal(kg) /k)
where kg2) is the second Hilbert 2-class field of k.

It is known that Oy = {
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2. SOME CONSEQUENCES OF THE BINET’S FORMULA

The Fibonacci numbers F;, may be defined by the recurrence relation F,, = F;,_1 + F},_5 for
n > 2 with Fy = 0 and F; = 1. In 1843, the French mathematician Jacques Philippe Marie
F,=—

Binet (1786- 1856) discovered that
1 n 1 . n
RGN EEACAN (2.1)
NG 2 2

This expression of Fy, is called Binet’s formula. Using this formula, we can show the well-known
identities [12]:

1

n—1 n
22" Py = > 5*CINT and 4" Fy 1y = Y 5RO (2.2)
k=0 k=0

Fon1 = Fj o+ F. (2.3)
From which we deduce that all the odd divisors of Fb, 1 are of the form 4¢ + 1.

Recall also that the Lucas numbers are the sequence of integers (L;,)nen defined by the
linear recurrence equation L, = L, 1 + L,_o for n > 2 with L; =1 and Ly = 3.

Theorem 2.1 (Legendre, Lagrange). Let p be an odd prime integer. Then the Fibonacci
number F, and the Lucas number L, have the following properties:

1+ (8

Fou = 75) (mod p), F) = (g) (mod p) and L, =1 (mod p).

2

Those extraordinary sequences have so many other properties (see, e.g., [20, 12]). We can,
for example, cite the following identities:

L2 —5F% = 4(—1)". (2.5)
5Fyn = 2Lon41 — L7 +2(—1)". (2.6)

Corollary 2.2. Let p be a prime > 5, and denote by (5) the Legendre symbol. Then the

Fibonacci number F), has the following properties:
(1) If p=1 (mod 4), then (%) =1 and (§) = (%)
(2) If p=3 (mod 4), then (%) —(2) = (%)

Proposition 2.3 ([15]). Let p = a® + b? be an odd prime, and suppose a odd. Then

() =2 G)=G) e (57)= (),

3. PRELIMINARY

In what follows, we adopt the following notations: if <%) =1 and p = 1 (mod 4), then

)4 will denote the rational biquadratic symbol which is equal to 1 or —1, according as

T e

2 p=1

T =1lor —1 (mod p), in particular (5)4 =(-1) 7.
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Lemma 3.1 ([17]). If p > 5 is a prime such that p =1 (mod 4), then F,_py =0 (mod p)
2
For(®) p=1
and( -z ):(159) T

Proof. From the first equality of Theorem 2.1, we conclude that

Fp_<§) =0 (mod p) and Fp+(§) =1 (mod p). (3.1)

According to Formula (2.4), we have

pyL, 2y =0 (mod p).

2 2

p—

Fo(2) = Fog

We now show that p never divides L,_ zy.
2

If (2) = —1, then Formula (2.5) implies that L2,, — 5F2,, = 4(—1)* (mod p). If p divides
5 ptl ptl

2 2
L, (py, then, since p =1 (mod 4), (%) = (g) = (%) = 1. This is absurd.

o

2
If (%) = 1, then by replacing, in (2.6), 2n by p— 1, we get 5F,_1 = 2L, — L%,%l + 2. According

to the third equality of Theorem 2.1 and to the first equality of (3.1), we have L2_, = 4

2
(mod p), i.e., p never divides L,

(z)- Then F,_p) =0 (mod p).

2 2
Finally, from the second equality of Theorem 2.1 and (2.3), we can see that

P

F, = F2+(%)+F§7 5 EF§+(%) (mod p)

2 2 2
_ (B _ [(er=1)\2
= <p> = <5 1 ) (mod p).
- Foi() p1
As p is prime, so Fp+(§) =4+ (5T) (mod p). This gives that m =(2) . 0
p
2

Theorem 3.2 (Burde, [7]). Let m, n € N be odd such that m = a?>+b? and n = c¢®>+d?, where
a, b, ¢, d €N, 24ac, and (a,b) = (¢,d) = (m,n) = 1. Suppose that (%) = (ﬂ) =1. Then

(2),(2), = (=2) = (222

Proposition 3.3. Let F, be a Fibonacci number with prime index p =1 (mod 4). Then we

have
F, p> B 1, ifp=1 (mod 3);
5.1 ). s

Proof. Let p = a® + b® be an odd prime, and suppose that a is odd and put (2) = (—1)% It
3

p
is easy to see that p = (%) (mod 6), this implies that w is not divisible by 3, so Fp+(§) is
2
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. _ 2 2 . .
odd. Since F}, = Fp+(%) + Fpi(%) , then the previous theorem gives that

a rt(k)
(S5 w0 -
= F (see the lemma 3.1)
b p-(K) P P
B (5) tm=--
p—1

(Proposition 2.3)

To show the following results, it suffices to use Formula (2.2) modulo 5.

Lemma 3.4. Let F}, be a Fibonacci number with prime index p =1 (mod 4). Then

(1) F, =p (mod 5).
(2) Fp = <2) (p—1) (mod 5).

(3) F+ —3 E;) (p+1) (mod 5).

(4) If (8) =1, then <§p>4 = (%)4

Corollary 3.5. Let F}, be a Fibonacci number with prime index p =1 (mod 4). If (%) =1,
F 5 —
then <?p>4 <E>4 = (5)-
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Proof. Since 5 = 1% 4 22, FH(%) is odd and Fj, = Fi(%) + in(%), then Theorem 3.2 implies

2 2 2

that

).E) T
5 )4 \Ip/4 >
( 3(3)(p+1>§2(§)(p1)>, if (8)=1;
- E(§>(p1>+56<5><p“>>, if (§) = -1.
( é =1, if(§)=1
B % = -1, if (§) = -1
-G

4. MAIN RESULTS

Let k be an algebraic number field and let Cla(k) denote its 2-class group. Denote by kél) the
Hilbert 2-class field of k and by kgz) its second Hilbert 2-class field. Put G = Gal(kém /k) and
denote by G’ its derived group; then it is well known, by class field theory, that G/G’ ~ Cla (k).
x,y

lk

For any prime [, [ will denote a prime ideal of k lies above [. We also denote by

resp. L)) the Hilbert symbol (resp. the quadratic residue symbol) for the prime [ applied

[
Kk

to (z,y) (resp. x). Recall that a 2-group H is said to be of type (271,2"1 ..., 2") if it is

isomorphic to Z/2™M7Z X Z/2™7 x ...Z/2"Z, where n; € N*.

If k = Q(y/5pF)) such that F), is a prime Fibonacci number where p > 5, then, by genus
theory, rank(Cla(k)) = 2. Thus Cls(k) is of type (2",2™) with n,m € N*. Hence group
theory implies that Cly(k) admits three normal subgroups of index 2, denote them by H;,
i € {1,2,3}. The following diagram illustrates the situation :

-
N

On the other hand, by class field theory, each subgroup H; of Cly(k) is associated to a unique

unramified extension F; within kgl) such that H;/H] ~ Cly(F;). The situation is represented

Cly(k

H,y
Hsj
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F
/ \
k= 2-F k(Y
X /
F3
According to [18, Theorem 2|, the three fields F; are given as follows:

Fl :Q(\/ga \/pr)a F2 = @(\/ﬁa \ 5Fp) and F3 = Q(\/ Fp7 V5p)

Recall also that a group G is said to be metacyclic if it has a normal cyclic subgroup H
such that the quotient group G/H is cyclic. For example, if Cly(k) is of type (2,2), then G is
metacyclic. More precisely and by [19], G is isomorphic to one of the following groups:

(1) Abelian 2-group of type (2,2).

(2) The dihedral group.

(3) The quaternion group.
(4) The semidihedral group.

Theorem 4.1 (Main result: case (8) = —1). Let F, be a prime Fibonacci number such that
p>5 and (%) = —1. Put k = Q(\/5pF}) and let k§2) be its Hilbert 2-class field. Denote by
kg2) the Hilbert 2-class field of k§2) and by G = Gal(kg)/k) the Galois group of kg)/k. Then
(1) Cla(k) is of type (2,2).
(2) G is abelian (is of type (2,2)) if and only if p = 5 (mod 24) or p = 3 (mod 4) and
F, =1 (mod 8).
(3) If G is nonabelian, then it is quaternion, dihedral or semi-dihedral.

by the following figure:

Proof. If p =1 (mod 4), then Corollary 2.2 implies that (%) = (%) = —1, so we use Kaplan’s
results on the 2-class group of the field Q(,/p1p2p3) where p; =1 (mod 4) ([13]) to show that
Cly(k) is of type (2,2). In the case where p = 3 (mod 4), we use a result of E. Benjamin and

C. Snyder (namely [4, case 7, page 163]) to deduce that Cla(k) is also of type (2,2). According

to [5], G is abelian if and only if p =1 (mod 4) and (%)4 (%)4 =—lorp=3 (mod 4) and
F, =1 (mod 8). This is equivalent, by Proposition 3.3 and the Chinese remainder theorem,
top=>5 (mod 24) or p=3 (mod 4) and Fj, =1 (mod 8). O

Lemma 4.2. Let F,, be a Fibonacci number with prime index p = 1 (mod 4). Denote by r;
the rank of the 2-class group of the field F;, where i € {1,2,3}. Assume (%) =1.

P py (5) — 1.
(1) Ifp=2 (mod 3), thenry =r3 =2 andry = 2 ifp=5 (mod8) or (§), (p>4 L
3, if not.

ey (5) — _1.
(2) Ifp=1 (mod 3), thenrz3 =3 and ry =ry = 2 i (5), <p)4 L
3, if not.

Proof. This is an immediate consequence of Proposition 3.3, Corollary 3.5 and Theorem 2 of
[3]. O
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Lemma 4.3. Let F, be a Fibonacci number with prime index p = 3 (mod 4). Denote by r;
the rank of the 2-class group of the field F;, where i € {1,2,3}. If (%) =1, thenry =ry =2

[ 2, if F,=5 (mod 8);
‘”“”3_{ 3, if F,=1 (mod 8).

Proof. As the class number of I’ = Q(/p) is odd, then the ambiguous class number formula
(see [9]) implies that ro =t — e — 1, where ¢ = 4 is the number of primes of F' that ramify in
Fy/F and e is defined by 2° = [Er : Er N Np,,p((k*)*)]. The Hasse norm theorem (see, e.g.,

[11, theorem 6.2, p. 179]) implies that a unit € of F' is a norm of an element of F'(1/5F),) = F»
5k, e

F
unit of F' = Q(/p), so Ep, the unit group of F, is equal to (—1,¢,). According to [2], 2¢, is

a square in F', then
(#5)-(c20) - (- ()
50(y7) 50(vP) g g

<5Fp,1) :{ (F#) =1, ifl=50rl=F,

I 1, if not.

if and only if = 1, for all [g # 2F prime ideal of F'. Denote by ¢, the fundamental

9, if
3, if
we can apply Theorem 1 of [3]. O

Thus we conclude that e = 1 and o = 2. To prove r{ = 2 and r3 = {

Theorem 4.4 (Main result: case (£) = 1). Let F, be a prime Fibonacci number such that
p>5 and (g) = 1. Put k = Q(\/5pF},) and let k](LQ) be its Hilbert 2-class field. Denote by kg2)
the Hilbert 2-class field of k§2) and by G = Gal(kgz)/k) the Galois group of kg)/k. Then
(1) If p=3 (mod 4), then Cla(k) is of type (2,2"), such that n > 2 and G is metacyclic if
and only if F, =5 (mod 8).
(2) If p=1 (mod 4), then G is metacyclic if and only if p=5 (mod 24) or [p =2 mod 3

and (&), (%)4 =—1].

Proof. (1) If p = 3 (mod 4), then the last lemma and Theorem 5.1 of [6] yield that G is
metacyclic if and only if F, =5 (mod 8). To show that Cly(k) is of type (2,2"), it suffices to
prove that r4, the 4-rank of Cly(k), is 1. In this case, the discriminant of k is A = 20pF),, and
the only possible C'4-decomposition of A is AjAg with

A =F, and Ay =20p, ifF,=1 (mod8);
Ay =-20 and Ay = —pkF,, if not.

According to [16], r4 equals the number of independent C'4-decompositions of A, so r4 = 1.
(2) If p=1 (mod 4), then we just apply Lemma 4.2 and Theorem 5.1 of [6]. O

5. NUMERICAL EXAMPLES WITH ALL KNOWN F},

To date, F}, is known to be prime for p =3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137,
359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677, 14431, 25561, 30757, 35999,
37511, 50833, 81839. In addition to these proven Fibonacci primes, there have been found
probable primes for p =104911, 130021, 148091, 201107, 397379, 433781, 590041, 593689,
604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721, 2904353 (See.[21]). Using the
Pari software, [10], we find that there are up to now 5 primes Fibonacci numbers such that
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G is nonmetacyclic. We use the following abbreviations: M means metacyclic, NM means
nonmetacyclic.

P (mod 4) [ (B) [Cl(k) | G P (mod 4) [ (B) [Cl(k) [ G
7 3 1 (2,2 | M | 14431 3 1 @27 | M
11 3 1| (2,4) | NM | 25561 1 1| (2,7) | NM
13 1 1 (22 | M | 30757 1 1] (22 | M
17 1 1 (22) | M | 35999 3 1| (2,7 | NM
23 3 1 (22 | M | 3w 3 1| (2,7) | NM
29 1 1| (24 | M | 50833 1 1] (22 | M
43 3 1 (22) | M | 81839 3 1| (2,7 | NM
A7 3 1] (2,2 | M| 104011 3 1 (27| M
83 3 1 (22) | M | 130021 1 1| (2,7) | NM
131 3 1| (2,4) | NM | 148091 3 1| (2,7 | NM
137 1 1] (2,2) | M | 201107 3 1 (22 | M
359 3 1 (2,7) | NM 397379 3 1 (2,7) | NM
431 3 1| (2,7) | NM | 433781 1 1| @27 | M
433 1 1 (22) | M | 590041 1 1| (2,7 | NM
449 1 1 (2, 7) M 593689 1 1 (7,7 NM
509 1 1| @27 | M | 604711 3 1| (27
569 1 1| @27 | M | 931517 1 1] (22 |22
571 3 1] (2,7 | M | 1049897 1 1 (22 | M
2071 3 127 | M |1285607| 3 1 (22 | M
4723 | 3 1| (22 | M |1636007| 3 122 | M
5387 | 3 1 (22) | M [ 1803059 | 3 1| (2,7 | NM
9311 3 1| (2,7) | NM | 1968721 1 1| (2,7) | NM
9677 | 1 1| (2,2) | (2 2) | 2004353 1 122 | M

FIcGURE 1. Numerical examples
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